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IMPROVED APPROXIMATION OF THE GENERAL
SOFT-CAPACITATED FACILITY LOCATION PROBLEM

LAURENT ALFANDARI'

Abstract. The soft-capacitated facility location problem, where each
facility is composed of a variable number of fixed-capacity produc-
tion units, has been recently studied in several papers, especially in
the metric case. In this paper, we only consider the general problem
where connection costs do not systematically satisfy the triangle in-
equality property. We show that an adaptation of the set covering
greedy heuristic, where the subproblem is approximately solved by a
fully polynomial-time approximation scheme based on cost scaling and
dynamic programming, achieves a logaritmic approximation ratio of
(14 €)H(n) for the problem, where n is the number of customers to
be served and H is the harmonic series. This improves the previous
bound of 2H (n) for this problem.

Keywords. Facility location, set covering, dynamic programming,
FPTAS.
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1. INTRODUCTION

The classical single-source Capacitated Facility Location Problem (CFLP) con-
sists in assigning a set of n customers with known demands to a set of m possible
facilities so that each customer is assigned to a single facility without violating
capacities of open facilities, while minimizing the sum of the construction cost of
selected facilites and the connection cost of customers to facilities. In this paper, we
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consider a variant of CFLP where each facility, if open, can be composed of a vari-
able number (to determine) of fixed-size production units. This problem, known
as the Soft-Capacitated Facility Location Problem (SCFLP), was first introduced
in [11]. Tt arises indeed in many industrial applications, as production is often
structured by production lines or teams whose number is a decision to make. For
large instances of hard problems, the design of heuristics that are both fast and effi-
cient is a challenge. In this field, the polynomial approximation theory has received
much attention in the last two decades. The aim is to develop a p-approximation of
the problem, i.e., a polynomial-time algorithm that finds a feasible solution whose
objective function is always within a factor p of the optimum, so that p is as small
as possible. The best-known approximation ratio for the metric version of CFLP is
6(1 + ¢) and was produced by Zhang, Chen and Ye [19], then by Garg, Khandekar
and Pandit [7] for a more general version of the problem, using a local search algo-
rithm. This result generalizes the one previously found by Chudak and Williamson
[3] for the case when all capacities are the same. The first constant approximation
ratio for the metric uncapacitated problem (UFLP) was found by Shmoys, Tardos
and Aardal [18]. Their method, achieving an approximation ratio of 3.16, is based
on LP-rounding. This ratio has been repeatedly improved then until the greedy
algorithm of Mahdian, Ye and Zhang [16] which provides an approximation ratio
of 1.52 for UFLP. The metric version of SCFLP was shown by Jain, Mahdian and
Saberi to admit a 3-approximation by a combination of a primal-dual greedy pro-
cess and Lagrangian relaxation [12]. This ratio was recently improved by the same
authors to a 2-approximation [17]. However, the metric case is not general enough
to capture such a natural setting as connection costs depending on the quantity
of demand transported. For example, let us assume that connection costs ¢;; from
a client i to a facility j are transportation costs which are linear in the distance
in kilometers 6;; and the quantity d; (say, in tons) delivered to the client, i.e.,
cij = di;d;p, where p is a unitary transportation cost expressed in currency units
per kilometer and ton. Consider then two facilities j and j' and two customers
i and i/ such that 6ij = (51'/1‘/ = 507 (Sijl = (5in = 30, di = 1000 and dil = 100.
We have ¢;; = 50000 and c;j» + ¢iyrj» + ¢v; = 380004, so the triangle inequal-
ity c;;j < ¢i + cij» + cirj does not hold. Therefore, approximating the general
(non-metric) problem is a real issue. The general SCFLP is approximable within
ratio 2H (n), where H(n) = >, -, ., 1/i (see [11]). This comes from the fact that
a p-approximation for UFLP provides a 2p-approximation for SCFLP, and UFLP
was shown to be approximable within ratio H (n) by Hochbaum [9]. The algorithm
of [9] for UFLP relies on an exponential-size set covering reformulation of UFLP
and the fact that the exponential set of candidate subsets can be reduced to an
equivalent set of polynomial size. Since the set covering Problem (SCP) is approx-
imable within ratio H(n) < 1+Inn [4], the result also holds for UFLP. We improve
the ratio of 2H(n) for SCFLP to (1 + €)H(n) by an algorithm running in time
O(mn*/¢). The approximability bound of Inn achieved in this paper is asymptot-
ically tight for SCFLP since the problem is linked by an approximation-preserving
reduction with SCP and SCP cannot be approximated within a ratio better than
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Inn—Inlnn [5]. Our algorithm also uses an exponential-size set covering reformu-
lation of SCFLP, and a FPTAS based on cost scaling and rounding and dynamic
programming for the subproblem of the SCP greedy heuristic. In our approach,
we do not restrict a priori the collection of subsets in the SCP reformulation and
do not exactly solve the subproblem, contrary to the approach developped in [1].

