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LARGE NEIGHBORHOOD IMPROVEMENTS
FOR SOLVING CAR SEQUENCING PROBLEMS
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Abstract. The NP-hard problem of car sequencing has received a
lot of attention these last years. Whereas a direct approach based on
integer programming or constraint programming is generally fruitless
when the number of vehicles to sequence exceeds the hundred, several
heuristics have shown their efficiency. In this paper, very large-scale
neighborhood improvement techniques based on integer programming
and linear assignment are presented for solving car sequencing prob-
lems. The effectiveness of this approach is demonstrated through an
experimental study made on seminal CSPlib’s benchmarks.
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1. Introduction

The car sequencing problem consists in scheduling cars along an assembly line
composed of different posts where are installed the equipments and options relative
to each vehicle (radio, sun-roof, air-conditioning, etc). In order to smooth the
workload on all the posts, it is necessary to space out in the sequence the vehicles
for which setting options needs some heavy operations. In other words, the goal
is to minimize the density of vehicles which require much work to assemble, to
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avoid overloading the posts where these vehicles are assembled. This need of
spacing out vehicles is formalized by defining a ratio constraint for each option.
For example, for an option to which is associated the ratio 3/7, one shall not
find more than 3 vehicles affected by the option in any window (that is, set of
adjacent positions) consisting of 7 vehicles. In the problem generally addressed
in the literature [10, 12, 13, 16, 28, 32, 33], the goal is to find a sequence of vehicles
satisfying all ratio constraints.

Here a slightly different problem is considered, closer to industrial realities [3,4]:
as it is not possible to know in advance if all the ratio constraints are satisfiable,
these ones are defined as soft constraints. In this way, the objective is to minimize
the number of violations of ratio constraints. In the previous example, if 5 vehicles
have the option in a window of 7, then 2 violations are counted. (In this model, the
violations could be weighted by some constants to distinguish the options having
priority). In addition, as suggested by Gravel et al. [13] to simulate the presence
of vehicles to be sequenced the previous (resp. following) day, the evaluation of the
sequence is done beyond the first (resp. last) window by adding fictive vehicles
requiring no option before the first (resp. last) vehicle of the sequence; these
additional windows are called “side windows”. The interested reader is referred to
Figure 10 in Appendix for an illustration of the impact of the different ways for
evaluating solutions.

The car sequencing problem is strongly NP-hard [10, 16]. Historically, this
problem was rather studied in constraints community [10,11,29,32]. Car sequenc-
ing problems, referenced as Prob001 in CSPlib [11], serve as typical benchmarks
for constraint programming solvers. However, a brute approach by using contraint
programming (or even integer programming) softwares reaches its limit when one
hundred vehicles with few options are considered (see the studies of [13,29]). Then,
several heuristics have been proposed to solve effectively car sequencing problems;
in the literature appears three kinds of approaches, sometimes mixed the ones
with the others: ant colony optimization [12,13,19,32,33], greedy [12], local search
[12, 28]. These approaches have been intensively studied and experimented in the
context of the ROADEF’2005 Challenge [3,4], organized by the French Operations
Research Society and the car manufacturer RENAULT (see [7, 30] for example).
At the same time, some works have been initiated on the integration of local search
techniques into a constraint programming environment dedicated to the resolution
of ratio constraints [20, 23, 24].

1.1. Motivations

During the qualification stage of this Challenge, the authors [5, 7, 8] have de-
signed and experimented an original approach mixing local search and integer
programming to solve real-life car sequencing problems (including constraints and
objectives from paint shop in addition to those of assembly shop). We have re-
cently been informed of a similar work by Prandtstetter and Raidl [25, 26] (note
that the results given in [25] are in fact erroneous [27]). Then, the present paper
reports our last advances on the subject.
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The paper is organized as follows. First, a new formulation of the problem as
an integer linear program is described. As an example, this formulation is used
to establish that the car sequencing instance 21-90 of CSPlib [11], the last one
whose status remained unknown, is unsatisfiable. Then, we show how exploit-
ing integer linear programming (ILP) in a very large-scale neighborhood search
(VLNS) algorithm to solve car sequencing problems. In particular, a family of
exponential neighborhoods is exhibited for which the best improving neighbor can
be found in polynomial time and space by reduction to a linear assignment prob-
lem. Finally, this approach is compared to a classical but very efficient local search
approach for sequencing problems (see [2] pp. 372–375), experimented by Gottlieb
et al. [12, 28] and revisited by the authors [6–8] to win ROADEF Challenge, who
called it very fast local search (VFLS). An extensive computational study made on
CSPlib’s benchmarks [11] shows that VLNS is practically effective, but not com-
petitive with a state-of-the-art implementation of VFLS. The good news is that
the hybridization of the two techniques, performed by adding large neighborhood
improvements to the local transformations employed in VFLS, is shown to be still
more powerful than pure VFLS, in particular on large and hard instances.

All the terminology related to local search and employed throughout this paper
is derived from the book edited by Aarts and Lenstra [2]. A comprehensive survey
on very large-scale neighborhood search techniques has been recently published by
Ahuja et al. [1].

2. Integer linear programming approach

2.1. A new ILP formulation

In this section, a new ILP formulation of the car sequencing problem is de-
scribed. In order to reduce the number of variables, similar vehicles are grouped
into classes (two vehicles belong to the same class if they share the same options).
The number of possible positions in the sequence (that is, of vehicles) and the
number of classes are respectively noted NPOS and NCL. The number of vehicles
of class k is noted Nk, and Pi/Qi denotes the ratio attached to option i (with
1 ≤ Pi < Qi ≤ NPOS).

To each pair class k/position j is associated a binary variable clk,j whose value
is 1 if the vehicle at position j belongs to the class k and 0 otherwise. The
constraints (1) and (2), written below, ensure that each vehicle of a class is assigned
to a position in the sequence and that a position is occupied by one and only one
vehicle of a class.

NPOS∑
j=1

clk,j = Nk ∀k ∈ {1, . . . , NCL} (1)

NCL∑
k=1

clk,j = 1 ∀j ∈ {1, . . . , NPOS}. (2)
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For each pair class k/option i, the constant OPk,i equals 1 if the vehicles of class k
have option i and 0 otherwise. Then, to each pair option i/position j is associated
a binary variable oi,j whose value is 1 if the vehicle at position j has option i and 0
otherwise. Then, the constraints (3) express variables oi,j in function of variables
clk,j and constants OPk,i.

oi,j =
NCL∑
k=1

OPk,i × clk,j ∀i ∈ {1, . . . , NOP} ∀j ∈ {1, . . . , NPOS}. (3)

Now, denote by vi,j the variable which counts the number of violations on option i
for the window ending at position j. Formally, the number of violations is deter-
mined by the constraint vi,j = max{0,

∑j
f=j−Qi+1 oi,f − Pi}. Since the vi,j are

minimized, such a constraint is equivalent, for each option i ∈ {1, . . . , NOP}, to the
two linear inequalities

vi,j ≥ si,j − Pi ∀j ∈ {Pi + 1, . . . , NPOS + Qi − Pi − 1} (4)
vi,j ≥ 0 ∀j ∈ {Pi + 1, . . . , NPOS + Qi − Pi − 1} (5)

to which are added the equalities

si,Qi
=

Qi∑
f=1

oi,f (6)

si,j = si,j+1 − oi,j+1 ∀j ∈ {Pi + 1, . . . , Qi − 1} (7)
si,j = si,j−1 + oi,j − oi,j−Qi

∀j ∈ {Qi + 1, . . . , NPOS} (8)
si,j = si,j−1 − oi,j−Qi

∀j ∈ {NPOS + 1, . . . , NPOS + Qi − Pi − 1}. (9)

Equality (6) defines the first complete window of the sequence for option i, whereas
constraints (8) define dynamically the other windows from the left to the right of
the sequence. Constraints (7) (resp. constraints (9)) define partial windows on
the left (resp. right) side; note that side windows containing less than Pi vehicles
are omitted, because they can not cause any violation.

Finally, the objective function of the program is written as follows, with CVi

the cost of one violation on option i (here CVi = 1 for all options).

