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ON CO-BICLIQUES

DENIS CORNAZ!

Abstract. A co-biclique of a simple undirected graph G = (V, E) is
the edge-set of two disjoint complete subgraphs of G. (A co-biclique is
the complement of a biclique.) A subset F' C F is an independent of G
if there is a co-biclique B such that F' C B, otherwise F' is a dependent
of G. This paper describes the minimal dependents of G. (A minimal
dependent is a dependent C' such that any proper subset of C is an
independent.) It is showed that a minimum-cost dependent set of G
can be determined in polynomial time for any nonnegative cost vector
T € Qf. Based on this, we obtain a branch-and-cut algorithm for the
maximum co-biclique problem which is, given a weight vector w € Q¥,
to find a co-biclique B of G maximizing w(B) =} . 5 We.-
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1. INTRODUCTION

Let G = (V, E) be a simple undirected graph and w, a nonnegative weight for
each e € E. We denote E[U] = {uv € E : u,v € U} and E[U] = {uv : u,v €
U,u # v,uv ¢ E}. A subset of nodes U C V is called a clique if E[U] = 0. A set
B C FE is called a co-biclique if there are two disjoint cliques U; and Us such that
B = E[U;] U E[Us]. Note that 0 is a co-biclique. A co-biclique B is maximum if
its weight w(B) = }_ . g we is maximum.

This paper adresses the maximum co-biclique problem which is to determine a
maximum co-biclique of G. Note that finding a maximum cardinality clique in
G can be reduced to finding a maximum cardinality co-biclique in 2G, where 2G
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consists in the graph G and a disjoint copy of G. This implies that the maximum
co-biclique problem is NP-hard.

The structure of odd cycle is essential in the study of the bipartite subgraphs
(see [8]). The collection of the odd cycles of G coincide with the minimal de-
pendents of the independence system that is naturally formed by the bipartite
subgraphs of G. (An independence system of a set E consists in a collection Z of
subsets of E such that I € Z and I’ C I implies I’ € Z.) Recently, it was showed
that less natural independence systems could be associated to more complicated
graph structures, with interesting polyhedral and algorithmic consequences. This
approach is used for graph coloring in [4,5]. The independence system associated
to the (edge-set of) induced bipartite subgraphs have been defined and described
in [3]. In [1,2], the independence systems associated to the bicliques and to the
complete multipartite subgraphs have been introduced and characterized. This pa-
per studies the independence system associated to the co-bicliques. According to
our knowledge, although bicliques have been studied a lot (see [7]), the maximum
co-biclique problem has never been considered before. Knowing the importance of
bicliques, we found natural to study co-bicliques.

Our approach is the following: We say that an edge set F' C FE is independent if
there is a co-biclique B such that B O F, otherwise F' is dependent. In this way,
solving the maximum co-biclique problem is equivalent to determine the maximum
weight of an independent. Hence there is a 0-1 linear programming formulation of
the maximum co-biclique problem in the natural variable space, namely

max ». Wele
ecE

(Pr) s.t.
z. €40,1} foreverye€ F,
z(C) <|C|-=1 for every dependent set C,

where #(C) = > .- .. We are interested in solving (Pr) with a branch-and-cut
algorithm. That method is efficient if the continuous relaxation (P) of (Pr) can be
solved in polynomial time. The number of inequalities of (P) may be exponential
(with respect to n := |V|) but we will show that indeed (P) can be solved in
polynomial time.

This paper is organized as follows. In Section 2, we give some definitions and
we characterize the independents. In Section 3, we give a complete description
of the minimal dependents. In Section 4, we show that finding a minimum-cost
dependent reduces to finding a minimum-cost odd cycle in an auxiliary signed
graph G of G. We use this to show that (P) can be solved in polynomial time.

2. PRELIMINARIES

First we collect some general terminology and facts on signed graphs (this can
be found in [8], Vol. C, p. 1329). A signed graph is a triple (V, E,X), where (V, E)
is an undirected graph and ¥ C E. The subset of edges X is called a signing.
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A path of (V, E,¥) is a subset P C E of the form P = vgvy,v109, ..., vk_10x where
each v; is a distinct node of V. If all the v; are distinct except vg = vg, then P is
called a cycle. We call a path, or a cycle odd (even, respectively) if it contains an
odd (even, respectively) number of edges in X.

A cutof (V, E,X) is a set of edges of the form §(U) ={uv € E:u e U,v e V\U}
where U C V.

Lemma 2.1 (8]). Two signing ¥ and ¥/ give the same collection of odd cycles if
and only if YAY is a cut of (V, E).

