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Abstract. This paper presents a feasible primal algorithm for linear

semidefinite programming. The algorithm starts with a strictly feasible

solution, but in case where no such a solution is known, an application

of the algorithm to an associate problem allows to obtain one. Finally,

we present some numerical experiments which show that the algorithm

works properly.
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1. Introduction

The aim of this paper is to present a feasible interior point method for the linear
semidefinite program:

z∗ = min
X

[ 〈C, X〉 : X ∈ K, 〈Ai, X〉 = bi for i = 1, . . . , m]. (SDP )

Here b ∈ IRm, K denotes the cone of positive semidefinite matrices in the linear
space of n × n symmetric matrices E. The matrices C and Ai, i = 1, . . . , m, are
given and belong to E. The inner product on E of two matrices A and B is the
trace of their product, i.e., 〈A, B〉 = tr(AB) =

∑
i,j aijbij . It is known that the

interior of K, denoted by int(K), is the set of positive definite matrices of E.
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In references [5, 11], the reader will find a description of a few applications
of linear semidefinite programming, in particular, max-cut problems in a graph,
graph-bisection problems, the search of a largest clique in a graph, min-max eigen-
value problems.

Linear semidefinite programming presents a great similarity with linear pro-
gramming: the objective function is linear, the constraint functions are affine, the
difference consists in the positive cone. Indeed, testing the positive semidefinite-
ness of an n× n matrix X requires to check 〈Xh, h〉 ≥ 0 for all h with norm 1, an
infinity of linear constraints, while testing that a vector belongs to the nonnegative
orthant of an Euclidean space involves, by definition, a finite number of linear con-
straints. The duality schemes present also similarities, one main difference is that
for the strong duality result in linear semidefinite programming the primal and
the dual problems have to be strictly feasible instead of simply feasible in classical
linear programming. Besides, on an algorithmical point of view, interior point
methods used in linear programming can be easily extended to linear semidefinite
programming. Most of the algorithms [2, 3, 5, 6] are extensions of path following
or related methods in linear programming to SDP programming using a Newton
descent direction.

Our algorithm is close to the projective algorithm of Alizadeh [1] (for more
informations on projective methods, see [4, 7, 8]). As in the Alizadeh algorithm,
the descent direction is obtained by the projection on a linear subspace, but in
our presentation the computations appear to be simpler, in particular our algo-
rithm does not make use of a potential function. This simplicity has a price since
potential functions are commonly used in interior point methods to prove the the-
oretical convergence of algorithms. Still, the numerical experiments show the good
behaviour of our algorithm.

As many interior point methods, the algorithm needs the knowledge of an initial
strictly feasible solution. In case no such a solution is available, a first application
of the algorithm allows to get one.

Now, we make precise the notation used in the paper. We have already defined
the sets E, K, int(K) and the scalar product 〈 , 〉 in E. The identity matrix of E
is denoted by I. Given A ∈ E its norm is

‖A‖ =
√
〈A, A〉 = (

n∑
i=1

|λi|2) 1
2 ,

where λi, i = 1, 2, . . . , n are the eigenvalues of A.

2. The duality in semidefinite programming

Let us consider the problems:

z∗ = min
X

[ 〈C, X〉 : X ∈ K, 〈Ai, X〉 = bi for i = 1, . . . , m] (SDP )
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and

md = max
w

[ btw : (C −
m∑

i=1

wiAi) ∈ K]. (DSDP )

A matrix X is said to be a strictly feasible solution of (SDP ) if it belongs to int(K)
and 〈Ai, X〉 = bi, for i = 1, . . . , m, a vector w ∈ IRm is said to be a strictly feasible
solution of (DSDP ) if the matrix (C − ∑m

i=1 wiAi) ∈ int(K). The weak duality
result says that we have always md ≤ z∗. The strong duality result says that if
both (SDP ) and (DSDP ) have strictly feasible solutions, then md = z∗ and both
problems have optimal solutions. Furthermore, for such optimal solutions X and
w, the following complementarity slackness condition holds

〈X, C −
m∑

i=1

wiAi〉 = 0.

Also, the sets of optimal solution of (SDP ) and (DSDP ) are closed convex and
bounded.

More information on semidefinite programming and its duality can be found in
references [9–11].

3. Description of the algorithm

Throughout the paper, we made the following assumptions.

(1) C �= 0 and the constraints 〈Ai, X〉 = bi for i = 1, . . . , m are not redun-
dant.

(2) Both problems (SDP ) and (DSDP ) have strictly feasible solutions.

In this section, we describe the passage from an iterate Xk to the next one Xk+1.
The problem of finding an initial feasible solution X0 will be considered in another
section.

