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Abstract. Markov Decision Processes (MDPs) are a classical frame-
work for stochastic sequential decision problems, based on an enumer-
ated state space representation. More compact and structured
representations have been proposed: factorization techniques use state
variables representations, while decomposition techniques are based on
a partition of the state space into sub-regions and take advantage of
the resulting structure of the state transition graph. We use a family
of probabilistic exploration-like planning problems in order to study
the influence of the modeling structure on the MDP solution. We first
discuss the advantages and drawbacks of a graph based representation
of the state space, then present our comparisons of two decomposition
techniques, and propose to use a global approach combining both state
space factorization and decomposition techniques. On the exploration
problem instance, it is proposed to take advantage of the natural topo-
logical structure of the navigation space, which is partitioned into re-
gions. A number of local policies are optimized within each region, that
become the macro-actions of the global abstract MDP resulting from
the decomposition. The regions are the corresponding macro-states in
the abstract MDP. The global abstract MDP is obtained in a factored
form, combining all the initial MDP state variables and one macro-state
“region” variable standing for the different possible macro-states cor-
responding to the regions. Further research is presently conducted on
efficient solution algorithms implementing the same hybrid approach
for tackling large size MDPs.

Keywords. Probabilistic planning, dynamic programming, Markov
decision processes, application to autonomous decision making.

Mathematics Subject Classification. 90C40, 68T37, 68T20,
68R05, 11Y05, 68R10

Received December 31, 2005.
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Introduction

Automated sequential decision making under uncertainty is a crucial capa-
bility for the feasibility of many possible future applications in the field of au-
tonomous robotics, such as the autonomous unmanned aircraft studied in the
ReSSAC (www.cert.fr/dcsd/RESSAC) project at ONERA. The ReSSAC project
at ONERA addresses the issue of planning under uncertainty for autonomous ex-
ploration or “search and rescue” aircraft. An exploration mission is composed of
a problem of navigation in a partially known environment on the one hand, and a
problem of online information acquisition and re-planning on the other hand. The
mission and the flight plan cannot be completely and precisely defined in advance.
Explored (or already known) regions of the environment may be traversable or
not. Other regions require to be exhaustively or partially explored, mapped or
searched for the presence of persons or objects. Such a mission can be partially
pre-planned at a higher level of abstraction, as a sequence of mission phases, tasks,
or macro-actions: for each mission phase, the system needs to achieve navigation
and information acquisition goals, before proceeding with one of the possibly fol-
lowing phases. The intermediate goals to be achieved are pre-conditions of the
following tasks as in classical deterministic planning domains. Yet each interme-
diate goal must be achieved by minimizing risks and costs and thus by optimizing
the navigation and the action strategy under uncertainty. This short introduction
introduces our motivations for this work, but the techniques presented next are
far more general than our intended application and concern all kinds of sequential
decision making problems under uncertainty.

Throughout the paper, we use a family of problems of different sizes and com-
plexity, but all based on this kind of navigation-grid exploration-like problems,
with weakly coupled regions and additional state variables (see Figs. 2, 3, 20).
Small problems (Fig. 3) are used in order to explain the approach and larger ones
in order to demonstrate the scalability of the combined approach that we propose
in the end.

Markov Decision Processes (MDPs) [33] have become a popular stochastic
framework in order to tackle sequential decision problems for autonomous agents
which actions have uncertain effects. Due to these uncertainties, a sequential plan
of action cannot guarantee to achieve the goals. Instead, a policy is optimized as a
function giving for each possible state, the action to be performed next. Partially
Observable MDPs (POMDPs) have also been widely studied in order to take into
account observation uncertainties. Yet, existing algorithms to solve POMDPs [30]
are still not of practical use in real world applications [10]. Some works propose to
use structured approaches in order to solve POMDPs with larger state spaces [5].
Still for MDPs, classical exact algorithms based on stochastic dynamic program-
ming on an explicitly enumerated state space are not effective enough for realistic
applications that often have very large state spaces [8, 41].

This paper gives a discussion about the influence of the possible modeling
choices, especially between the choice of a structured, rather than an enumer-
ated, state space representation. After an introduction to related pieces of work in
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the literature in Section 1, a short presentation of the MDP formalism is first given
in Section 2. In Section 3 the utility of using sparse matrices, i.e. graph based
representations, for MDPs is shown to depend on the problem. The advantages
and drawbacks of decomposition techniques for graph based MDPs are discussed
in Section 4, where we also provide comparison tests between two classical de-
composition algorithms. Alternatively, the state space can also be represented
by using a set of state variables: a MDP using such a structured and compact
representation is called a factored MDP (Sect. 5). Eventually, in Section 6, we
propose a global approach that takes advantages of both decomposition and fac-
torization techniques. This global approach is illustrated and discussed on the
basis of a simple instance of our probabilistic exploration-like sequential decision
problem. We then give a series of results obtained on problems of larger sizes,
using more recently developed factored MDP optimization algorithms, in order
to show how such an approach scales in larger state spaces. In Section 9, we
give some conclusions on the respective advantages of the presented techniques
and then some perspectives for further work on structured stochastic sequential
decision problems.