Let G = (V, E) be a graph and E := E[V]. The signed graph associated to G
is the signed graph G = (V, E U E, E). Denote V(F) the set of nodes incident to
an edge in F' C F.

Definition 2.2. Let F' C E and W = V(F). The rooted graph of F' is the signed
graph B o .
Grp = (W,E[W]UF, E[W]).

The following lemma characterizes the independents (of G).

Lemma 2.3. Let FF C E. The following propositions are equivalent.
(i) Gr has no odd cycle;
(ii) E[W] is a cut of Gp;
(iii) F is an independent.

Proof. (i) < (ii) : It follows by setting V := W, E := E[W]UF, ¥ := E[W] and
Y ;= in Lemma 2.1.

(i1) = (ii7) : If E[W] = 6(U) is a cut of Gp, then E[U] = E[W \ U] = 0 and
F C E[UJUE[W \U]. Since B = E[U]U E[W \ U] is a co-biclique, then F' is an
independent.

(i4i) = (i) : If F is an independent, F is contained in a co-biclique B = E[U] U
E[W \ U]. Hence E[W] is a cut §(U) of Gp. O

A set F' is a minimal dependent if F' is a dependent and F” is an independent
for every proper subset F’ of F'. Lemma 2.3 has the following corollary.

Corollary 2.4. Let F C E. F is a minimal dependent if and only if

(i) Gr has at least one odd cycle, and
(i) for every odd cycle Q of G and every edge f € F \ Q, there is a node
vy € V(Q) such that f is the unique edge in F incident to vy.

Proof. Necessity. Let F be a minimal dependent. Then (i) follows from the fact
that F' is not an independent. If (ii) does not hold, then there is an odd cycle
Q@ and an edge f € F'\ Q such that V(Q) C V(F \ {f}). But then @ belongs
to the rooted graph of F'\ {f}, which is impossible since F'\ {f} is independent.
Sufficiency. By (i), F is a dependent. Assume that F' = F'\ {f} is a dependent
for some f € F. Then the rooted graph G of F’ has an odd cycle Q. Since f is
not an edge of G, then f € F'\ Q. By (ii), there is a node vy € V(Q) such that
vy ¢ V(F'), a contradiction. O
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3. DESCRIPTION OF THE MINIMAL DEPENDENTS

In what follows we introduce some definitions that are useful to give a complete
description of the minimal dependents. Throughout the section we will use the
following conventions: F will always represent an edge subset of G, W is the set
of nodes of F, and Gy will always represent the rooted graph of F. (Recall that
Gr is a signed graph.)

Definition 3.1. F induces an obstruction with an odd cycle Q of G if for every
edge fin F\ Q

(a) f is incident to exactly one node of @, and

(b) f is adjacent to no edge in F\ {f}.

Definition 3.2. Let F be an edge set inducing an obstruction with the odd cycle
Q = vov1, V102, ..., V10 (where the indices are taken modulo k).
An edge v;v;42 € E[W] is called short-chord if
(a) Vi+1Vi+2 € F and Vi Vig1,Vi42Vi43 EF[W], or
(b) ViViy1 € F and v;_qv;, Vi+1Vi42 € E[W]
An edge v;v;43 € E[W] is called a diagonal if
(C) ViVit1, VipaVit3 € F, Vi 10;, Vit1Vit2, Vit3Vita € F[W]
An edge v;w € E[W] with w € V(Q) is called a wing if
(d) vivig1, wVi42 € F and v;_10;, Vi41Viq2, Vit2Viqys € E[W], or
(e) VU1, Wv;_o € F and v;_3v;_9,v;_2v;_1, ViViyr1 € E[W]

Definition 3.3. We say that two wings v;w and v;w’ overlap if v;v; € F.
Figure 1 depicts the objects of the above definitions.

Theorem 3.4. F is a minimal dependent if and only if F' induces an obstruction
with an odd cycle Q such that
(i) every edge in E[W]\ Q is either a short-chord, a diagonal, or a wing, and
(ii) no wings overlap.

Proof. Necessity: Let F be a minimal dependent of G. By Corollary 2.4(i), Gr
contains an odd cycle. Let @ be an odd cycle of Gy such that |Q N F| is maximal.

Let P be a path of Gp linking v;,v; € V(Q) such that PN Q = 0 and
V(P)NV(Q) = {vi,v;}. We let P,,P, C @ be the two distinct paths of @
linking v;,v;. So Py NPy = 0 and P, U P, = Q. Note that [P, N E[W]| and
| P, NE[W]]| are of opposite parity. Hence we can assume without loss of generality
that Q1 = Py U P is an odd cycle and ()2 = P> U P is an even cycle of G‘F

Claim 1. We claim that none of the following propositions can be true.