Minimize
NOP∑
i=1

NPOS+Qi−Pi−1∑
j=Pi+1

CVi × vi,j . (10)

One shall remark that if the variables clk,j are integral, then any solution of the
program is integral, even if all the other variables are unbounded. Inversely, if the
sole variables oi,j are integral, then any solution of the program is integral too.
Consequently, the domains of the variables can be defined as follows: if NCL ≤ NOP

then
clk,j ∈ {0, 1} ∀k ∈ {1, . . . , NCL} ∀j ∈ {1, . . . , NPOS} (11)
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class A B C D E F G H I J K L M N O P Q R S T U V W
option 1/2 × × × × × × × × × × ×
option 2/3 × × × × × × × × × × × × × ×
option 1/3 × × × × × × × × × ×
option 2/5 × × × × × × × × × × ×
option 1/5 × × × × × × × × × ×
cardinal 14 11 2 1 1 3 5 4 1 5 3 2 2 7 9 14 3 2 6 2 1 1 1

Figure 1. CSPlib’s instance 21-90.

and variables oi,j , si,j , vi,j are free, else

oi,j ∈ {0, 1} ∀i ∈ {1, . . . , NOP} ∀j ∈ {1, . . . , NPOS} (12)

and variables clk,j , si,j , vi,j are free. In conclusion, the total number of variables
is lower than (NCL+5 ·NOP) ·NPOS, of which min{NCL, NOP} ·NPOS are binary, and
the total number of constraints is lower than NCL+(7 ·NOP +1) ·NPOS. Unlike the
formulations proposed by Gravel et al. [13] or Prandtstetter and Raidl [25,26], the
number of integer variables in this ILP formulation is not determined by the sole
number of classes, but by the number of options too. Moreover, the introduction
of the variables si,j enables to reduce the number of nonzeros of the matrix by
factorizing the sums of oi,j which normally appear in the constraint (4) when
counting up the number of violations.

2.2. Unsatisfiability of CSPlib’s instance 21-90

Using the above formulation, we show how proving the unsatisfiability of the
CSPlib’s instance 21-90 [11], the last one whose status remained unknown. This
instance is composed of 100 vehicles distributed in 23 classes according to 5 options,
to which are associated respectively the ratio constraints 1/2, 2/3, 1/3, 2/5 and
1/5. Figure 1 describes precisely the assignment of the option to the different
classes of vehicles. For example, the class K contains 3 vehicles which must satisfy
the ratio constraints 1/2, 2/3 and 2/5.

Considering solely one option, the following observation is useful to determine
if one solution exists or not, which satisfies the ratio constraint associated to this
option.

Proposition 2.1 (necessary condition for satisfiability). Let Ni be the number of
vehicles concerned by an option i having ratio constraint Pi/Qi and NPOS the total
number of positions. Then, the ratio constraint Pi/Qi is satisfiable only if

Ni ≤ Pi · �NPOS/Qi� + min{Pi, NPOS mod Qi}.

Proof. Consider a partition of the sequence into windows of size Qi. Such a par-
tition is composed of �NPOS/Qi� windows of size Qi, plus one of size NPOS mod Qi

if NPOS is not a multiple of Qi. Since each window can not contain more than
Pi vehicles of ratio Pi/Qi without causing violations, we obtain by summing on
all the windows that the number Ni of vehicles concerning by this ratio can not
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cardinal limit δi

option 1/2 49 50 1
option 2/3 67 67 0
option 1/3 31 34 3
option 2/5 33 40 7
option 1/5 15 20 5

Figure 2. The hardness of options in instance 21-90.

exceed Pi · �NPOS/Qi� + min{Pi, NPOS mod Qi} when the ratio constraint Pi/Qi is
satisfiable. �

Remark 2.2. The necessary condition for satisfiability becomes sufficient when
only one option i is considered in input of the problem. To observe that, place Pi

cars concerned by the option at the beginning of each window of size exactly Qi,
and min{Pi, NPOS mod Qi} cars in the window which remains.

According to Proposition 2.1, the value δi = Pi · �NPOS/Qi�+min{Pi, NPOS mod
Qi} − Ni seems to be an appropriate index to determine how hard is the ratio
constraint associated to an option. Following this observation, an idea is to solve
the ILP presented in the previous section by branching first on variables oi,j which
corresponds to the hardest options (i.e., having the smallest δi). When some ratio
constraints are stiff, such a technique allows early cuts in the branch-and-bound
tree, particularly if the objective is to find a sequence without violation. The
unsatisfiability of instance 21-90 is precisely established by using this technique.

Figure 2 shows for each option of instance 21-90, the number of vehicles con-
cerned by the option and the limit given by Proposition 2.1: here the hardest
options are 1/2 and 2/3. In effect, there are only 12 239 valid assignments of the
oi,j corresponding to options 1/2 and 2/3. At this point, computing the continu-
ous relaxation for each subproblem obtained shows that no solution exists without
violation, which proves the unsatisfiability of instance 21-90.

3. Very large-scale neighborhood search

In this section is described the very large-scale neighborhood search approach
(VLNS). Roughly speaking, this approach is based on a simple descent method
where each iteration consists in solving exactly a subproblem by ILP. Mixing local
search and integer linear programming, this approach can also be viewed as hybrid.
This kind of approach was previously formalized by Mautor and Michelon [18] and
applied with success to the resolution of a ressource-constrained project scheduling
problem [22] (see also [21] for more details).

3.1. K-permutation neighborhoods

Given a sequence, a very simple neighborhood is defined by the permutation
of two vehicles of the sequence; this technique forms the basis of the very fast
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ILP-based local search(TIME-LIMIT)
Begin;

initialize K and T-MAX;
compute initial solution greedily;
while TIME-LIMIT is not reached do

choose K movable vehicles;
construct ILP restricted to these K movable vehicles;
run branch-and-bound on ILP during T-MAX seconds;
update current solution and adjust K and T-MAX;

end do;
return solution;

End;

Figure 3. The VLNS heuristic for car sequencing problems.

local search approach, described in the next section. A natural extension of this
paradigm is the local search by K-permutation: choose K positions in the current
sequence and find a permutation of the vehicles at these K positions which does not
increased the cost of the sequence. In this way, the neighborhood of the current
solution is defined as the set of sequences which are obtainable by permuting these
K movable vehicles. The size of the neighborhood is exactly K!, which becomes
exponential with respect to the size of the input data when K = Ω(NPOS). Thus,
the goal is to find among all these neighbors one having a better cost than the
current solution or the best possible one. Even for small values of K, computing
such a neighbor seems to be difficult in a reasonable lapse of time. Next we show
how taking advantage of ILP to explore efficiently K-permutation neighborhoods.

3.2. ILP-based local search

Having computed randomly or greedily an initial sequence (see [8, 12] for good
O(NPOS2)-time greedy algorithms), the local search is done as follows. At each
iteration, a K-permutation is performed by solving the integer linear program de-
scribed in Section 2.1, where all variables corresponding to non-movable vehicles
are fixed. The resolution of the program is done using a basic branch-and-bound
procedure, in a lapse of time limited to T-MAX seconds. Once the resolution fin-
ished or interrupted for lack of time, the current solution is updated and the values
of K and T-MAX are adjusted to plan a new iteration. To summary, the broad lines
of the VLNS heuristic appear in Figure 3.

The efficiency of such a heuristic depends essentially on two points. First, the
values given to the parameters K and T-MAX are crucial. If K is too large or T-MAX

too low, the resolution of the restricted ILP may often fail (no integer solution
found), which considerably slows down the descent. To prevent that, the idea is
to initialize K to a small value and increase it as the iterations go. When one
resolution fails, the value of K is stabilized in order to choose the largest number
of movable vehicles for a given value of T-MAX. The second point concerns the
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choice of movable vehicles. From our experimentations arises the following prop-
erty, which is the key to drastically lower the time necessary to obtain an optimal
integer solution by branch-and-bound: further are the movable vehicles the ones
from the others in the sequence, better is the quality of the continuous relaxation
of the restricted ILP. Some elements of polyhedral analysis are detailed in the fol-
lowing section which explains this phenomenon. In fact, a simple and efficient way
to proceed is to choose randomly the positions of movable vehicles, and complete
with positions where violations appear. Long subsequences of contiguous vehicles
are to avoid because in this case, the continuous relaxation of the program is gener-
ally poor (very fractional, with cost equal to zero) and a basic branch-and-bound
procedure has trouble finding one integer solution; on the other hand, allowing
small subsequences of contiguous vehicles (a dozen or so) is not prohibitory and
supports the diversification of the search.