At the beginning of step k, the current Xk is a strictly feasible solution of
(SDP ). The Cholesky factorization of the positive definite matrix Xk gives a
lower triangular matrix Lk with positive diagonal entries such that LkLt

k = Xk.
Then, we define the projective transformation

Tk(X) = (Y, α),

where

Y = αL−1
k XL−t

k , α =
(n + 1)

1 + 〈X−1
k , X〉 ·

The transformation Tk is one to one from K to K̃ where

K̃ = {(Y, α) ∈ K × (0, +∞) : 〈I, Y 〉 + α = n + 1}.
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The inverse transformation T−1
k is such that

T−1
k (Y, α) =

1
α

LkY Lt
k.

For simplicity, we introduce the matrices:
(1) Ck = Lt

kCLk.
(2) A

(k)
i = Lt

kAiLk for i = 1, . . . , m.
Then, for (Y, α) = Tk(X), we have:

〈Ck, Y 〉 − z∗α = α[〈C, X〉 − z∗].

Furthermore, the constraints 〈Ai, X〉 = bi for i = 1, . . . , m and X ∈ K are
equivalent to the conditions:

⎧⎨
⎩

〈A(k)
i , Y 〉 − αbi = 0, i = 1, . . . , m,

〈I, Y 〉 + α = n + 1,
Y ∈ K, α ≥ 0.

⎫⎬
⎭

It results that solving (SDP ) is equivalent to solving the problem:

0 = min
(Y,α)

⎡
⎣ 〈Ck, Y 〉 − z∗α :

〈A(k)
i , Y 〉 − αbi = 0, i = 1, . . . , m

〈I, Y 〉 + α = n + 1,
Y ∈ K, α ≥ 0.

⎤
⎦ (E∗

k)

Notice that (I, 1) is a strictly feasible solution of problem (E∗
k). Because the

value z∗ is unknown, we consider its approximation

zk = 〈C, Xk〉 = 〈Ck, I〉.

Then zk > z∗. Next, we consider the semidefinite program

mk = min
(Y,α)

⎡
⎣ 〈Ck, Y 〉 − zkα :

〈A(k)
i , Y 〉 − αbi = 0, i = 1, . . . , m

〈I, Y 〉 + α = n + 1,
Y ∈ K, α ≥ 0.

⎤
⎦ (Ek)

In a similar way to Karmarkar’s method for classical linear programs, we relax
problem (Ek) into the convex optimization problem

mk(β) = min
(Y,α)

⎡
⎣ 〈Ck, Y 〉 − zkα :

〈A(k)
i , Y 〉 − αbi = 0, i = 1, . . . , m

〈I, Y 〉 + α = n + 1,
‖Y − I‖2 + (α − 1)2 ≤ β2

⎤
⎦ (Er

k)

with β > 0. Here again, (I, 1) is a strictly feasible solution and therefore mk(β) ≤
0. Moreover, if β ∈ (0, 1), the feasible set of (Er

k) is contained in the feasible set



AN IPM FOR LINEAR SDP 53

of (Ek) and then mk(β) ≥ mk. Let us turn our interest to the function mk. It is
clear that if 0 < β < β′ we have

0 ≥ mk(β) ≥ mk(β′).

The next proposition shows that the function mk is actually strictly negative on
(0 , +∞).

Proposition 3.1.
mk(β) < 0 for all β > 0.

Proof.Assume, for contradiction, that mk(β) = 0. (I, 1) being a feasible solution
of (Er

k), is optimal too. Apply the first order optimality condition: there exist
λ ∈ IRm and µ such that

Ck +
m∑

i=1

λiA
(k)
i + µI = 0 and − zk −

m∑
i=1

biλi + µ = 0.

Since
Ck = Lt

kCLk and A
(k)
i = Lt

kAiLk

the first equation is equivalent to

C = −
m∑

i=1

λiAi − µX−1
k .

It follows that:

zk = 〈C, Xk〉 = −∑m
i=1 λi〈Ai, Xk〉 − µn,

zk = −∑m
i=1 biλi − µn.

Hence µ = 0 and therefore

zk = −
m∑

i=1

biλi and C +
m∑

i=1

λiAi = 0.

Thus, −λ is a feasible solution of (DSDP ) and therefore

zk =
m∑

i=1

bi(−λi) ≤ md = z∗ < zk,

which is not possible. �
Set V = Y − I and v = α − 1, the problem (Er

k) is equivalent to getting the
optimal solution of the convex optimization problem

min
(V,v)

⎡
⎣ 〈Ck, V 〉 − zkv :

〈A(k)
i , V 〉 − biv = 0, i = 1, . . . , m,

〈I, V 〉 + v = 0,
‖V ‖2 + v2 ≤ β2.