The SCFLP is formally stated and reformulated as a SCP in Section 2. The
adaptation of the SCP classical greedy process to SCFLP is presented in Section 3.
The subproblem of the greedy heuristic for SCFLP is shown to admit a Fully Poly-
nomial Time Approximation Scheme (FPTAS) in Section 4. Section 5 concludes
the paper.

2. PROBLEM STATEMENT AND REFORMULATION

The Soft-Capacitated Facility Location Problem (SCFLP) is stated as follows.
The set of customers to be served is denoted by I = {1,...,n}, whereas the set
of possible locations for facilities is J = {1,...,m}. For (i,5) € I x J, ¢;; is the
connection cost between customer ¢ and location j, d; is the demand of customer
i, f; (resp. u;) is the construction cost (resp., capacity) of a production line on
location j. The integer linear programming model corresponding to SCFLP is the
following:

Minimize Z ijj —+ Z Cijxij (1)
Jje€J (i,5)€IxJ
s.t. Say=1 foriel (2)
JjeJ
i€
Yj € N,xij S {0, 1} (4)

where integer variables y; indicate the number of production lines settled in facility
j € J, and binary variables z;; indicate whether customer ¢ € I is assigned to
location j € J or not. The objective (1) minimizes the total cost of the location.
The semi-assignment constraints (2) express single-source supplying. Constraints
(3) express restricted capacities of facilities. The difference between SCFLP and
the classical CFLP is that variables y; are not binary but integer (and unbounded).
SCFLP is NP-hard, since the Set Covering Problem (SCP), which is NP-hard [6],
reduces to it. Given a set C' of elements and a collection S = {S1,...,Sn,} of
subsets of C' with cost ¢(S) for S € S, SCP consists in finding a minimum cover
of C, i.e., a subset S’ C S such that Uses/S = C and total cost ) .o c(5) is
minimum. The polynomial reduction is built as follows: set I = C, J =S, u; = n,
fi=c(S;) forall j€J,di=1foralliel, and ¢;; =0if i € S;, M otherwise,
with M > 3. ; fj. Then, there is a SCFLP solution of cost at most ¢ if and only
if there is a cover of cost at most ¢ in the transformed set covering instance.
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The best-known ratio for the general (non-metric) SCFLP relies on a reduction
to the uncapacitated problem UFLP. The formulation of UFLP is: minimize (1)
under constraints (2) and y; > x;; for all 4,5 € I x J, where variables y; are
binary. The result mentionned in Section 1, according to which a p-approximation
for UFLP provides a 2p-approximation for SCFLP [11], is obtained by replac-
ing connection costs ¢;; by ¢;j + d;i(fj/u;) in UFLP. The approximation result of
2H (n) for SCFLP is achieved by applying Hochbaum’s approach to UFLP with
the modified connection costs. Our improvement of this bound is achieved by
reformulating SCFLP as a particular SCP. The key idea is that approximately
solving the subproblem of the exact SCFLP problem reveals to be better than
exactly solving the subproblem of the approximate UFLP model. We introduce
now the SCP reformulation of SCFLP.

Definition 1. Let Z be an arbitrary instance of SCFLP. We denote by ~v(Z) the
transformed set covering instance of Z such that:

(i) C =1 is the set of elements to cover;
(i) S={Sr,;: L CI,je J}is the collection of subsets;
(iii) each subset Sz ; € S covers L and has cost ¢(Sr,;) = [Y ;cp di/ujlfj +
2ier Cij-

Proposition 1. Solving SCFLP on an arbitrary instance I is equivalent to solve
SCP on~(Z), i.e., every SCFLP-solution of cost at most ¢ for T can be transformed
in polynomial time in a cover of cost at most ¢ for v(T) .