3.3. A sufficient condition for polynomial VLNS

In certain cases, the exploration of K-permutation neighborhoods can be done
in polynomial time and space. Assume that the K positions selected to perform the
K-permutation satisfy the following property, called one-per-window : two selected
positions j and j′ are such that |j − j′| ≥ Qmax, where Qmax is the larger denomi-
nator among all the ratio constraints. According to this property, the number of
violations caused by the assignment of one of the K vehicles to one of the K posi-
tions does not depend on the assignment of the other vehicles, but is fixed. Then,
the problem of finding the best K-permutation is reduced to a linear assignment
problem (LAP) [31] pp. 285–300, as follows. Build the complete bipartite graph
B = (V, P, E) where the set V (resp. P ) corresponds to movable vehicles (resp.
positions). For any edge e ∈ E connecting one vehicle v ∈ V to one position
p ∈ P , the weight of the edge e is defined as the number of violations caused by
the assignment of v to p. Clearly, a minimum weight perfect matching in this
complete bipartite graph (that is, a minimum assignment) corresponds exactly to
a best K-permutation.

Since the inequality K ≤ NPOS/Qmax is a necessary condition to satisfy the one-
per-window property, the value of Qmax is determining for the application of the
previous technique. Small values of Qmax offer the following remarkable case.

Proposition 3.1. If Qmax = O(1), then neighborhoods of size Ω(NPOS!) can be
explored in O(NPOS3 + NPOS2 · NOP) time and O(NPOS2 · log NOP) space, which is
polynomial in the size of the input data.

Proof. When Qmax = O(1), the technique exposed above is applicable to find
the best K-permutation on Ω(NPOS) movable vehicles. Indeed, choosing Ω(NPOS)
positions satisfying the one-per-window property is simply done in O(NPOS) time.
Now, O(NOP · Qmax) operations are necessary to compute the weight of each edge
vp ∈ E of the bipartite graph B. Note that the weight is a positive integer
bounded by the value NOP ·Qmax. Hence, the construction of the graph B requires
O(K2 · NOP · Qmax) time and O(K2 · log(NOP · Qmax)) space. Finally, computing
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a minimum assignment in B can be done O(K3) time [31] p. 288. The desired
complexity is obtained by using the relations Qmax = O(1) and K ≤ NPOS. �

Remark 3.2. By computing first the number of violations for each pair op-
tion/position, the construction of the graph B can be done in O(K · NOP · (Qmax +
NCL)) time and O(K · NCL · log(NOP · Qmax)) space. By reasoning on classes versus
positions rather than on vehicles versus positions (as done in ILP formulation),
the problem can also be viewed as a transportation problem [31] p. 343.

3.3.1. Polyhedral consequences

The one-per-window property has some interesting consequences from the poly-
hedral point of view. Denote by Pj1,...,jp the continuous version of the ILP re-
stricted to positions j1, . . . , jp.

Proposition 3.3. If the positions j1, . . . , jp of movable vehicles satisfy the one-
per-window property, then any basic optimal solution of Pj1,...,jp is integral.

This proposition, which confirms our empirical observations, says in other words:
if the movable vehicles are further enough the ones from the others in the sequence,
then any basic optimal solution of the continuous relaxation of the restricted ILP
is integer. Its proof is sketched below.

Proof. First, we show that when positions j1, . . . , jp satisfy the one-per-window
property, Pj1,...,jp can be reduced to another program P ′

j1,...,jp having a totally
unimodular matrix and a linear objective function.

Having reintroduced variables oi,j in contraints (4), artificial variables si,j can
be eliminated with the contraints (6), (7), (8) and (9). Now, let us analyse the
constraints (4) and (5) after rewriting, that is, for all option i and position j:

{
vi,j ≥ ∑j

f=j−Qi+1 oi,f − Pi

vi,j ≥ 0.
(13)

When the positions j1, . . . , jp satisfy the one-per-window property, at most one
variable oi,j∗ with j−Qi+1 ≤ j∗ ≤ j remains not fixed into the sum

∑j
f=j−Qi+1 oi,f .

Hence, constraints (13) can be rewritten as
{

vi,j ≥ oi,j∗ + ∆i,j

vi,j ≥ 0
(14)

where the integer constant ∆i,j equals the number of non-movable vehicles having
option i in the window ending at j, minus the numerator Pi. Then, the following
observation is crucial. If ∆i,j ≥ 0, then the two inequalities of (14) are equivalent
to the sole equality vi,j = oi,j∗ + ∆i,j (because oi,j∗ + ∆i,j ≥ 0 and the vi,j are
minimized). On the other hand, if ∆i,j ≤ −1, then these ones are equivalent
to vi,j = 0 (because oi,j∗ + ∆i,j ≤ 0). Since in both cases constraints (14) are
reduced to only one equality, these ones and the variables vi,j can be eliminated
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by introducing the right member of the corresponding equality into the objective
function. Because the oi,j are just some linear combinations of the clk,j , they can
be eliminated too with the constraints (3) by introducing the right member into
the objective function. After this elimination process, only variables clk,j with
constraints (1) and (2) remain in the program, which is renamed in P ′

j1,...,jp .
Now, the matrix induced by constraints (1) and (2), which express all possible

sequences of vehicles, is shown to be totally unimodular. This is immediate by
using the characterization of Ghouila-Houri [31], p. 76: a matrix is totally uni-
modular if and only if each collection of rows can be partitioned into two classes
X and Y such that the sum of the rows in X , minus the sum of the rows in Y ,
is a vector with entries −1, 0, 1 only. Here each column of the matrix in question
contains exactly two 1s: one in the bloc of constraints (1) and one in the bloc
of constraints (2). Thus, for any collection of rows of the matrix, place the rows
of (1) in X and the rows of (2) in Y .

Since the objective function of P ′
j1,...,jp remains linear with integer coefficients

and all the second members are integers, the total unimodularity of the matrix
implies that any basic optimal solution of P ′

j1,...,jp is integral [31] pp. 75–76,
and also that any non-integral optimal vector of variables clk,j can be expressed
as a convex combination of integral ones. According to the previous discussion,
variables oi,j , si,j , vi,j are just integer linear combinations of variables clk,j , for
any solution of Pj1,...,jp . Hence, any non-integral optimal solution of Pj1,...,jp is a
convex combination of integral ones. �

3.3.2. Generalizations

In fact, Propositions 3.1 and 3.3 are just some corollaries of a more general
proposition. Consider the window (i, j) associated to option i and position j and
denote by J∗ ⊆ {j1, . . . , jp} the subset of non-fixed positions between j − Qi + 1
and j. The constraint for counting violations in window (i, j) can be written as{

vi,j ≥ ∑
f∈J∗ oi,f + ∆i,j

vi,j ≥ 0
(15)

where ∆i,j equals the number of non-movable vehicles having option i in the
window (i, j), minus Pi. If ∆i,j ≥ 0, we have

∑
f∈J∗ oi,f − ∆i,j ≥ 0 and then

vi,j =
∑

f∈J∗ oi,f −∆i,j . On the other hand, if ∆i,j ≤ −|J∗|, we have
∑

f∈J∗ oi,f −
∆i,j ≤ 0 and then vi,j = 0. Thus, by using the same arguments than in the proofs
of Propositions 3.1 and 3.3, we obtain the following result.

Proposition 3.4. If the positions j1, . . . , jp of movable vehicles are such that for
any window (i, j), the value of ∆i,j satisfies either ∆i,j ≥ 0 or ∆i,j ≤ −|J∗|, then
any basic optimal solution of Pj1,...,jp is integral. Moreover, such a solution can
be combinatorially computed in polynomial time and space by reduction to a linear
assignment problem (or a transportation problem).

Propositions 3.1 and 3.3 are obtained with |J∗| = 1. Observe that when the
number |J∗| of non-movable vehicles into the window (i, j) grows, the number of
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values of ∆i,j for which the conditions are satisfied decreases, and so the chances
to satisfy the proposition decreases too. When |J∗| = Qi, the conditions can not
be satisfied any more.