⎤
⎦ (Et

k)



54 D. BENTERKI, J.-P. CROUZEIX AND B. MERIKHI

In view of the necessary and sufficient condition for optimality, the problem con-
sists in finding (V, v, λ, µ, t) ∈ E × IR × IRm × IR × [0, +∞[ such that:

Ck +
m∑

i=1

λiA
(k)
i + µI + tV = 0 (1)

−zk −
m∑

i=1

biλi + µ + tv = 0 (2)

〈A(k)
j , V 〉 − bjv = 0; j = 1, . . . , m (3)

〈I, V 〉 + v = 0 (4)

t(‖V ‖2 + v2 − β2) = 0 (5)

‖V ‖2 + v2 ≤ β2. (6)
Note that one has necessarily t > 0, (if not (V , v) = (0 , 0) would be an optimal
solution of (Et

k)). Hence, from (1) and (2), we get

V = −t−1Vk and v = −t−1vk,

where

Vk = Ck +
m∑

i=1

λiA
(k)
i + µI and vk = −

m∑
i=1

biλi + µ − zk.

By construction, Vk and V are symmetric. Replacing V and v in (3) and (4), we
obtain

µ = 0
and λ is a solution of the m × m linear system

M λ = d, (7)

where for i, j = 1, . . . , m

Mij = 〈A(k)
i , A

(k)
j 〉 + bibj,

di = −bizk − 〈Ck, A
(k)
i 〉.

By construction, M is symmetric positive semidefinite. It is also positive definite
by assumption 1. Hence the system (7) has one solution which can be obtained
via the Cholesky method. Thus Vk and vk are easily obtained.

Next, the optimal solution (V, v) of (Et
k) is given by

V = −βPk and v = −βpk,

where

Pk =
Vk

τ
, pk =

vk

τ
and τ = (‖Vk‖2 + v2

k)
1
2 .
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Let us return to problem (Er
k). We see that the optimum is reached for

Y (β) = I − βPk and α(β) = 1 − βpk. (8)

We choose β in such a way that the matrix Y (β) stays positive definite and the
scalar α(β) stays positive. Then, the next iterate Xk+1 is obtained by the formula:

Xk+1 = T−1
k (Y (β) , α(β)).

It is clear that Xk+1 is a strictly feasible solution for (SDP ). Besides, the matrices
Vk, Pk, Y (β) and Xk+1 are symmetric.

The next proposition gives an easily checked criteria in order that Xk+1 stays
in the strictly feasible solution set of (SDP ).

Proposition 3.2. Define

β̃k =
[
max

(
pk , λ + σ

√
n − 1

)]−1

where

λ =
1
n

n∑
i=1

(Pk)ii and σ =
1
n

n∑
i=1

n∑
j=1

(Pk)2ij − λ
2
.

Then Xk+1 = T−1
k (Y (β) , α(β)) is a strictly feasible solution of (SDP ) for any

β ∈ (0, β̃k) if β̃k > 0 and for any β > 0 otherwise.

Proof. We must prove that the matrix Y (β) is positive definite and the scalar
α(β) is positive.

Let us denote by λ1, λ2, . . . , λn the eigenvalues of the matrix Pk, then from [12],
we have

λ − σ
√

n − 1 ≤ min
i

λi ≤ λ − σ√
n − 1

,

λ +
σ√

n − 1
≤ max

i
λi ≤ λ + σ

√
n − 1.

It follows that Y (β) = I − βPk is positive definite when

1 − β max
i

λi > 0

i.e., when
1
β

> λ + σ
√

n − 1. (a)

On the other hand, α(β) = 1 − βpk is strictly positive when

1
β

> pk. (b)

Summarizing, Xk+1 is strictly feasible when 0 < β < β̃k. �
The next proposition shows that for β ∈ (0, β̃k), we obtain a reduction of the

value of the objective function of (SDP ).
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Proposition 3.3. For any β ∈ (0 , β̃k), it holds

Xk+1 = Xk − β

1 − βpk
(LkPkLt

k − pkXk),

mk(β) = −β[〈Ck, Pk〉 − zkpk],

and
〈C, Xk+1〉 − 〈C, Xk〉 =

1
1 − βpk

mk(β) < 0.

Proof. Replacing Y (β) and α(β) in the formula

Xk+1 = T−1
k (Y (β) , α(β)) =

1
α(β)

LkY (β)Lt
k,

we obtain
Xk+1 = Xk − β

1−βpk
Lk(Pk − pkI)Lt

k,

= Xk − β
1−βpk

(LkPkLt
k − pkXk).