Proof. Let {y;,x;;} be a solution of VFCLP on Z with cost c. Then, the collection
of subsets {Sr(j); : j € J/y; > 0}, where L(j) = {i € I : z;; = 1}, is a feasible
cover in y(Z). From (3) and (4) we have [}, ; dizij/u;] < y; and we easily
derive that the cost of the cover is at most c¢. Conversely, let 8" = {Sp: j¢,t =
1,...,q} C S be a feasible cover for y(Z). Set Q* = L' and Q! = L*\ Uy <p<;—1 L"
fort =2,...,q. Set a;;+ =1forallie Q" t=1,...,q, set all other z-variables
to zero, and y; = [, dixij/u;] for j € J. This solution satisfies (2-4) and thus
is indeed a feasible solution of SCFLP. We get

ijijr Z CijTij

jE€J (i.g)elxJ
a Z,L t di Z,L t di
SZ ’—%]fﬁ"'zcz‘j as yj < Z f%]
t=1 7t ieQt tjt=j 3

q .
< Z ([Z%j:dz]f]f -+ Z Cij> as Qt - Lt

i€Lt

which completes the proof. O
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3. GREEDY HEURISTIC AND WORST-CASE ANALYSIS

Since SCFLP reduces to SCP by Proposition 1, we consider the best polynomial-
time algorithm for SCP, i.e., the greedy heuristic which picks at each step a subset
S* € S minimizing the ratio ‘cost over number of new covered elements’. If U
denotes the set of elements that remains to cover at current step, the subproblem
of the greedy heuristic is formally described as finding

e(S)

SnU| (5)

)= g

This iterative search terminates when U = (). The greedy heuristic was shown
by Chvétal to guarantee an approximation ratio of H(A) < 14 InA, where
A = maxges|S| [4]. Nevertheless, this heuristic cannot be directly applied to
the SCP instance v(Z), given an instance Z of SCFLP, since the number |S| of
candidate subsets in v(Z) is equal to |J|2//| = m2", which is exponential in n
(hence the reduction of Definition 1 is not a polynomial Karp-reduction [14]).
Therefore, enumeration of S for solving subproblem (5) is prohibited. We first
use the fact that if subproblem (5) is approximable within ratio (1 + €) then the
logaritmic approximation ratio of greedy is conserved (Prop. 2). Then we prove
that the subproblem for SCFLP, which is NP-hard (Prop. 3), admits indeed a
polynomial-time (1 + €)-approximation despite the exponential number of subsets
in y(Z) (Prop. 4). For Proposition 2, we need the following lemma that reformu-
lates for our needs a part of the proof of [4].

Lemma 1. [4] Let &' = {S1,...,54} be a feasible cover of C for SCP. For
SeS, let St =8 and S* = S\ Ui<p<t—1Sh for t = 2,...,q. Moreover, set
ts = max{t : S* # 0}. Then we have

(< Y (Z (1] — 15*1)) (%)) ©)

SeSort \t=1

where S°Pt is an optimal cover.

Proposition 2. Consider an instance (C,S) of the set covering problem. If the
subproblem (5) can be approzimated within ratio 1 + € by some polynomial-time
algorithm A, then the associated greedy heuristic Greedy(A), where A is applied to
the subproblem, approzimates the set covering instance within ratio (1 + €)H(A),
where A = maxges |5].

Proof. The proof simply adapts Chvatal’s one. Let &' = {S1,...,5;} denote the
cover constructed by Greedy(A) in chronological order 1, ..., q. Since Aisa (1+¢)
approximation for the subproblem, the subset S? defined as in Lemma 1 satisfies
c(S1) /1S < (1 + €)(c(S)/]S?]) for all S € S. Plugging that inequality into (6)
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leads to
t| _ | Qt+1
SeSort
[S|
< (1+e¢) Z Z—
SeSort
201
< (1 + 6) <Z ;) c(SOpt)
= (14 e)H(A)c(SP). O

We now go back to the original facility location problem SCFLP. Set

w;(L) = (fz di/u;l f; + Z%‘) (7)
i€l i€l

ri(L) = w;(L)/|L| (8)

r;(U) = minr;(L). (9)

LCU

The adaptation of the set covering greedy heuristic for SCFLP is described in Algo-
rithm 1. The transfer of the greedy ratio H(n) (< 14 Inn) to SCFLP depends on
the approximability of subproblem (9), which can be reformulated as the following
integer linear program

Minimize <ij + Zcij:m) / (Z acl)
icU ieU
s.t. Z dixi S u;y
ieU
S ez
ieU
yeN* z; € {0, 1}

When one fixes variable y as a constant, the above problem becomes a particular
case of the Binary Fractional Knapsack Problem (BFKP) (see Billionnet [2] for
a study of the general BFKP). For ending this section, we show that the former
linear programming problem, reformulating our subproblem (9), is NP-hard.