1. Overview and related work

Decision-theoretic planning offers a very general framework for stochastic se-
quential decision problems of all kinds [29]. In Markov Decision Processes (MDPs)
[33], the uncertain effects of actions are modeled in a decision-theoretic framework.
Partially Observable MDPs (POMDPs) have also been widely studied in order to
take into account observation uncertainties. Yet, the existing algorithms for solv-
ing POMDPs are still not of tractable use in practical applications, due to the
complexity of the problem [10, 30]. It is possible to bypass the difficulty due to
partial observability by augmenting the state representation with some memory of
selected past events [17]. Classical MDP stochastic dynamic programming algo-
rithms are based on an explicitly enumerated and unstructured state space. The
size of the state space is an exponential function of the number of features that
intervene in the problem description. The state enumeration itself may rapidly
become intractable for realistic problems, or more generally the subsequent opti-
mization computations cannot tackle the size of the problem [8].

A number of techniques have been proposed in recent years, in order to overcome
the limitations of the enumerated states MDP framework. Such techniques include
learning methods [3, 38], where the framework of stochastic sequential decision
making is extended to the family of reinforcement learning problems. The control
of both the computing cost and the approximation error are generally a concern,
as in other approximating methods and algorithms [22, 37] that have been quite
recently developed in order to speed up the optimization time or increase the
size of the MDPs. Eventually, approximate linear programming algorithms allow
to extend the model to hybrid MDPs, with both continuous and discrete state
variables [21, 28]. We plan to integrate continuous variables in our autonomous
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agent planning problem in future work and to work more specifically on learning
techniques.

In this article, we rather focus on approaches that try to exploit the natural
structure of the sequential decision problems either by using compact factored rep-
resentations with (more or less) correlated state variables [6–9], or by decomposing
the enumerated state space into sub-regions [12, 24, 31, 36]. Such a decomposition
enables a hierarchical approach, which appears to be more effective for problems of
large size that have weakly coupled sub-regions. Other hierarchical approaches ex-
ist and have been developed for instance for decomposable reinforcement learning
problems, such as MAXQ-Q learning in [14], or applied in a POMDP controller
of “nursing assistant” robots [32]. The state abstraction approach proposed in
[14], result in a problem solution very similar to the techniques described in this
paper. Yet, we do not discuss here the possibility of generalized abstraction, nor
the perspective of introducing a greater number of hierarchical levels as in [14].
The MAXQ approach seems compatible with our decomposition and factoriza-
tion approach, and can be seen as a possible generalization. It however seems to
require the design “by hand” of the MAXQ hierarchical abstraction graph, as a
result from an analysis of the problem by the designer. We rather focus on the
automatic exploitation of natural structures such as topological structures, which
are known to be automatically computable. Our automatic abstraction process is
based on a decomposition that shares some similarities with the approach proposed
in [14]. As a matter of fact, the MAXQ decomposition of the value function could
be introduced in our approach as a hierarchical generalization of our abstraction
process. We could then integrate automatic MAXQ graph building tools. Besides,
the use of automatic decomposition techniques allows us to reduce the number of
possible values of the navigation state variables, and thus make it possible to effi-
ciently apply factored MDP solution algorithms. Such factored algorithms could
be easily combined with or replaced by a Q learning algorithm. The combination
of both approaches should be studied in more details in further work. The three
family of possible MDP models, or MDP approach, that are mainly addressed in
this paper are graph representation, factorization and decomposition.

Graph representation: while classical MDP algorithms use stochastic
transition matrices, some approaches such as in [31, 36] suppose that the
state space is represented in the form of a graph, whose nodes are the enu-
merated states of the MDP and whose edges are the stochastic transitions
of non-zero probability between the states. The corresponding transition
matrices (which store the probabilities and rewards of the problem) are
sparse.

Factorization: [8] and [9] put a more general focus on the exploitation of the
structure of stochastic planning problems that are described with symbolic
features. The use of compact factored representations, instead of enumer-
ated state spaces, remains possible with correlated state variables [6]. The
SPUDD library [25] proposes to use decision diagrams, borrowed from the
Model Checking community, and to apply it to structured stochastic plan-
ning problems. Only the value iteration scheme was implemented with
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Decision Diagrams: we had to implement SPUDD-like policy iteration dy-
namic programming. [7] show how to exploit such a representation by
reusing symbolic planning schemes borrowed from recent STRIPS plan-
ning work.

Decomposition: [12] or [24] propose a decomposition of the state space in
sub-regions, which enables a hierarchical solution. Computations about
the interstate connectivity within an enumerated navigation state space
as in [36] can provide a topological decomposition at a higher level of
abstraction: the MDP is splitted into a set of regions, each region being
a local MDP. The work by [31] and [36] show the efficiency of such an
approach applied to decomposable navigation grid MDPs. As a matter
of fact, the global MDP is then abstracted into a symbolic factored MDP
described by a new feature stating for the regions. We exploit this kind of
automatic problem abstraction process in our work, contrary to the work
by [27], where a partition is used to solve a factored MDP.