On the other hand,

mk(β) = 〈Ck, Y (β)〉 − zkα(β),
= 〈Ck, I〉 − zk − β[〈Ck, Pk〉 − zkpk],
= 〈C, Xk〉 − zk − β[〈Ck, Pk〉 − zkpk],
= −β[〈Ck, Pk〉 − zkpk].

It follows that
〈C, Xk+1〉 − 〈C, Xk〉 =

1
1 − βpk

mk(β).

We know by Proposition 3.1 that mk(β) < 0 for all β > 0. �

Now, we summarize the algorithm.

Description of the algorithm

a) Initialization:
(1) k = 0, X0 is a strictly feasible solution of the problem.
(2) We choose a parameter ρ ∈ (0, 1) and a small ε > 0 (for the stopping rule).

b) Step k: At the beginning of the step, Xk is a strictly feasible solution of
(SDP ).

(1) Set zk = 〈C, Xk〉.
(2) Determine Lk such that Xk = LkLt

k. Next, compute
(a) Ck = Lt

kCLk,

(b) A
(k)
i = Lt

kAiLk, i = 1, . . . , m.
(3) Compute the matrix M and the vector d as:

(a) Mij = 〈A(k)
i , A

(k)
j 〉 + bibj , i, j = 1, . . . , m,

(b) di = −bizk − 〈Ck, A
(k)
i 〉 i = 1, . . . , m.
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(4) Solve the linear system Mλ = d.
(5) Compute

(a) Vk = (Ck +
∑m

i=1 λiA
(k)
i ),

(b) vk = (−∑m
i=1 biλi − zk),

(c) τ = (‖Vk‖2 + v2
k)

1
2 ,

(d) λ = 1
n

∑n
i=1(Pk)ii ,

(e) σ = 1
n

∑n
i=1

∑n
j=1(Pk)2ij − λ

2
,

(f) βk = ρ
[
max

(
pk , λ + σ

√
n − 1

)]−1
.

(6) Compute
(a) Xk+1 = Xk − βk

τ−βkvk
Lk(Vk − vkI)Lt

k.

(7) Stopping rule
(a) If βk[〈Ck, Vk〉 − zkvk] < τε: STOP,
(b) if not, do k = k + 1 and go back to Step k.

4. Finding an initial feasible solution

The strict feasibility problem of (SDP ) consists of finding a n × n matrix X
such that:

X ∈ int (K), 〈Ai, X〉 = bi for i = 1, . . . , m. (F )
In order to solve this problem, we introduce the linear semidefinite program:

min
(X,λ)

[
λ : 〈Ai, X〉 + λ(bi − 〈Ai, X0〉) = bi for i = 1, . . . , m,

X ∈ K, λ ≥ 0.

]
(AP )

Then X∗ is a solution of problem (F ) if and only if (X∗, 0) is an optimal solution
of problem (AP ) and X∗ ∈ int(K).

Note that (AP ) can be reformulated as:

min
X′

[ 〈C′, X ′〉 : X ′ ∈ K, 〈A′
i, X

′〉 = bi for i = 1, . . . , m], (AP )

where C′ is the (n + 1) × (n + 1) symmetric matrix defined by

C′[i, j] =
{

1 if i = j = n + 1,
0 otherwise

and A′
i, i = 1, · · · , n is the (n + 1) × (n + 1) symmetric matrix defined by

A′
i =

(
Ai 0
0 bi − 〈Ai, X0〉

)
.

Finally, X ′ is the (n + 1) × (n + 1) matrix such that

X ′ =
(

X 0
0 λ

)
.



58 D. BENTERKI, J.-P. CROUZEIX AND B. MERIKHI

Choose some X0 ∈ int(K) (for instance the identity matrix). Then, X ′ =(
X0 0
0 1

)
is a strictly feasible solution of (AP ). Apply the algorithm described

in Section 3 to (AP ).

5. Numerical tests

The algorithm has been tested on some benchmark problems issued from the
library of test problems SDPLIB [13]. We have taken ρ = 0.90 and the stopping
criterion ε = 10−8. The first phase (phase 1) corresponds to the search of an
initial strictly feasible solution and the second one (phase 2) is the resolution of
the problem itself.

Examples
Size

(m,n)
Nbr. of iterations

Phase 1
Nbr. of iterations

Phase 2
control1 (21,15) 10 106
hinf1 (13,14) 6 27
hinf2 (13,16) 7 43
hinf3 (13,16) 6 109
hinf4 (13,16) 7 39
hinf5 (13,16) 7 42
hinf7 (13,16) 7 38
hinf9 (13,16) 5 28
hinf10 (21,18) 7 57
truss1 (6,13) 15 17
truss4 (12,19) 25 21

We have also tested the infeasible problems infd1 and infd2 of SDPLIB. The
algorithm concludes to their infeasibility.
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