Remark 3.5. Formally, the academic car sequencing problem can be viewed as an
assignment problem with a special objective function, according to the following
formulation (side windows are omitted for the sake of simplicity):

Minimize
NOP∑
i=1

NCL∑
k=1

⎛
⎝OPk,i ×

NPOS∑
j=Qi

max{0,

j∑
f=j−Qi+1

clk,f − Pi}
⎞
⎠

NPOS∑
k=1

clk,j = Nk ∀k ∈ {1, . . . , NCL}

NCL∑
j=1

clk,j = 1 ∀j ∈ {1, . . . , NPOS}

clk,j ∈ {0, 1} ∀k ∈ {1, . . . , NCL} ∀j ∈ {1, . . . , NPOS}.
The objective function is non-linear but convex (because non-decreasing piecewise
linear) and the matrix defined by the constraints is totally unimodular. In this
context, Proposition 3.4 gives a way to linearize the objective function by fixing
variables of the program. Indeed, under conditions of Proposition 3.4, it becomes
possible to decide a priori if

∑j
f=j−Qi+1 clk,f − Pi ≥ 0 or not, which allows to

remove all max operators from the objective function and implies immediately its
linearity.

3.4. Experimental results

Figure 4 reports the results obtained by the VLNS heuristic on CSPlib’s bench-
marks [11], using a computer with 3 GHz Pentium 4 processor and 1024 Mo of
RAM. The VLNS heuristic have been implemented in C ANSI programming lan-
guage (about 1500 lines of code), with GLPK [17] as integer linear programming
library and the Jonker-Volgenant’s code [14] for solving linear assignment prob-
lems.

Initial solutions are computed by a greedy algorithm inspired from the DSU
heuristic of Gottlieb et al. [12] (see also [8]). Then, two procedures are employed
to select mobile positions and solve the corresponding subproblem. The first one
selects random positions or random small blocs of consecutive positions. In this
case, the value of the parameter K varies from 10 to 50 vehicles all along the
search, for a value of T-MAX limited to 1 second. (For a greater value of T-MAX

like 10 seconds as used in [8], the value of K can be increased to select near
from the two thirds of the vehicles, but this tends to slow the descent). The
restricted ILP is solved optimally by using the branch-and-bound procedure of
[17] (without particular tuning); the computation of the continuous relaxation of
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Instances Average cost Average time
4-72 0.0 21.04
6-76 6.0 0.00
10-93 3.0 123.13
16-81 0.0 32.19
19-71 2.0 8.59
21-90 2.0 9.65
26-82 0.0 3.52
36-92 2.0 14.13
41-66 0.0 0.11

200-01 0.1 240.31
200-02 2.4 261.49
200-03 5.8 253.45
200-04 7.2 281.69
200-05 6.0 38.79
200-06 6.0 15.84
200-07 0.0 18.98
200-08 8.0 40.84
200-09 10.0 59.43
200-10 19.0 232.75

Instances Average cost Average time
300-01 1.2 155.65
300-02 12.0 34.16
300-03 13.0 75.21
300-04 8.8 321.81
300-05 33.1 451.31
300-06 3.1 341.05
300-07 0.0 192.82
300-08 8.0 34.81
300-09 8.0 109.28
300-10 21.4 441.05
400-01 1.6 315.99
400-02 16.3 403.03
400-03 12.0 38.21
400-04 20.1 85.91
400-05 0.0 100.62
400-06 0.0 187.98
400-07 4.6 287.43
400-08 4.1 281.48
400-09 8.3 391.85
400-10 0.0 45.47

Figure 4. Results of the VLNS heuristic on CSPlib’s instances.

the ILP is facilitated by exhibiting a realizable basis from the current solution.
The second procedure selects mobile positions in order to satisfy the one-per-
window property. In this case, around NPOS/Qmax positions are selected and the
best K-permutation is determined by using the Jonker-Volgenant’s algorithm [14]
for LAP, very efficient in practice. The use of this second procedure, baptized
LAP-based VLNS, considerably speeds up the descent in comparison with the sole
use of ILP.

The results of Figure 4 are obtained with 10 trials per instance, with a running-
time limited to 10 minutes for each trial. The column “average cost” shows the
average number of violations found on the 10 trials and the column “average time”
gives the average running-time in seconds to find this average cost. For classical
instances (first table top on the left), the number of violations found is always the
best known according to the results reported in CSPlib [11] (see also [12,13,29]).
The three other tables report the results obtained on the three sets of instances
recently proposed by Gagne et al. [13], which involve more vehicles (respectively
200, 300 and 400 cars). For 24 instances on 39, VLNS always finds the best known
number of violations on the 10 trials. For 23 (resp. 36) instances, the average cost
obtained by VLNS is strictly better (resp. better or equal) than the one obtained
by the heuristic of Gagne et al. [13], which mixes ant colony optimization and
basic local search. (Within sight of the results presented in [19], pure ant colony
optimization is not competitive with VLNS at this point.) On the other hand,
the VLNS heuristic consumes generally much more time than the other efficient
approaches [12, 13, 19] to obtain these results. Note that the results of VLNS on
CSPlib’s benchmarks 60/65/70/75/80/85/90 are not mentioned because all the
instances of these benchmarks are solved to optimality (0 violation) in less than
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0.01 sec. (The interested reader is referred to Fig. 11 in Appendix for additional
experimental results concerning the greedy algorithm employed.)

The above results attest the practical effectiveness and robustness of the VLNS
heuristic. Note that contrary to ant colony optimization [12, 13, 19] which is a
constructive approach, VLNS seems to converge towards a global optimum, even
if this convergence is very slow.

4. Hybridization with very fast local search

In this section, very large-scale neighborhood search is hybridized with the
best known approach for solving car sequencing problems: very fast local search
(VFLS). This approach, quite classical in essence [2] pp. 372–375, was first experi-
mented by Gottlieb et al. [12,28] and then revisited by the authors [6–8] to win the
ROADEF’2005 Challenge, where a real-life car sequencing problem was posed as
subject by the car manufacturer RENAULT. Having reminded the core ingredients
of the VFLS approach and its results on CSPlib’s benchmarks, two hybridizations
with LAP-based VLNS are described which show very good computational results,
in particular on the hardest instances.

4.1. Very fast local search

Very fast local search is a first-improvement descent heuristic based on very
fast explorations of small neighborhoods. More precisely, the algorithm applies
at each iteration one transformation to the current sequence which modifies it
only very locally. If the transformation does not increase the cost of the current
solution, this one is really performed. Four basic transformations are used here:
swap, forward insertion, backward insertion and reflection.

A swap simply consists in exchanging the positions of two vehicles in the se-
quence. A forward insertion localized on a portion vj , x, . . . , y, vj′ of the sequence
consists in extracting vj′ , shifting the vehicles vj , x, . . . , y to the right, and reinsert-
ing vj′ at the position which remains unfilled (the former position of vj); after the
transformation, the initial portion contains in order the vehicles vj′ , vj , x, . . . , y.
A backward insertion is defined in a symmetric way, by extracting vj instead of
vj′ . A reflection localized on a portion vj , x, . . . , y, vj′ of the sequence consists
in reversing this portion, so as to contain in order the vehicles vj′ , y, . . . , x, vj .
The neighborhood defined by these four transformations is only of size O(NPOS2).
Moreover, the selection of the neighbor is guided by no sophisticated rule: the
first neighbor lowering or even equaling the cost of the current solution is retained
for a new search. The acceptance of transformations which do not improve the
cost is crucial: coupled to a fast evaluation procedure, this is a way to diversify
widely the search and then to avoid local optima during the descent. Note that the
transformation “random shuffle”, defined in [12, 28] to diversify the search, is not
employed here because useless according to our computational experimentations.