Approximate solution algorithms [37] have also been proposed on the basis of
factored or decomposed representations. A number of approximation techniques
propose the use of parameterized or structured value functions (see [14] for a Q
learning approach) or policies: both value functions approximation and policy ap-
proximation are combined in [22], using the max-norm projection, which allows to
solve large scale factored MDPs. It is noticeable that our global optimal approach
is able to solve problems as large as the ones solved in [22], but on MDPs of dif-
ferent natures: our problems combine boolean variables and variables with large
ranges of values (navigation variables), whereas the MDPs solved in [22] are based
on boolean state variables.

Our algorithms have been developed on the basis of recent work on symbolic
heuristic search algorithms for MDPs: the LAO* algorithm generalizing AO* [23]
and the LRTDP algorithm [4] generalizing RTDP. Both heuristic schemes lead
to bound the explored state space before convergence and apply value iteration
within a more focused region. Their respective application in [19] and [1] show
that they improve the efficiency of value iteration dynamic programming for struc-
tured MDPs. Different implementations of these heuristic search value iteration
algorithms were independently compared on navigation grid MDPs in [23] and in
[4]: these comparisons tend to show that LRTDP outperforms LAO*. Symbolic
versions have been developped for symbolic stochastic planning problems, using
factored state space representations: sRTDP is a symbolic version of RTDP value
iteration and sLAO* the symbolic counterpart for LAO* value iteration. The re-
sults presented in [23] and [20] show that sRTDP has a better on-line behavior
than sLAO*, in the sense that it faster gives a good quality solution. On the other
hand, sLAO* shows a better off-line convergence efficiency, in the sense that it
faster converges towards the optimal solution. Our work in this respect is based
on the combination of both decomposition and factorization techniques which al-
lows us to automatically abstract the MDP. This operation is quite powerful for
problems combining navigation and task planning. We propose the implementa-
tion of both sLAO*-inspired and sRTDP-inspired heuristic search schemes with
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a policy iteration dynamic programming algorithm. Preliminary experimental re-
sults show how these algorithms can scale on problems of larger sizes.

2. Markov decision processes

2.1. Classical model

A MDP [33] is a controlled Markov chain (stochastic automaton) where the
choice of an action in a given state at a given time point results in a stochastic
transition to an uncertain state, with transition probabilities depending on both
the action and the state. The choice of a given action may furthermore lead to
a reward or a cost. A control strategy π is a function from the state space to
the action space, that associates to each state the choice of an action: it is also
called a policy. The Markov property means that the probability of arriving in a
particular state after an action only depends on the previous state of the chain
and not on the entire states history.

Definition 2.1 (Markov decision process). A MDP is a tuple 〈S, A, T, R〉 where:
• S is the set of states;
• A is the set of actions;

• T :
S ×A× S −→ R

(s, a, s′) �−→ T (s, a, s′) = P (s′|a, s)
is the probability transition function;

• R : S × A× S −→ R

(s, a, s′) �−→ R(s, a, s′) = R(s′|a, s)
is the reward function.

T and R values depend on the starting state, the ending state and the chosen
action (probabilities and rewards are stored in matrices or tables).

The infinite horizon discounted optimization criterion is most frequently used.
It consists in maximizing the value function V π = E (

∑∞
t=0 βt rπ

t ), i.e. the infinite
sum of expected rewards rπ

t obtained while applying the policy π, discounted by a
factor 0 < β < 1 at each time step. β guarantees the sum’s convergence, but can
also be interpreted in the sense that 1− β is an uncontrolled stopping probability
between two time points. It has been shown (see [33]) that the optimal policy
is a deterministic Markovian policy π ∈ ΠDM (instead of a stochastic history-
dependent policy) so that solving a MDP amounts to solving the problem P :

max
π∈ΠDM

∞∑
t=0

βt rπ
t , 0 < β < 1 (P).

The discount factor β guarantees that P has a solution. Depending on the appli-
cations, the discount factor can have a particular interpretation. For instance in
robotics, 1 − β can represent the probability of a complete system failure, termi-
nating the mission, between two time points. More generally, βt can be interpreted
as a unit of reward gained at time t.
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2.2. Solution algorithms

The solution of the problem P is obtained by stochastic dynamic program-
ming [2]. Putting apart the direct application of linear programming techniques,
which rapidly cannot face the complexity burden, there exist two main classes
of iterative algorithms: value iteration and policy iteration. All these algorithms
iteratively improve a policy π or a value function V defined on the state space S,
Vπ(s) being for instance the discounted infinite sum of expected rewards applying
the policy π an infinite number of times starting from the initial state s ∈ S.