Proposition 3. The problem SP of minimizing (fy+ > 1 <,<, Ci%i)/ (D1 <i<p i)
under the constraints Yy ,«, i > 1, > 1cjen dizi <uy, y € N*, z; € {0,1}, s
NP-hard. o o

Proof. We reduce the subset-sum problem, known to be NP-hard [6], to SP. Given
n integer numbers, a1, ..., a,, the subset-sum problem consists in deciding whether
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Algorithm 1 /Greedy heuristic for SCFLP/
Begin

U—1

Repeat

For j € J do find a best-possible approximation of ratio 3 (U) of (9)
r*(U) = minge, i (U)

Let (L*, j*) be the optimal pair for r*(U)

Y =1, x4+ =1 fori e L*

U—U\{L*}

Until U =)

output y,x

End

there exists a binary vector € {0,1}" such that > ,_,, a;z; = k, given an
integer number k # 137 . a;, the case k = £ 3", _,_, a; being known as the
partition problem [6]. We assume that k > £ >, _,, a; without loss of generality,
as otherwise we can change variables z; = 1 — x; and look for a binary vector z
such that >y ;.. @izi = Y1 cicn @i—k > 3 3, i, @i, turning back to the former
case. We show that subset-sum can be formulated as a particular SP. For this, we
choose in the SP instance K = max;a;, ¢; = K —a; and d; = a; fori =1,...,n,
u = f = k, and we claim that there is a subset-sum solution x of value k if and
only if there is a SP solution (x,y) of objective value at most K.

First, let  be a subset-sum solution of value k. Then, in the SP instance take
y = 1. We thus have >, _,, diz; = Y ,.,, aix; = k = uy so the constraint is
satisfied. As for the objective, its value is

fU+2cicnCimi B+ KDY o i — D icic, GiTi

Zlgign Ti a Zlgign Ti

Conversely, let (z,y) be a SP solution of objective value at most K, i.e., fy +
YoicicnCiti < Ky o x;. We thus have >, . a;z; > ky. As the inverse
inequality also holds we obtain that Y ,_,., a;z; = ky. If k> 3", .. a; then
y = 1 and we deduce that x is indeed a subset-sum solution of value equal to k,
which completes the proof. O

The rest of the paper is devoted to showing that the subproblem (9) of finding
Ty (U) for j € J admits a Fully Polynomial-Time Approximation Scheme (FPTAS).

4. A FPTAS FOR THE SUBPROBLEM

The algorithm for approximating optimal ratio 77 (U) of subproblem (9) is a
two-phase algorithm. In the first step, a 2-approximation of the optimal ratio is
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found. In the second step, costs are scaled and rounded as in the approximation
algorithms of Ibarra and Kim [10] and Lawler [15] for the knapsack problem or the
algorithm of Hassin for the constrained shortest path problem [8], and a dynamic
programming procedure is applied. Before describing more formally the algorithm,
we need to introduce the following two lemmas.

Lemma 2. Set aj = d;(f;/uj) + cij, and let S, {a“,..., j}, for p =
1,...,|U|, be the sorted list of p smallest a7 wvalues, i.e. ag < « “ , Jor 1 =

1,...,|U] = 1. Set S, —argmmlgpg‘mrj(sp). Then r;(S )/r( ) <

Proof. We note L* the optimal subset associated with r}(U) and v(L) = >, o
for L CU. Then we have v(L) < w(L) < v(L)+ f; for all L C U (see (7) for the
definition of w;). It comes:

7;(Sq) < 1i(SiL-|) = w(S|L+))/IL7|
< W(Sip) + 1)L
< QU+ e el = in o(D)
< (w(L*) + f)/IL*| = r;(U) + f;/|L7]
< 2r;(U). O

Lemma 3. Given j € J, a positive real value B, and integer values fj and ¢;; for
1 € U, the problem of minimizing

#(L) = (> icr di/“jﬂlﬁj + D ier Cij (10)

over subsets L C U under the constraint #; (L) < B can be solved in time O(|U|*>B)
by a dynamic programming procedure.