(1) P = {'Uﬂ}j} with X e F.

(2) P = {v;w,wv;} with v;w,wv; € F.

(3) P = {v;w,ww,w'v;} with v;w,w'v; € F.

Proof. If either (1), or (2), or (3) is true, then V(Q1) C V(F \ {f}) for every
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FIGURE 1. Short-chords (a,b), diagonal (c) and wings (d,e).

f € FN Py, If there is an edge f € F N Ps, then, by Corollary 2.4(i), F \ {f}
is a dependent; this contradicts the minimality of F. So we can assume that
F N Py = 0. Therefore |F N Q1| > |F NQ|; which contradicts the maximality of
|Q N F|. (End of the proof of Claim 1.)

Claim 2. We claim that F' induces an obstruction with Q. Proof. By Corol-
lary 2.4(ii), every edge in F' is incident to Q. If f € F is a chord of @, we can
assume that P = {f}; this is impossible by Claim 1(1). So @ has no chord in F,
hence Definition 3.1(a) holds. Let f, f’ be two adjacent edges such that f € F\ Q
and f’ € F. By Corollary 2.4(ii), f’ also belongs to F'\ Q. Moreover the common
node of f and f’ is not in @Q; thus we can assume that P = {f, f'}; this is impos-
sible by Claim 1(2). Hence Definition 3.1(b) holds. (End of the proof of Claim 2.)
A node v of @ is said to be exposed if it is incident to no edge in F' N Q.

Claim 3. We claim that the following propositions are true.

(1) P has no internal edge in F.

(2) If Q2 has no chord in F', then P> has no exposed node.

(3) Every node of P; is incident to (exactly) one edge in F'.

Proof. By Corollary 2.4(ii), every edge in F' is incident to a node in @;. Thus
(1) is true. Suppose that (2) is not true. Let v be an exposed node of P». There
is an edge f in F'\ P, incident to v and to a node in @;. By Claim 2, @ has
no chord, hence f is incident to a node in P. This is impossible since Q2 has no
chord. Suppose now that (3) is false. Let v be a node of P» incident to two edges
fi,foin F. By Claim 2, f1, fo € Q. If f; € Py and fo € P, then Py = {f2} since
f2 must be incident to a node in V(Q1 \ f1); this is impossible. So fi, fo € Pa.
Since f; and fy are incident to @1, then P» = {f1, fa}. Since Q3 is even in Gr,
then |P N E[W]| is even. Hence, because of the maximality of |Q N F| and the
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minimality of F, there are only two cases: either P = {v;v;} with v;v; € F, or
P = {v,w,wv;} with v;w, wv; € F. This is impossible by Claim 1. (End of the
proof of Claim 3.)

Now we can prove that necessity is true. Denote e; = v;v;41 for i = 0,1,...,
k—1. Let e be an edge in E[W]\ Q. Suppose that P = {e}. Since Q has no chord,
then Q9 has no chord. As P has exactly one edge in E[W], P; has an odd number
of edges in E[W]. By Claim 3, P, contains exactly one edge in E[W]. Note that
since Gy has no multiple edge, P, contains at least one edge in F. Suppose that
P, contains exactly one edge f in F', by Claim 3, f is either e; or e;_;. First we
assume that f = e;. Then e is a short-chord (see Fig. 1la). If f =e;, then e is a
short-chord (see Fig. 1b). Now suppose that P, contains more than one edge in
F. Claim 3 implies that the edges in F'N P, are e; and e;_;. Finally, as P has
no exposed node, e is a diagonal (see Fig. 1c).

Assume now that e = ww’ with w,w’ € W\ V(Q). This is impossible by
Claim 1(3). We can assume now that e = v;w with v; € V(Q) and w € W\ V(Q).
Note that since F' induces an obstruction with ), there is an edge in F', say
[ =vjw (with v; € V(Q)), which is the unique edge in F incident to w and the
unique edge in F incident to v;. Thus e;_1 and e; are in E[W]. Let P = {e, f}.
The path P contains one edge in E[W], therefore P; contains an odd number of
edges in E[W]. If P, contains no edge in F', then the odd cycle Q; has more edges
in F' than @ has, contradiction. We can assume that @2 has no chord. Assume
first that i < j. By Claim 3, e; is the unique edge of F'NP,. Also, e;_1 is in E[W].
Moreover v; is the unique exposed node of P. Thus j = ¢ + 2 and the edge e is
a wing (see Fig. 1d). The case j < i is similar: j = ¢ — 2 and e is a wing (see
Fig. le). Finally the only possible neighbours of w besides v; are v;_o and v;49; if
w is adjacent to these three nodes, w is incident to two wings.