2.2.1. Value iteration

Different value iteration algorithms exist, that are all based on Bellman’s opti-
mality equations, whose fixed point is the optimal value function V ∗:

∀ s ∈ S , V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′) · (R(s, a, s′) + βV ∗(s′)) . (1)

The optimal policy π∗ corresponds in the previous equation to the actions that
maximize the value function. Value iteration algorithms iteratively compute the
fixed point V ∗ as the limit of the sequence of value functions defined by:

{
V0 = 0, and ∀ s ∈ S ,
Vn+1(s) = maxa∈A

∑
s′∈S T (s, a, s′) · (R(s, a, s′) + βVn(s′)) , n ≥ 0.

Algorithm 2.2 (value iteration).
Require: ε > 0 and 0 < β < 1

V0 ← 0
n← 0
repeat

for s ∈ S do
Vn+1(s) = max

a∈A

∑
s′∈S

T (s, a, s′) · (R(s, a, s′) + βVn(s′))

end for
n← n + 1

until ‖Vn+1 − Vn‖ < ε
for s ∈ S do

π(s)← argmax
a∈A

∑
s′∈S

T (s, a, s′) · (R(s, a, s′) + βVn(s′))

end for
Ensure: ‖Vn − V ∗‖ < ε

The most frequently used value iteration algorithm is the Gauss-Seidel
algorithm [33] for which Vn+1(s) replaces Vn(s) as soon as the new value is com-
puted for s. Asynchronous dynamic programming algorithms [38] rather update
the value of randomly chosen states at each iteration, or along a simulated tra-
jectory. Eventually, the actions and the strategies that are dominated, can be
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eliminated during the value iteration steps since they cannot participate in any
optimal strategy [8].

2.2.2. Policy iteration

In the policy iteration scheme, the policy is globally assessed on all states and
on the infinite horizon, and it is improved locally, state by state, at each iteration.
The value of a policy π is the unique fixed point solution of Bellman’s optimality
equations:

∀ s ∈ S , V π(s) =
∑
s′∈S

T (s, π(s), s′) · (R(s, π(s), s′) + βV π(s′)) . (2)

Algorithm 2.3 (policy iteration).
Require: ε > 0 and 0 < β < 1

Initialize π ∈ ΠDM

n← 0
repeat

Solve: ∀ s ∈ S , V π(s) =
∑

s′∈S

T (s, π(s), s′) · (R(s, π(s), s′) + βV π(s′))

for s ∈ S do

πn+1(s) = arg max
a∈A

{ ∑
s′∈S

T (s, a, s′) · (R(s, a, s′) + βVn(s′))
}

end for
n← n + 1

until πn = πn+1

Ensure: πn = π∗

A policy iteration algorithm converges in fewer iterations than a value iteration
algorithm, because the optimal policy (made of discrete choices) stabilizes sooner
than the corresponding optimal value function, which has an asymptotic conver-
gence to the fixed point in the value iteration schemes. The rate of asymptotic
convergence of V may also depend on the value of the discount factor β.

On the other hand, in the policy iteration scheme, each iteration is much more
computationally costly than in the value iteration algorithm, due to the linear
equation system solution. Exactly solving this linear system is not always feasible
in a reasonable time.

In the modified policy iteration algorithm [33] the value of the current policy, at
each iteration, is approximated by applying a number of steps of value iteration
without changing the policy. In general, this is the most effective algorithm in
order to solve classical MDPs of “reasonable” size [8].

2.3. Limits of the classical model

The classical MDP framework does not take into account the particular struc-
ture of the state space. First, all transitions between states are stored even if
most of these have a zero probability. In the classical instance of the parking
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2 1N

parking lot
underground

cost

i+1... ...i

C  > 1

cost of the i     parking space is th i

a priori probability that a parking space is not free  (F)  :           free (F) :  p 1 − p

motion direction

Figure 1. Parking lot problem [33]: the driver would like to park
as close as possible (lowest possible cost) to a shop being situated
above an underground parking lot of cost C, with 1 < C ≤ N.
Nevertheless, the closer he gets to the shop’s entry, the more risk
he takes not to find a free parking space outside the underground
parking lot.

lot problem shown in Figure 1, the driver facing the parking space i can only go
forward to the parking space i + 1 (in one move). The transitions from a state
(i, ·) to states (j, ·) where j �= i + 1 are impossible. Therefore, updating the value
function with Bellman’s equations requires to sum over a number of terms that are
predominantly equal to zero, which uselessly increases the computation burden of
the solution algorithms.

Moreover, classical MDP algorithms 2.2 and 2.3 perform their value or policy
iteration steps by updating all the states in plain listing order, without any con-
sideration of the connection structures between states. For instance, in Figure 2
the value function is updated in the second region before it has converged in the
first region whereas its value in the second region strongly depends on its value
in the first region. On the contrary, grouping the states into weakly coupled re-
gions can, for instance, allow to update quite independently each set of densely
connected states (within each region) before propagating the result to the other
regions. Such an approach takes advantage of the “topology” of the state space
and seems particularly well-fitted to navigation-grid problems, whenever it is made
up of weakly coupled regions where the MDP can be locally solved.