The generic way for choosing the positions where transformations are applied
is to pick the positions j and j′ randomly. But to increase the probability of
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Transformations Variants %

swap
generic 69.6

consecutive 3.2
similar 2.5

forward insertion generic 3.2
denominator 3.8

backward insertion generic 3.2
denominator 3.8

reflection generic 6.9
denominator 3.8

Figure 5. The composition of VFLS.

success of one transformation, cleverer choices are necessary. Thus, the following
variants are defined. The choice “consecutive” consists in picking a position j
randomly and set j′ = j + 1. The choice “similar” consists in picking the two
positions j and j′ such that the corresponding vehicles share some options. These
two special choices, first introduced by Gottlieb et al. [12,28], are used for swaps.
The choice “denominator”, introduced by the authors [7,8] and used for insertions
and reflections, consists in picking a position j and an option i randomly and
set j′ = j + Qi. The percentage of attempted transformations for each variant
is detailed in Figure 5. For example, the number of attempted generic swaps
represents 69.6 % of the total number of attempted transformations during the
search.

The efficiency of this approach relies on the huge number of attempted trans-
formations, ensuring a large diversification of the search. Fortunately, the singular
structure of the four transformations reveals some invariants which are exploitable
using special data structures to quickly evaluate their impact on the cost of the
current solution. Thus, whereas a poor implementation attempts few hundred
thousands of transformations per minute on a basic computer and converges slowly,
an advanced one (as described in [7,8]) allows several millions of attempted trans-
formations per minute and converges quickly (note that, in comparison, the VLNS
heuristic performs only a few thousands of iterations per minute). The reader is
referred to [8] for more details on how to speed up the evaluation of transforma-
tions.

4.1.1. Experimental results

The VFLS heuristic have been implemented in C ANSI programming language
(about 1500 lines of code). Figure 6 shows the results obtained by VFLS under
the same conditions than VLNS: 10 trials for each instance with a running-time
limited to 10 minutes per trial, using a computer with 3 GHz Pentium 4 processor
and 1024 Mo of RAM. Initial solutions are computed by the same greedy algorithm
than for VLNS, inspired from the DSU heuristic of Gottlieb et al. [8, 12]. (The
interested reader is referred to Fig. 11 in Appendix for additional experimental
results concerning the greedy algorithm employed.)
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Instances Average cost Average time
4-72 0.0 1.52
6-76 6.0 0.00
10-93 3.0 3.36
16-81 0.0 0.56
19-71 2.0 0.51
21-90 2.0 0.11
26-82 0.0 0.36
36-92 2.0 0.05
41-66 0.0 0.03

200-01 0.0 3.40
200-02 2.0 1.69

200-03 3.0 93.32

200-04 7.0 2.74
200-05 6.0 1.89
200-06 6.0 0.52
200-07 0.0 0.57
200-08 8.0 0.18
200-09 10.0 0.32
200-10 19.0 0.18

Instances Average cost Average time
300-01 0.0 20.15
300-02 12.0 0.57
300-03 13.0 0.68
300-04 7.0 1.46

300-05 28.0 141.61

300-06 2.0 13.93
300-07 0.0 4.26
300-08 8.0 0.53
300-09 7.0 1.16
300-10 21.0 3.13
400-01 1.0 55.55

400-02 15.0 16.59

400-03 12.0 0.53
400-04 19.0 0.47
400-05 0.0 1.01
400-06 0.0 1.57
400-07 4.0 8.26
400-08 4.0 8.31
400-09 5.0 3.40
400-10 0.0 6.16

Figure 6. Results of the VFLS heuristic on CSPlib’s instances.

The results obtained by the VFLS heuristic are impressive: it always finds the
best known number of violations on the 10 trials, in less than 1 s on average for
17 instances on 39 and in less than 10 s on average for 33 instances. (Results
on CSPlib’s benchmarks 60/65/70/75/80/85/90 are not mentioned because all
instances of these benchmarks are solved to zero violation in less than 0.01 s.)
Note that the cost found for instance 400-03 is 12 and not 9 as in [13], because
here we count the number of violations and not the number of violated windows
(see Fig. 10 in Appendix for more details). In addition, three results of Gagne
et al. [13] are improved: 3 for instance 200-03 (instead of 4), 28 for instance 300-
05 (instead of 29), 15 for instance 400-02 (instead of 16). In conclusion, VFLS
dramatically outperforms VLNS, just as any other algorithm from the literature
(see the results presented in [12, 13, 19, 20, 23, 24, 29]).

4.2. Hybridization

We have shown that Proposition 3.4 is useful to speed up the convergence of
the VLNS heuristic. But may it be useful to speed up the convergence of VFLS
heuristic? The answer is yes, particularly for hardest instances, that is, those
which are solved in more than a few seconds by VFLS (like instances 200-03,
300-05, 400-01).

The hybridization is done by adding a VLNS transformation to the four basic
transformations employed in VFLS. This transformation is drawn from the LAP-
based VLNS procedure used in the VLNS heuristic: select around K = NPOS/Qmax

positions which respects the one-per-window property (Prop. 3.1) and find a best
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K-permutation by using the Jonker-Volgenant’s algorithm [14] for LAP. Such a
transformation must be used parsimoniously because it is very time-consuming
in comparison with the four basic transformations. Our experimentations on
CSPlib’s benchmarks lead us to fix the percentage of attempted VLNS trans-
formations to 0.2%; more generally, this percentage must be chosen in such a way
that the time consumed by VLNS transformations remains balanced with the time
consumed by swap transformations.

Two variants of hybridization have been implemented. In the first one, the
LAP-based VLNS procedure is designed to find solutions with better or equal
cost (which helps to diversification). In the second one, the LAP-based VLNS
procedure is specialized to find solutions with strictly better cost (which does not
help to diversification, but is slightly faster). The implementation of each variant
is detailed below:

– HYBRID A. In this variant, solutions of equal cost are accepted. Our
observations reveal that in this case, the restricted subproblem admits
generally many solutions of equal cost, which implies a high success rate
for the VLNS transformation. To ensure diversification, the weights of
the edges of the bipartite graph B = (V, P ) (defined in Sect. 3.3) are
perturbed: the edges appearing in the current solution are penalized by
increasing their weight of ε < 1/NPOS. In this way, among several optimal
assignments, the one having the least number of edges in common with
the current solution is chosen, which contributes to diversification.

– HYBRID B. Here only solutions of better cost are accepted, which implies
a low success rate for the VLNS transformation. To reduce the running-
time of the transformation, a cheaper test is performed before running the
Jonker-Volgenant’s algorithm [14] for LAP. This test consists in detecting
a negative cycle in the residual graph computed from current solution,
because according to network flow theory [34], p. 101, a strictly better
assignment exists if and only if the residual graph contains a negative
cycle (see [34], pp. 97–123, for more details). The negative cycle detection
is done via the Bellman-Ford algorithm for shortest path problems with
negative distances [34], pp. 91–94. Since in our case the residual graph
is unlikely to contain negative cycles, pass counting [34], p. 93, strongly
reduces the practical running-time of the Bellman-Ford algorithm (note
in addition that edges having a weight better than or equal to the weight
of the current assignment are removed from the graph). Although not
contributing to diversification, this advanced implementation makes faster
the VLNS transformation in practice.

4.2.1. Experimental results

HYBRID A and HYBRID B heuristics have been implemented in C ANSI
programming language (about 2000 lines of code each one). To make valuable
comparisons with pure VFLS, experimentations have been done on the 10 hardest
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Instances VFLS
Avg. cost Avg. time Avg. iterations

200-03 3.02 161.74 151 413 326
300-01 0.00 24.13 23 600 151
300-05 27.81 235.79 206 131 189
300-06 2.00 11.93 11 140 807
300-07 0.00 3.47 3 231 827
400-01 1.00 41.93 40 553 796
400-02 15.00 14.61 12 637 527
400-07 4.00 9.08 8 550 350
400-08 4.00 5.36 4 953 331
400-10 0.00 6.02 5 809 615

Figure 7. Sharper results for VFLS on the hardest CSPlib’s instances.

CSPlib’s instances (according to the results obtained by VFLS in Fig. 6). More-
over, these tests are done under sharper conditions than previously: 100 trials for
each instance with a running-time limited to 10 minutes per trial, always using
a computer with 3 GHz Pentium 4 processor and 1024 Mo of RAM. Figure 7
shows the results obtained by VFLS in these conditions. Here the column “Avg.
iterations” is added, which gives the average number of iterations done by the al-
gorithm to obtain its best solution on 10 minutes. Surprisingly, a solution with 27
violations is found for instance 300-05, which still improves the best known upper
bound for this instance. (Improved solutions for CSPlib’s instance 200-03, 300-05
and 400-02 are presented in Fig. 12 in Appendix.)