Assume now that there exist two nodes w,w’ € W\ V(Q), a wing e = v;w

and a wing €/ = v;;1w’ which overlap. The path P’ = {v;_1w', €/, e;, e, wv;q2}
has three edges in F' and the path P = {e;_1,...,¢e;+1} has only one edge in F.
The cycle obtained by replacing P” by P’ in the sequence describing P” is an odd
cycle in G and has a larger number of edges in F' than @, which contradicts the
maximality of |[F'N Q|.
Sufficiency. Let f € F and let Gp/ be the signed rooted graph of F' = F'\ {f}.
Assume now that F'\ {f} is not a independent of G; by Lemma 2.3, there is an
odd cycle D of Gg. Note that D is also an odd cycle of Gp. If f is an edge of
Q, Q cannot be a subgraph of Ggs. In the other case f links a node in W\ V(Q)
to an exposed node v of Q, v is not a node of Gp/ and again Q is not a subgraph
of épl .

Assume that D contains a diagonal e = v;v;43 ; f cannot be e; or e; ;o since
v; and v;43 have not been deleted from G r. If we replace in D the subsequence
ce.s€ ... by ... € €it1,€i42,... (which is not a subsequence of D since D is odd
in G r/) we obtain a new cycle which does not contain e and which is odd in G Fr.
Reiterating this process, we can eliminate all the diagonals, and similarly all the
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short-chords. If D contains a node w in W\ V(Q), D contains one or two wings in-
cident to w. If D contains a subsequence ..., e, f’, ... where e is a wing, we replace
in D that subsequence by ..., e;, e;11,.... If D contains a subsequence ..., e, e, ...
where e and ¢’ are wings, we replace in D that subsequence by ..., e;, ..., €13, ...
Again this new cycle is odd in Gps and we can eliminate similarly all the wings.
Finally D contains edges of the cycle @ only, a contradiction. |

4. SOLVING (P)

Let
max Y Welke
eckE
(P) s.t.
0<x, for every e € E,

<1
z(C) <|C]—=1 for every dependent set C.

We state now the main result of the paper. We give a proof based on [9] which is
simpler than our original proof.

Theorem 4.1. (P) can be solved in polynomial time.

Proof. By [6], the problem reduces to the following separation problem: given
r € R¥, decide if 2 satisfies the constraints of (P), and if not, find a violated
inequality. We can check in polynomial time if 0 < z. < 1 for every e € E. Note
that 2(C) < |C| — 1 is equivalent to w(C) > 1 with w, =1 — z, for every e € E.
Hence our separation problem reduce to the following problem: Does there exist
a dependent with cost strictly smaller than 17

In the following we describe a polynomial algorithm which answers this question.
We reduce the problem to finding a minimum-cost odd cycle in an auxiliary signed
graph G of G. For any depend of G, there is an odd cycle of G with the same
cost, and wice-versa.

Let G be a graph with a nonnegative cost c(e) for each e € E. For every node
v € V, we define

c(v) = gg}ﬂ c(uwv),

and we choose an edge uv € E such that c(uv) = ¢(v); denote uv by f(v).
Let G be the signed graph constructed from G as follows (this is illustrated with
an example depicted in Fig. 2):

Let be the signed graph G = (V, E U E, E) associated with G. Note that each
node has degree n — 1 in G. For every edge e = uv of G we make a COPY € = Uee
of e in G‘, in this way, all the edges of G are disjoint. We will call e the mate of
ueVe. We will use the following notation: E is the set of copies of edges in E and
¥ is the set of copies of edges in E. Note that a node v of G has n — 1 copies
Ve, Vf, ... IN0 G. For every node v of G we create the (”gl) possible transition edges
VeVy in G between the different copies of v. The node v will be called the node
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FIGURE 2. On the left the graph G, on the right the signed graph G.

associated with the transition edge v.vy. Note that a transition edge is adjacent
to exactly two edges in £ UY. The set of the transition edges will be denoted by
T. The signing of G will be 2, so G = (V,TUEUX, ). Now we define the costs
in G. The cost of an edge é € G is denoted by d(é):

* d(é) =0 for each é € 3;

* d(é) = c(v)/2 for each é € T associated with a node v € V adjacent to an
edge in ¥ and an edge in E;

* d(é) = c(v) for each é € T associated with a node v € V adjacent to two
edges of the same type (two edges in ¥ or two edges in E)

x d(é) = c(e) — M for each é = ucv, € E where e = uv € E.