Eventually, the state space is often factored, in the sense that it is described by
a set of state variables whose possible combinations of values correspond to the
possible states. The classical MDP model is not well-adapted to this structure of
the state space since the number of enumerated states grows exponentially with
the number of state variables.

Let us consider an instance of an exploration problem, that is to say: a naviga-
tion problem with intermediate and final goals located in different regions of the
environment. Some regions have to be exhaustively or partially explored, mapped
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Figure 2. Propagation of the value updates through three suc-
cessive iterations of the value iteration algorithm over a grid made
up of 4 weakly coupled regions.

1$

3$

1R

R3

R2
2$

=3

=2

=1

Figure 3. Navigation MDP: 3 regions and 3 possible rewards.

or searched for the presence of persons or objects before trying to achieve other
goals. Information acquisition tasks may be required for the achievement of some
intermediate goals of the mission, and may also impact on the subsequent tasks
or navigation actions. Such missions can be modelled at a higher level of abstrac-
tion, as a sequence of mission phases, tasks, or macro-actions: for each mission
phase, the system needs to achieve navigation and information acquisition goals,
before proceeding with one of the possibly following phases. The order in which
the intermediate sub-goals or tasks must be achieved can be constrained or not.

These intermediate goals, or sub-goals, can be seen as pre-conditions of other
tasks as in classical deterministic planning domains. Yet each intermediate goal
must be achieved by minimizing risks and costs and thus by optimizing the naviga-
tion and the action strategy under uncertainty. Figure 3 shows a exploration-like
MDP. There clearly are three regions R1, R2, R3, each one associated with a sub-
goal, i.e. each region contains a reward: $1 = 2 in R1, $2 = 1 in R2 and $3 = 3 in
R3. Taken as a classical 4× 6 navigation grid MDP, the optimal strategy is: go to
the highest reward $3 = 3 in R3 as shown in Figure 3. Contrary to the navigation
grid MDP in Figure 3, our exploration planning problem contains a number of
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preliminary tasks, associated with rewards, each of which can be obtained once
in turn, no matter the order, before reaching the goals, and final rewards. To
model this, we need to introduce binary variables O1, O2 and O3 equal to 1 or 0
depending on whether the rewards $1, $2 and $3 have already been obtained or
not. Our exploration planning problem is thus factored, and difficult to represent
graphically. It still corresponds to the same navigation grid, but the size of the
state space is multiplied by 23, as it is exponential in the number of state variables.
The level of energy autonomy is another (possibly continuous) state variable A:
the size of the state space of our problem is multiplied by nA the number of pos-
sible values of variable A. Flight is thus limited by energy autonomy, and the
aircraft can Abort its mission, if it is running short of fuel, or if the goals are
reached. On the other hand, we have no transition costs: rotorcraft always have
to consume energy to fly (other models are possible, e.g. putting a higher cost on
hovering than on translation flight). Abort corresponds to a “return to base”, or
to a security or emergency landing of the aircraft.

Enumerating the possible states of such a factored MDP is possible with this
simplistic instance, but it seems a dull piece of work that not only duplicates
computing efforts but also annihilates the possible benefits that could be driven
from the structure of the problem.

This example points out how difficult it can be to model and solve more re-
alistic problems with the classical MDP model. In the next sections, we present
alternative models for probabilistic sequential decision problems that make it pos-
sible to take advantage of the state space structure. For instance, the state space
of the above exploration-like sequential decision problem derived from the MDP
in Figure 3 presents two interesting features: on the one hand, the state space is
naturally factored and on the other hand, the navigation-grid subspace (possible
positions of the agent) can be decomposed in three weakly coupled navigation re-
gions. This leads us to propose a new hybrid model, that would apply in problems
for which the state space can be decomposed into different state components that
each have a particular structure: e.g. here a topological structure for navigatio,
and a factored structure for the higher level mission description (like in the taxi
example in [14]).

3. Graph representations

3.1. Sparse matrices

In the classical MDP framework, the problem model (transition probabilities,
rewards) is stored in matrices or tables, so that the computational efficiency of
the algorithms depends on the type of matrices that are used. In general, the
data have no particular structure, which means that the distribution of non-zero
elements in the matrices presents no specificity.

There exist two different ways for storing these matrices, depending on the
density of the non-zero elements. When the model data has few zero elements
(dense) it is reasonable to use dense matrices, where each null term takes as much
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Figure 4. Graph-like MDP definition of the parking lot problem
depicted in Figure 1.

memory space as any non-null term. On the contrary, when the model data
comprises a significant number of zero elements, it more efficient to use sparse
matrices [15] where only non-zero elements are stored in memory.

In the MDP community, sparse matrices are known to be generally more effi-
cient. MDPs (e.g. navigation-grid MDPs) are often based on a graph where the
nodes are the states and the edges correspond to transitions with non-zero proba-
bility. MDP transition probabilities can be equivalently represented by graphs or
by sparse matrices [35]. For instance, the graph-like MDP definition of the classi-
cal parking lot problem (see [33] and Fig. 1) is depicted in Figure 4. Transitions
are labeled by the corresponding probabilities and rewards. In this problem, the
definition in the form of a graph is much more compact than the definition based
on dense matrices: 5N + 6 transitions are stored in the graph against 8(N + 1)2

transitions in the dense matrices (2 actions and 2(N + 1) states). The same prop-
erty holds for navigation grid MDPs (Fig. 3) since, from any initial position, there
are at most 8 possible transitions with non-zero probabilities.