Figure 8 shows the results obtained by the two hybrid algorithms under these
sharper conditions. In order to facilitate the comparison with pure VFLS, the
columns “% impr.” give the percentage of improvement compared to VFLS for
the concerned data. In both cases, the convergence of the descent is speeded up
for almost all instances. On average, HYBRID A (resp. HYBRID B) heuristic
converges 20.6% (resp. 15.5%) faster than VFLS heuristic, while the number of
iterations is reduced of 66.7% (resp. 58.3%). Such results demonstrate clearly
that the addition of VLNS transformations is beneficial: despite a small number
of attempts (only 0.2%), they substantially reduce the number of iterations as well
as the time of the descent (nevertheless, the reduction of the number of iterations is
compensated by the time spent into VLNS transformations). Note that the results
obtained by HYBRID A are globally better than the ones of HYBRID B, which
suggests that supporting diversification through VLNS transformations helps.

The contribution of VLNS transformations is still illustrated in Figure 9, which
details the average number of transformations improving (strictly) the cost of the
solution during the descent, for instances 200-03, 300-05 and 400-10. When pure
VFLS is employed, improving transformations are always classified in the following
order (for the 10 hardest CSPlib’s instances): generic swaps (about 50%), generic
reflections (about 20%), consecutive swaps (about 12%), denominator reflections
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Instances HYBRID A
Avg. cost Avg. time % impr. Avg. iterations % impr.

200-03 3.02 153.24 5.3 27 381 333 81.9
300-01 0.00 20.38 15.5 7 362 280 68.8
300-05 27.79 211.88 10.1 71 499 964 65.3
300-06 2.00 9.28 22.2 4 337 777 61.0
300-07 0.00 3.10 10.7 1 389 923 57.0
400-01 1.00 33.64 19.8 13 145 998 67.6
400-02 15.00 11.67 20.1 5 334 379 57.8
400-07 4.00 4.99 45.0 2 585 487 69.8
400-08 4.00 4.50 16.0 1 591 986 67.9
400-10 0.00 3.51 41.7 1 733 348 70.2

Instances HYBRID B
Avg. cost Avg. time % impr. Avg. iterations % impr.

200-03 3.01 153.07 5.4 38 076 073 74.9
300-01 0.00 18.91 21.6 8 617 242 63.5
300-05 27.85 231.95 1.6 74 580 841 63.8
300-06 2.00 10.75 9.9 5 291 699 52.5
300-07 0.00 3.89 -12.1 2 073 856 35.8
400-01 1.00 36.04 14.0 15 737 308 61.2
400-02 15.00 11.90 20.1 6 181 598 51.1
400-07 4.00 5.37 40.9 3 206 521 62.5
400-08 4.00 4.50 16.0 2 174 497 56.1
400-10 0.00 3.77 37.4 2 235 781 61.5

Figure 8. Results of hybrid algorithms on the hardest CSPlib’s instances.

(about 10%), similar swaps (less than 5%), and at last insertions. (Observe that
the percentage of improving transformations is not correlated with the percentage
of attempted transformations given in Fig. 5; in particular, consecutive swaps and
reflections have a high success rate.)

When HYBRID A or HYBRID B is employed, VLNS becomes the first improv-
ing transformation or the second behind generic swaps (for instances 200-03 and
300-05 only). The percentage of improving VLNS transformations is the lowest
for instances 200-03 and 300-05 (top of Fig. 9) and the highest for instance 400-10
(bottom of Fig. 9); the average percentage on the 10 hardest CSPlib instances
is about 35% with HYBRID A and about 38% with HYBRID B. Within sight of
the very small number of attempts (only 0.2%), such statistics demonstrate that
in both cases, the VLNS transformation has a very high success rate compared to
the four basic transformations and contributes significantly to the progression of
the search.
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200-03 VFLS HYBRID A HYBRID B
Transformations Variants Nb. % Nb. % Nb. %

swap
generic 13.75 56.1 10.56 43.6 9.83 41.0

consecutive 2.48 10.1 2.06 8.5 2.06 8.6
similar 1.02 4.2 0.85 3.6 0.69 2.9

forward insertion generic 0.11 0.4 0.08 0.3 0.10 0.4
denominator 0.19 0.8 0.10 0.4 0.12 0.5

backward insertion generic 0.09 0.4 0.08 0.3 0.09 0.4
denominator 0.25 1.0 0.12 0.5 0.15 0.6

reflection generic 5.07 20.7 4.13 17.0 4.17 17.4
denominator 1.55 6.3 1.48 6.1 1.30 5.4

VLNS – – – 4.78 19.7 5.48 22.8
Total 24.51 24.24 23.99

300-05 VFLS HYBRID A HYBRID B
Transformations Variants Nb. % Nb. % Nb. %

swap
generic 20.37 47.8 13.48 31.3 13.65 31.3

consecutive 5.59 13.1 4.68 10.4 4.10 9.4
similar 1.83 4.3 0.96 2.2 0.94 2.2

forward insertion generic 0.13 0.3 0.24 0.6 0.25 0.6
denominator 0.55 1.3 0.47 1.1 0.38 0.9

backward insertion generic 0.30 0.7 0.22 0.5 0.32 0.7
denominator 0.37 0.9 0.46 1.1 0.37 0.8

reflection generic 10.04 23.6 7.81 18.2 8.54 19.6
denominator 3.45 8.1 3.09 7.2 2.81 6.4

VLNS – – – 11.79 27.4 12.27 28.1
Total 42.63 43.00 43.63

400-10 VFLS HYBRID A HYBRID B
Transformations Variants Nb. % Nb. % Nb. %

swap
generic 6.46 52.6 2.62 20.9 2.34 19.0

consecutive 1.38 11.2 0.87 6.9 0.62 5.0
similar 0.36 3.0 0.22 1.9 0.12 1.0

forward insertion generic 0.05 0.4 0.06 0.5 0.13 1.1
denominator 0.24 2.0 0.14 1.1 0.08 0.7

backward insertion generic 0.15 1.2 0.09 0.7 0.08 0.7
denominator 0.21 1.7 0.08 0.6 0.20 1.6

reflection generic 2.12 17.2 1.02 8.1 1.13 9.2
denominator 1.32 10.7 0.90 7.2 0.50 4.1

VLNS – – – 6.53 52.1 7.09 57.7
Total 12.29 12.53 12.29

Figure 9. Details of the descent on CSPlib’s instances 200-03,
300-05 and 400-10.
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5. Conclusion

The experimental results obtained by pure very large-scale neighborhood search
(VLNS) show that this approach is effective. The VLNS algorithm is robust (not
requiring special adjustments for each instance) and converge towards good solu-
tions (or even optimal ones). But its convergence is slow, and in particular slower
than very fast local search (VFLS) which, surprisingly, never meets local optimum
in practice. As already mentioned in [8], the behavior of VFLS calls a deep theo-
retical study, in particular to answer to the following question: does VFLS always
converge towards a global optimal solution? And if counterexamples exist, are
there some classes of instances for which this is the case?

On the other hand, the addition of VLNS transformations based on linear as-
signment (LAP-based VLNS) into the VFLS heuristic, which can be viewed as
a hybridization VFLS/VLNS, is shown to improve significantly the convergence
of pure VFLS, by reducing the number of iterations and the time of the descent.
Unfortunately, the reduction of the number of iterations is partially compensated
by the time spent into VLNS transformations. Thus, speeding up LAP-based
VLNS transformations could drastically reduce the time of the descent. Note that
adding LAP-based VLNS transformations to VFLS should be still more profitable
for real-life car sequencing problems where vehicles can be assigned to a subset of
positions in the sequence, and not to all positions (as encountered in many plants
of the car manufacturer RENAULT [15]).