Note that the cost d(é) is nonnegative for each edge é of G. The problem of finding
a minimum-cost odd cycle in a signed graph can be solved in polynomial time for
every nonnegative edge cost function (see [8]). Let Q be an odd cycle of the signed
graph G minimizing its cost d(Q) = >ccq A(€). We will show now that the cost

of Q is equal to the minimum cost of a dependent set of G.

Remark that Q has at least one edge in 3. We can assume that Q does not
contain two consecutive edges that are transition edges in 7. Thus Q can be
decomposed into paths of the two following forms:

(Pl) P = {tl,él,tg,ég, . 7tkaékitk+1}a where é; € E, t; € T, and t; (tk+1) is
adjacent to an edge in X N Q.
(PQ) Py = {él,tl,ég,tg, e ,ﬁk—l,ék} where ¢; € X and t; € T.
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The cost of a path P; is

d(Pr)

d(t1) +d(é1) +d(t2) + -+ d(ty) + d(ég) + d(tks1)

_c(u) c(uy) + c(uz)
= g ) - T

c(uk) + c(urt1) | c(urgr)
k 5 k+ + ;+

+ c(ug) + ...

oot c(ug) + clex) —
= c¢(e1) +clea) + ...+ clek).

Thus the cost of Py is equal to the sum of costs c(e) of mates e € E of edges
é € EN P;. The cost of a path P, is

d(Py) d(ér) + d(t2) + d(é2) +d(ts) + - - + d(tx) + d(éx)

0+ c(uz) + 0+ c(ug) + ... + clug) + 0.

The cost of Py is equal to the sum of the costs c¢(u) of nodes u associated with
transition edges in TN P,. Let F' C E be the union of mates of the edges in En Q
and edges f(u) € E where u is the node associated with a transition edge of a
path P,. We have d(Q) > ¢(F). Besides, by Lemma 2.3, F' is a dependent set.
Now let F' be a minimum-cost dependent set. By Theorem 3.4, F' induces an
obstruction with an odd cycle Q in G. Let W = V(F). In the graph G there is
a cycle Q such that the edges in X N Q (resp. En Q) are the mates of edges in
EW]NQ (resp. FNQ), and the edges in TNQ are the transition edges associated
with exposed nodes of Q). Clearly @ has an odd number of edges in Y. Since @
has no chord in F, we have ¢(F) > d(Q).

O

CONCLUSION

This paper establishes a link between the only apparently distant notions of
co-bicliques and odd cycles. More precisely, the link concerns the subsets of co-
bicliques only, but this is appropriate to the resolution of the maximum co-biclique
problem. The odd cycles in signed graphs are used to handle naturally the com-
plicated minimal forbidden structures for (subsets of) co-bicliques.

A theorem by Guenin gives a full characterization of those signed graphs for
which the odd-cycle constraints define an integral polytope (see [8]). A remaining
question is whether a characterization of the graphs for which the dependent-
set constraints describe the co-biclique polytope can be deduced from Guenin’s
theorem?

REFERENCES

[1] D. Cornaz, A linear programming formulation for the maximum complete multipartite sub-
graph problem. Math. Program. B 105 (2006) 329-344.



304

(2]
(3]
(4]
(5]
[6]
[7]

(8]
(9]

D. CORNAZ

D. Cornaz and J. Fonlupt, Chromatic characterization of biclique cover. Discrete Math. 306
(2006) 495-507.

D. Cornaz and A.R. Mahjoub, The maximum induced bipartite subgraph problem with edge
weights. SIAM J. on Discrete Math. to appear.

D. Cornaz, On forests, stable sets and polyhedra associated with clique partitions. Manu-
script available on Optimization Online.

V. Jost, Ordonnancement chromatique : polyédres, complexité et classification. These de
I"Université Joseph Fourier, Grenoble (2006).

M. Grétschel, L. Lovasz and A. Schrijver, The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica 1 (1981) 169-197.

D. Monson, N.J. Pullman and R. Rees, A survey of clique and biclique coverings and fac-
torizations of (0,1)-matrices. Bull. I.C.A. 14 (1995) 17-86.

A. Schrijver, Combinatorial Optimization. Springer-Verlag, Berlin Heidelberg (2003).

A. Sebd, private communication.

To access this journal online:
www.edpsciences.org