Proof. Set U = {i1,...,4y} and U = {i1,... i} for I =1,...,|U]|. Set

d*(@,l,p LHg[I}L{Zd | ((Zdi/uﬂfﬁrzéia = w; |L|p}

€L i€l

for w e {1,...,||U|B]},l € {1,...,|U|},p € {0,...,1}. Hence, d*(w,l,p) is the
minimum demand of a subset of U; among all subsets of size p and (modified) cost
equal to w. This can be calculated by setting:

i —
@@ 1,0) = Jote=0 forl=1,...,|U|
400 otherwise

d1 if w = 61]' + [dl/uﬂfj
+00 otherwise

d*(h,1,1) = {
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Algorithm 2 /FPTAS for the subproblem/

Begin

Step 1. Let {afl, ce a;m} be the list of coefficients a = d;(f;/u;) + cij
sorted by non-decreasing order

Sp = {agl,...,agp} forp=1,...,|U]

Compute S; = argmin;<,<yjw(Sy)/p

R:=1;(S,)

Step 2. Set f; = | f;j/(eR/4)] and é;; = |cij/(eR/4)]

Output subset Lpp returned by the dynamic programming procedure
of Lemma 3 with upper bound B = 2/

End

and for other triples (0,1, p),
d*(w,l,p) = min(d*(w,l - 1,p),
(@ (= &5 — \diyfus) f5. 0= 1,p = 1) + di, ) 220, ),
(" (@ = ey = (Ldu /o) + Vf5 0 = Lp = 1)+ dy, ) 2, 1,p))
where, for £ =0, 1,

Lif [(d* (W — &5 — [diy Juz] — k1= 1,p = 1)+d;,) /uj]
2,1, p) = = [d" (0 — éi5—|di, Juj] =k, 1 = 1,p = 1) Juj]+|d;, Juj | + K
+o00 otherwise.

We thus look for
min {w/p : d*(w,n,p) < co}.
w,p>1

The complexity order of this dynamic programming procedure is the produce of

the ranges of the three integer indexes w, [ and p, hence the whole process runs in
O(|U®B). O
We now introduce Algorithm 2 which approximates optimal ratio r} (U).

Proposition 4. Algorithm 2 is a (1 + €)-approzimation of r;(U) running in

O([UF/e).
Proof. Combining f; > (eR/4)f; and ¢;j > (eR/4)é;; we obtain that

rj(L7) 2 (eR/4)7;(L7) = (eR/4) min (L) = (eR/4)7;(Lpp).
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Since r;(L*) < 2R we get that

7i(Lpp) < 2/€ (11)
which justifies that the upper bound B is set to 2/¢ in DP. Now, we have:

(> icnpp /il fi+ 2 icr pp Cid

ri(Lpp) = Torl
< ierp, di/uil (Lfi/(eR/A)+1) (eR/A)+ D ier o (Leii/(eR/4)] + 1) (eR/4)
B |Lpp|
_ (R |Lpp|+1
=) ( i(Lop) ¥ |Lpp| )

(

< (R/2)(1+¢€) by (11)
< rj(U)(1+e) by Lemma 2

The complexity of Step 1 of Algorithm 2 is the time of sorting coefficients ozz fori €
U, which can be done in time |U|In |U|. The complexity of Step 2 is O(|U|>B) =
O(|UJ3/e€). Hence, the overall complexity of Algorithm 2 is O(|U|3/e). O

5. CONCLUSION
From Propositions 1, 2 and 4 we derive the main result of the paper.

Theorem 1. Algorithm 1 combined with FPTAS Algorithm 2 for subproblem (9)
approzimates SCFLP within ratio (1 + €)H(n) in computational time O(mn*/e).

Since H(n) < 1+ Inn, the gap to the inapproximability bound Inn of Feige
[5] is reduced as close as possible. We can note that an adaptation of the parti-
tioning algorithm of [8] to the SCFLP case would solve the subproblem in time
O((n*/e)log(n/e)), which is significantly higher than O(n?/¢). Finally, we could
address the question whether such techniques could be applied to the classical
Capacitated Facility Location Problem (CFLP) with hard capacities and obtain
a O(Ilnn) ratio for this problem, which is to our knowledge an open problem. An
important obstacle is that there is no trivial reformulation of CFLP as an equiv-
alent SCP as in Definition 1 since for CFLP, a cover cannot be systematically
transformed into a feasible partition of inferior cost (joining two subsets, i.e., two
sets of customers corresponding to the same facility j may exceed the hard capac-
ity of 7). Another interesting issue is whether our algorithm could improve the
best-known ratio of 2 for the metric SCFLP [17]. This is quite possible since a
slightly-modified version of the greedy SCP-type procedure of Hochbaum, where
opening cost is set to zero once a facility is open, was proved to achieve a good
approximation ratio of 1.81 for the metric UFLP [13]. This leaves several open
problems for future research.
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