For each sparse matrix, three arrays are necessary: the first array contains
the non-zero terms and the two others respectively, the rows and columns indices
corresponding to these non-zero terms. There exist direct [16] or iterative [35]
algorithms for linear algebra operations on sparse matrices. The computation time
required for a sparse matrix operation is generally proportional to the number
of arithmetic operations per non-zero term times the total number of non-zero
terms. It is rather proportional to the product of matrices dimensions for the same
operation on a dense matrix. When the MDP transition structure is dense, the
handling of the data structures specific to the sparse matrices may increase both
the memory space and the computing time spent for each operation, compared
with the case of the same operation performed on dense matrices.
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In other words, the complexity of linear algebra algorithms can theoretically
be worse with sparse matrices than with dense matrices when there are many
non-zero elements in the transition probabilities. Thus, the use of sparse matrices
should be limited to the case when the number of non-zero terms is significantly
smaller than the product of matrices dimensions.

As far as our exploration-like MDP models are concerned, some of their state
components are naturally factored. Factored MPDs are often more likely to
present dense transition probabilities matrices. For instance, the state spaces
of the “SysAdmin” factored MDP instances solved in [22] are generated by the
cartesian product of the possible values of a number m of boolean state variables
that can change their values simultaneously (and not independently) at each time
step. The matrix of transitions probabilities between these factored states can
clearly be dense in many instances.

3.2. Can sparse matrices be a bad choice?

Surprisingly enough, we have not found in the literature any comparative study
on the question of whether to use sparse matrices or not, depending on the MDP
transition probabilities structure. In order to assess the possible loss of efficiency
using sparse matrices on dense transition structures, we have performed two dif-
ferent kinds of tests. Our tests consist in comparing the computation time with
respectively dense and sparse matrices for an operation of multiplication.

In the first test, the percentage of non-zero terms is fixed, and the dimensions of
the matrices vary, which is representative of navigation-grid MDPs. A low density
of non-zero elements easily confirms the advantage of using sparse matrices in that
case, as shown in Figure 5a (on the left):

∀ 0 ≤ i < n ,

{
M1(i, 0) = M1(i, n− 1) = α
M2(0, i) = M2(n− 1, i) = α,

α �= 0.

Let ν1 and ν2 denote the respective density of non-zero terms of Mm n
1 and Mn l

2 ,
the computation time C of the operation of multiplication is as follows:

• for dense structures: time C ∼ mln2;
• for sparse structures: time C ∼ ν1ν2mln2.

In our test, the density of non-zero terms for each matrix is ν1 = ν2 = 2n
n2 = 2

n
and the matrices are square (m = l = n) so that the gain in computation time is:

n4 − 2
n

2
n

n4
= 1− 4

n2
·

In the second test, the matrices are of fixed size (10 000 elements) and the densities
in non-zero elements varies:

∀ 0 < ν ≤ 1 , M1(i, j) = M2(i, j) =
{

α if iν ∈ N and jν ∈ N

0 else, α �= 0.
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Figure 5. Multiplication on dense and sparse matrices: (a) with
a fixed low density of non-zero terms and (b) with a varying den-
sity of non-zero terms.

Figure 5 shows that using sparse matrices can become counterproductive when the
density of non-zero elements increases. Using sparse matrices is not necessarily a
good choice, especially when the density of non-zero elements is not known, and
most probably for factored MDPs .

A sparse graph-based representation of the MDP state space is worthwhile when
the number of non-zero probability transitions is negligible compared to |A| · |S|2.

3.3. Graph-like representation for navigation MDPs

The above property holds for navigation-grid MDPs since the density of non-
zero probability transitions is, in this case:

4× 8× lw

4× (lw)2
=

8
lw

,

where l and w are the dimensions of the grid.
Figure 6 shows a comparison of the computation time and the memory space

spent for the solution of MDPs of varying size with respectively dense and sparse
matrices. The gain in terms of memory is more significant than the gain in compu-
tation time but the solution of large realistic problems is more limited by memory
constraints more than by time constraints. On the other hand, both memory space
and time constraints are important for embedded applications.

As a preliminary conclusion, it is true that sparse representation can prove very
efficient, but they cannot be as efficient for all the state space components. We
therefore have to combine them with something else. Although a graph-based
representation of MDPs can be particularly well-adapted when the density of non-
zero probability transitions is small, some large size problems have lead to develop
new approaches, especially since the simple enumeration of the possible states in
the state space is not tractable in some realistic problems.
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Figure 6. Comparison of (a) the cpu time and (b) the memory
space spent for the solution of a MDP navigation problems based
on a square grid with various dimensions.