An other research axis, in the context of exact approaches, is to dedicate a gen-
eral branch-and-bound procedure for car sequencing problems, which integrates
the ideas and results developed through this paper into an efficient local branch-
ing scheme (see [9] for more details on local branching). Indeed, the proof of
unsatisfiability for instance 21-90 shows that the branch-and-bound procedure can
be specialized to be more efficient, in particular by branching first on variables
oi,j corresponding to the most constraint ratios. Then, the choose and the reso-
lution of subproblems for bounding could be guided to satisfy the conditions of
Proposition 3.4.
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Appendix

15 08 18 04 18 07 14 06 17 03

17 07 16 06 11 03 19 06 11 10

17 00 21 06 11 09 17 02 20 01

17 03 18 06 14 06 17 04 06 17

03 17 07 14 06 17 03 12 06 14

06 11 10 11 08 14 06 11 09 11

07 20 01 17 09 13 06 09 01 17

03 19 06 14 06 11 08 20 01 17

09 13 06 16 06 17 00 21 06 11

09 11 08 14 06 17 03 18 06 11

10 17 00 20 06 11 09 18 01 17

09 11 07 10 11 06 14 02 11 09

17 01 22 06 11 09 06 12 10 17

01 20 07 11 10 17 01 20 06 12

10 17 01 20 06 12 10 17 01 20

06 12 10 11 06 21 00 17 05 17

06 14 07 06 16 06 17 03 19 06

14 06 17 04 17 06 03 17 08 14

06 17 05 18 06 16 06 11 09 13

06 17 03 01 18 05 11 06 14 08

11 05 17 06 00 21 06 11 09 18

01 21 06 11 09 17 00 21 06 11

10 17 02 20 06 11 10 17 00 20

06 01 20 06 12 09 11 06 14 07

17 05 17 06 14 07 11 09 17 01

21 07 11 09 17 01 20 07 01 20

06 14 08 17 03 11 06 21 00 17

10 11 06 10 12 06 20 01 17 10

12 06 14 06 11 10 18 01 20 06

11 09 07 11 10 11 06 21 00 17

09 11 06 19 05 17 06 14 08 17

03 17 06 15 06 17 05 17 00 21

06 11 09 18 01 21 06 11 09 18

01 21 06 11 04 17 06 14 06 07

14 06 17 03 18 01 21 06 11 07

21 01 17 09 12 06 21 01 17 03

18 01 21 06 11 09 12 06 21 01

17 03 18 06 16 06 17 05 18 06

16 06 07 16 06 11 10 12 01 17

09 11 07 20 01 17 09 12 08 22

22 06 11 10 17 02 20 06 11 10

18 01 20 06 11 04 17 06 16 06

12 10 11 06 21 00 17 10 11 06

12 10 17 01 20 07 11 10 11 06

21 00 17 10 11 06 21 00 17 05

17 01 18 09 11 06 21 00 17 09

11 06 22 01 06 14 06 19 03 17

01 20 07 11 10 11 06 21 00 17

09 11 06 21 00 17 09 11 06 21

00 17 10 11 06 21 00 11 06 21

01 18 09 11 06 21 00 17 10 11

06 21 00 17 05 17 06 14 08 17

03 11 06 21 02 17 09 11 06 21

01 18 09 11 06 21 02 17 09 11

01 18 03 17 06 14 08 17 01 20

06 13 09 17 01 20 08 11 09 17

01 18 09 11 06 21 01 18 09 11

06 21 01 18 09 11 06 21 01 18

09 11 06 20 01 18 05 17 06 16

07 11 10 17 01 12 09 17 01 20

08 11 09 17 01 20 08 11 09 17

01 20 01 18 09 11 06 14 08 17

05 06 17 04 17 06 14 06 18 05

17 06 16 06 18 03 17 06 14 07

17 05 17 06 14 07 17 05 17 06

14 08 17 05 17 06 12 09 11 06

14 08 17 03 17 06 14 08 17 03

17 06 15 06 06 14 06 18 03 11

06 14 07 17 03 17 06 14 06 13

09 17 01 20 01 18 09 11 06 14

06 12 09 11 06 14 06 12 09 17

01 20 07 11 10 17 01 20 07 11

10 17 01 20 07 11 10 17 01 20

07 11 10 17 01 20 07 11 09 17

03 19 06 14 06 06 14 06 12 10

11 06 14 06 19 03 17 06 14 06

12 10 06 11 03 19 06 16 06 06

16 07 06 16 06 06 12 03 17 06

16 07 17 03 06 06 13 03 06 06

03 12 07 15 07 12 04 12 07 04

22 06 11 10 17 02 20 06 01 20

08 11 06 20 01 19 09 11 06 14

08 11 09 17 01 13 03 11 06 14

07 06 14 06 17 04 17 06 16 06

12 10 11 06 20 00 21 06 11 09

18 01 20 06 14 08 09 11 06 21

00 17 06 16 06 19 03 17 06 14

07 17 01 21 06 12 09 11 06 03

18 01 20 06 11 07 21 01 17 09

12 06 21 01 17 04 17 06 16 06

18 03 17 06 14 07 17 05 17 06

12 10 11 06 16 07 06 14 06 17

04 17 06 14 06 12 10 11 06 16

07 17 03 17 06 13 10 17 03 17

08 14 06 11 09 13 06 20 01 17

00 21 06 11 09 18 01 17 05 17

07 14 06 17 05 18 06 16 06 19

03 17 06 14 07 17 05 17 09 11

07 20 01 17 10 12 06 17 03 17

08 14 06 17 05 18 06 11 10 17

00 20 06 11 10 12 03 17 06 16

00 17 09 11 06 15 06 11 10 06

12 10 06 11 10 18 01 20 06 11

10 07 11 09 17 01 18 05 11 06

20 02 17 09 11 08 05 17 06 03

18 09 11 10 17 00 21 06 11 10

18 01 17 09 11 07 21 01 11 09

18 05 17 06 14 06 18 03 17 06

14 08 17 03 17 01 22 06 11 03

11 07 20 01 17 03 18 06 14 06

06 12 09 11 06 21 02 17 09 11

06 20 00 17 01 21 06 12 09 17

01 21 07 14 06 06 14 08 17 03

17 01 19 09 11 06 09 12 06 21

01 17 04 17 06 14 01 18 09 11

01 20 00 17 01 21 06 12 09 17

01 21 07 11 06 21 01 07 14 06

11 10 08 11 06 20 01 18 09 11

06 21 00 17 10 11 06 15 06 11

09 17 00 21 06 11 10 11 07 20

400-03 W W ′ V V ′

Gravel’s solution 9 15 19 30

Solnon’s solution 9 12 27 33

VFLS solution 12 12 12 12

Figure 10. Three solutions to CSPlib’s instance 400-03. In each table, the
solution must be read from the left to the right and from the top to the down. The
solutions on the left side and in the center have been respectively communicated
to us by Gravel [13,19] and Solnon [33], whereas the solution on the right side has
been obtained by the VFLS heuristic. W (resp. W ′) represents the number of
violated windows without (resp. with) side windows and V (resp. V ′) the number
of violations without (resp. with) side windows. Note that for any instance, we
have W ≤ W ′ ≤ V ′ and W ≤ V ≤ V ′. Gravel et al. [13, 19] and Solnon [33] use
W as criterion for evaluating solutions, whereas throughout this paper, V ′ is em-

ployed.
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Instances 10 iterations 10 minutes
Average cost Average cost Average time

4-72 4.0 0.0 5.94
6-76 6.0 6.0 0.00
10-93 10.3 3.8 158.53
16-81 5.9 0.0 97.18
19-71 7.0 2.0 18.52
21-90 5.3 2.0 8.29
26-82 3.4 0.0 43.88
36-92 6.4 2.0 15.17
41-66 2.1 0.0 0.04

200-01 14.0 5.0 184.24
200-02 12.0 4.8 175.62
200-03 26.9 14.6 197.32
200-04 16.4 10.0 143.19
200-05 13.1 7.6 211.71
200-06 12.9 7.0 182.40
200-07 9.1 2.2 159.38
200-08 19.1 9.4 94.89
200-09 17.8 11.8 137.82
200-10 36.9 27.2 196.82