4. State space decomposition

The decomposition of MDPs consists in grouping the states of an entirely enu-
merated state space into weakly coupled regions (macro-states). This operation
can be performed automatically using e.g. graph decomposition techniques [36].
If the state space is built on the basis of a map given as a numerical terrain model,
then it can be partitioned with using computational geometric techniques. The
partition should minimize the number of transitions between different regions. For
each region, the states from which it is possible to reach another region are called as
exit states and those where it is possible to arrive from another region are entrance
states. Thus, the partition minimizes the transitions between exit and entrance
states. An abstract MDP is built, whose (macro-)states are the regions stemming
from the decomposition, whose (macro-)actions are local policies defined in each
region and whose (macro-)transitions are computed from these local policies.

Generally speaking, the MDP decomposition makes it possible to optimize the
global solution on the basis of local solutions obtained for smaller size weakly cou-
pled sub-problems. This is proved to be more efficient on large size problems that
can be splitted into such weakly coupled sub-regions, but not an all problems.
The state space decomposition globally adds to the complexity of the dynamic
programming solution algorithms. As a result, classical iteration algorithms that
work on enumerated states can still be quicker in the end on some counter-example
highly coupled problems. Factored MDPs are more likely to present a more im-
portant coupling.

As far as the on-line behavior of the approach is concerned, a change of the envi-
ronment model in one local region can easily be dealt with locally in a
decomposition-based approach, whereas it requires to start again with a complete
re-optimization of the global policy for the whole model with classical algorithms.

Our MDPs decomposition framework takes advantages from two different state
space decomposition models from [24] and [12]. We have tested two different
algorithms [24, 31] to generate local policies whose results are next compared.
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4.1. Decomposing the state space into regions

The decomposition of a MDP is based on a partition of its state space into non
empty, distinct and complementary regions.

Definition 4.1 (state space decomposition in regions). A decomposition Π in
regions of a MDP 〈S, A, T, R〉 is a partitioning of the state space such that Π is
the set of regions:

∃ n ∈ N , Π = (R1, . . . , Rn) with

⎧⎨
⎩

S =
n⋃

i=1

Ri

∀ i �= j , Ri

⋂
Rj = ∅.

For each region R = Ri, we can identify the entrance and exit states of the
region that play an important role in the different models and algorithms of MDP
decomposition.

Definition 4.2 (peripheral states of a region R = Ri). Let Ri be a specific region
of a decomposition of a MDP 〈S, A, T, R〉. The periphery Per(Ri) of the region
Ri is the union of the entrance periphery EPer(Ri) and exit periphery XPer(Ri):

• EPer(Ri) = {s ∈ Ri / ∃ s′ ∈ S −Ri , ∃ a ∈ A , T (s′, a, s) �= 0};
• XPer(Ri) = {s ∈ S −Ri / ∃ s′ ∈ Ri , ∃ a ∈ A , T (s′, a, s) �= 0};
• Per(Ri) = EPer(Ri)

⋃
XPer(Ri).

Since these regions form a partition of the state space, the entrance periphery of
a region matches the exit periphery of other regions and vice versa. The set of
entrance peripheral states and the set of exit peripheral states are identical and
only depend on the partitioning of the state space.

⋃
i

EPer(Ri) =
⋃
i

XPer(Ri).

4.2. Abstract MDP

Macro-states of a new abstract MDP are then defined that can either be defined
as the peripheral states of each region [24], that is to say

⋃
R∈Π Per(R), or be

defined as aggregate states, grouping together the states of each region [12] as
shown in Figure 7.

We do not use the first model (whose computed policies may be sub-optimal)
mainly because it does not account for local behaviors consisting in staying in a
region so as to collect an inner positive reward before leaving: an absorbing state
per region is required to account for such behaviors. From that point of view, our
decomposition algorithm is based on the techniques proposed in [24], but some of
its principles, borrowed from [12] and [31], remain closer to classical MDP solution
algorithms.

Let us suppose that we have obtained a number of local policies for each region.
These local policies correspond to stochastic transitions between the aggregate
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initial MDP

decomposition
OR

abstract MDP

Figure 7. A 4 regions MDP decomposed and “abstracted” in
two different ways.

states (regions) of the abstract MDP and can therefore be identified to macro-
actions in this abstract MDP.

Definition 4.3 (abstract MDP [12]). Let Π be a decomposition of a MDP 〈S, A,
T, R〉 and

⋃
R∈Π

{
πR

1 , . . . , πR
mR

}
some local policies generated for each region of

the decomposition. The abstract MDP 〈S′, A′, T ′, R′〉 is defined by:

• S′ =
⋃

R∈Π

{R};

• A′ =
⋃

R∈Π

{
πR

1 , . . . , πR
mR

}
;

• ∀R,R′ ∈ S′, ∀πR
j ∈ A′, T ′(R, πR

j ,R′) and R′(R, πR
j ,R′) depend on the

discounted macro-transition model.