Instances 10 iterations 10 minutes
Average cost Average cost Average time

300-01 11.2 5.6 48.24
300-02 22.2 14.4 90.27
300-03 22.8 15.8 197.48
300-04 26.4 13.2 233.56
300-05 71.4 53.8 178.97
300-06 21.3 10.0 262.01
300-07 15.9 5.4 138.14
300-08 18.2 10.2 205.73
300-09 21.1 11.0 184.22
300-10 47.0 35.0 169.85
400-01 14.7 4.6 263.37
400-02 39.7 27.2 220.68
400-03 28.2 16.8 261.46
400-04 41.8 31.0 209.11
400-05 12.2 3.4 281.67
400-06 15.2 5.2 264.66
400-07 33.8 13.0 380.51
400-08 28.4 13.0 128.94
400-09 36.2 23.4 328.51
400-10 12.8 5.4 174.12

Instances Worst cost Instances Worst cost
60-01 0 65-01 0
60-02 0 65-02 0
60-03 3 65-03 1
60-04 0 65-04 0
60-05 0 65-05 0
60-06 1 65-06 0
60-07 0 65-07 0
60-08 1 65-08 1
60-09 0 65-09 1
60-10 0 65-10 0
70-01 0 75-01 0
70-02 0 75-02 0
70-03 0 75-03 1
70-04 1 75-04 0
70-05 0 75-05 0
70-06 1 75-06 4
70-07 0 75-07 0
70-08 2 75-08 1
70-09 1 75-09 0
70-10 0 75-10 0

Instances Worst cost Instances Worst cost
80-01 0 85-01 0
80-02 0 85-02 0
80-03 0 85-03 0
80-04 0 85-04 1
80-05 1 85-05 0
80-06 0 85-06 0
80-07 0 85-07 0
80-08 0 85-08 2
80-09 2 85-09 0
80-10 2 85-10 0
90-01 2
90-02 0 4-72 6
90-03 1 6-76 6
90-04 0 10-93 12
90-05 1 16-81 8
90-06 0 19-71 10
90-07 0 21-90 7
90-08 0 26-82 5
90-09 0 36-92 8
90-10 1 41-66 4

Figure 11. Results of our greedy algorithm on CSPlib’s instances.
In the top table, the second column shows the average cost obtained
after 10 iterations of the greedy algorithm (with 10 trials per instance),
as used in VLNS, VFLS and HYBRID algorithms. The third and fourth
columns show the average results of the greedy algorithm iterated on 10
minutes (with 10 trials per instance). Note that the greedy algorithm
always finds the best known number of violations for 8 instances (of the
first set) in a reasonable amount of time, which seems to indicate that
these instances are not really hard to solve. In the bottom table, the
second and fourth columns show the worst cost found by the greedy
algorithm after 10 iterations, with 10 trials per instance. Note that
the greedy algorithm always finds zero (resp. zero or one) violation
for 48 (resp. 63) instances on 79, which confirms that instances of
CSPlib’s benchmarks 60/65/70/75/80/85/90 (all satisfiable) have a
limited interest for experimentations.
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05 08 06 17 06 21 05 13 06 17
08 22 03 13 06 19 07 01 23 06
01 24 08 13 10 21 00 21 10 13
08 24 01 06 23 01 20 08 17 06
21 03 22 06 03 21 06 16 10 06
15 10 09 13 10 08 13 09 10 13
08 10 16 06 10 13 08 12 13 06
23 01 22 10 13 06 19 07 21 03
06 21 04 21 06 03 08 20 01 23
06 15 10 20 01 23 08 13 11 08
13 08 23 00 21 10 15 06 24 01
06 21 03 20 08 03 08 13 07 19
06 15 10 20 01 23 08 13 11 08
13 08 10 14 08 10 15 06 24 01
06 21 03 07 08 03 21 06 04 21
06 01 23 07 15 10 08 17 07 08
17 08 06 18 08 06 15 10 20 01
23 08 13 11 08 13 08 10 14 08
23 01 23 07 15 10 15 06 23 02
23 08 13 10 16 06 10 15 06 12

19 05 11 07 14 01 16 07 11 14
18 01 15 07 11 05 18 00 14 07
01 14 10 11 14 09 11 16 07 11
05 12 06 11 07 14 01 17 05 11
07 14 13 05 11 07 14 13 05 11
07 14 01 17 05 11 07 14 01 18
04 11 07 05 01 15 07 11 05 18
00 14 07 01 14 10 11 14 09 11
06 07 11 05 12 06 11 07 14 01
16 07 11 14 18 01 15 07 11 05
18 00 14 03 14 05 02 14 05 12
05 04 12 05 14 03 04 14 03 14
05 02 14 05 12 05 04 12 05 14
01 08 14 01 14 18 00 14 09 11
05 17 11 05 12 01 15 07 01 14
18 00 14 09 11 05 17 11 05 11
18 04 11 09 14 01 17 14 01 14
18 00 14 09 11 05 17 11 05 12
05 04 12 05 14 03 04 14 03 14
01 08 14 01 14 18 00 14 09 11
05 08 11 05 07 01 15 07 01 14
18 00 14 03 14 01 17 11 05 12
01 15 07 01 14 09 00 14 09 11
05 08 11 05 14 03 04 14 03 14
05 02 14 05 12 05 11 08 05 11
09 14 00 18 14 01 07 15 01 12
05 14 02 05 14 03 14 04 03 14
05 12 04 05 12 05 11 08 05 11
09 14 00 18 05 11 07 15 01 18
14 11 07 16 01 14 07 11 05 19

21 06 14 09 05 14 10 07 12 09
18 00 21 05 12 04 05 01 20 05
14 20 08 12 09 14 05 11 12 05
21 12 08 09 12 07 20 01 20 05
14 09 07 00 20 07 12 07 10 12
07 09 12 08 16 07 05 12 11 12
07 20 05 12 11 05 14 09 05 13
04 07 05 16 06 07 04 05 05 02
19 07 16 05 12 11 07 12 09 05
01 20 07 12 05 21 00 18 09 12
07 20 01 20 05 14 09 08 12 05
21 05 01 20 05 14 02 06 07 16
05 18 03 05 18 02 18 06 16 07
12 07 20 00 07 09 14 05 20 01
20 07 12 09 08 12 07 09 12 08
02 18 05 16 05 18 04 06 05 02
18 07 16 06 05 04 18 05 17 05
18 04 05 05 03 07 18 02 05 05
04 08 05 16 05 18 03 05 18 02
18 06 02 05 18 02 18 05 03 18
05 02 18 06 16 05 18 04 13 05
20 07 14 10 12 05 02 07 08 16
05 05 04 07 06 16 05 18 02 05
01 20 07 12 05 21 00 18 02 12
07 20 01 20 05 14 09 15 05 02
18 05 15 09 12 07 20 01 20 05
14 09 15 05 09 14 05 21 00 20
07 12 07 10 12 07 09 14 06 09
14 05 20 01 20 07 12 09 07 13
07 20 05 14 10 07 12 09 14 06
07 16 05 18 02 19 05 16 07 12
10 07 12 21 05 13 09 14 07 20
00 20 07 14 09 05 00 21 05 14
09 05 01 20 07 12 09 07 00 21
05 12 09 18 01 20 05 12 04 18
06 16 05 18 04 05 06 02 18 07
16 06 05 04 05 18 03 05 07 02
18 06 16 07 05 02 18 06 04 05
05 04 06 05 04 05 07 16 06 18
02 18 05 17 07 05 02 14 06 21

Figure 12. Best solutions to CSPlib’s instances 200-03 (3 viola-
tions), 300-05 (27 violations) and 400-02 (15 violations). Solutions
must be read from the left to the right and from the top to the down.
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[1] R.K. Ahuja, Ö. Ergun, J.B. Orlin and A.P. Punnen, A survey of very large-scale neighbor-
hood search techniques. Discrete Applied Mathematics 123 (2002) 75–102.

[2] E. Aarts and J.K. Lenstra, Local Search in Combinatorial Optimization. Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons, Chichester, UK
(1997).

[3] V-.D. Cung and A. Nguyen (2003). Challenge ROADEF’2005.
http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2005/

[4] V-.D. Cung and A. Nguyen Le problème du Car Sequencing RENAULT et le Challenge
ROADEF’2005, in Actes des JFPC 2005, les 1res Journées Francophones de Programmation
par Contraintes, Lens, France, edited by C. Solnon (2005) 3–10

[5] B. Estellon, F. Gardi and K. Nouioua, Ordonnancement de véhicules dans les usines RE-
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