Building the abstract MDP also requires, for each region R and each local policy
πR

j the calculation of the macro-probabilities T ′(R, πR
j ,R′) and the macro-rewards

R′(R, πR
j ,R′). Our discounted macro-transition model is inspired from [12] for

the macro-probability model and from [24] for the macro-reward model. Both are
described next.

4.3. Discounted macro-transition model

The macro-probabilities of transition are the limit of the probabilities of moving
(after an infinite number of time periods) from somewhere in a region R to the
entrance states of a region R′. These macro-probabilities are computed for each



212 F. TEICHTEIL-KÖNIGSBUCH AND P. FABIANI

starting region while supposing that the possible starting states in this region all
have the same a priori probability of occurrence as a result of past actions.

• T ′(R, πR
j ,R′) =

1
|R|

∑
s′∈Xper(R)∩R′

∑
s∈R

T (s, πR
j , s′);

• R′(R, πR
j ,R′) =

1
|R|

∑
s′∈Xper(R)∩R′

∑
s∈R

T (s, πR
j , s′) ·R(s, πR

j , s′).

T ′(s, πR
j , s′) and R′(s, πR

j , s′) can be iteratively computed using Gauss-Seidel value
iteration algorithmic steps [33] since they are solutions of equations that are very
similar to Bellman’s optimality equations:

• T (s, πR
j , s′) =

∑
s′′∈R∪Xper(R)

T (s, πR
j (s), s′′) · As′′,πR

j ,s′

with As′′,πR
j ,s′ =

⎧⎨
⎩

T (s′′, πR
j , s′) if s′′ ∈ R

0 if s′′ ∈ Xper(R)− {s′}
1 if s′′ = s′;

• R(s, πR
j , s′) =

∑
s′′∈R∪{s′}

T (s′′,πR
j ,s′) �=0

T (s, πR
j (s), s′′) · Bs,s′′,πR

j ,s′

with Bs,s′′,πR
j ,s′ =

{
R(s, πR

j (s), s′′) + βR(s′′, πR
j , s′) if s′′ ∈ R

R(s, πR
j (s), s′) if not.

4.4. Generating local policies with local MDPs

Local policies can be generated at least in two different ways according to the
advantage that we want to draw from the MDP decomposition.

On the one hand, the decomposition could aim at reducing the complexity for
globally solving MDPs with large state spaces. In this case, the computation of
a set of local behaviors is not a goal in itself. Each local optimal policy in each
region can be optimized:

• either through local iterations interleaved with the global iterations on the
abstract MDP [12];
• or by locally solving the initial MDP for a set of possible peripheral values

before using these solutions to obtain the solution of the global abstract
MDP [24].

On the other hand, it could be interesting to deliberately generate a large set
of local policies for each region so as to constitute a database of macro-actions,
i.e. local behaviors corresponding to possible actions at the level of the result-
ing abstract MDP. Such a set of local behaviors can be computed in order to be
later used within an extended abstract MDP model, whose state space would for
instance include different other state variables in addition to the regions of the de-
composition. In that case, the optimality of the global solution should obviously
be examined carefully. According to [24], local policies can be computed by solv-
ing local MDPs that are parameterized by the peripheral values (λ(s))s∈Xper(R)

on peripheral states, whose combination affect the optimal local policy (Fig. 8).
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s

Figure 8. Local MDP of a region R.

Each combination of peripheral values, taken on a set of possible exit states, cor-
responds to a local policy that forces the agent to leave the region via the very
same combination of exit states.

Definition 4.4 (Local MDP). Let R be a region in a decomposition Π of a
MDP 〈S, A, T, R〉. The local MDP 〈S′, A′, T ′, R′〉(λ(s))s∈Xper(R) of the region R is
defined by:

• S′ = R∪Xper(R) ∪ {α}, where α is an absorbing state;
• A′ = A;

• T (s, a, s′) =
{

T (s, a, s′) if (s, s′) ∈ R× (R∪Xper(R))
1 if (s, s′) ∈ (Xper(R) ∪ {α})× {α};

• R(s, a, s′) =

⎧⎨
⎩

R(s, a, s′) if (s, s′) ∈ R× (R∪Xper(R))
λ(s) if (s, s′) ∈ Xper(R)× {α}
0 if (s, s′) ∈ {α}2.

For each region, it is possible to generate a limited set of local policies correspond-
ing to chosen behaviors, such as “leaving the region” via some chosen exit states:
this can be obtained by solving the local MDP for a combination of attractive pe-
ripheral values on the corresponding exit states. For instance, it could be sufficient
to generate as many local policies as they are ways of leaving the region, that is to
say:

∑
R∈Π 2|R| local policies. This gives no guaranty that such local policies can

participate in any globally optimal policy, because the peripheral values that are
chosen in order to obtain these local behaviors may not correspond to any optimal
global value function at all.

According to the following theorem, in order to generate the local optimal
policy for each region, it is necessary to generate a set of local policies using a
set of peripheral values that must be exhaustive in the sense that at least one
local policy per region will match the optimal policy in this region. However,
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considerations on the computational cost will rather lead to minimize the size of
the set of peripheral values.

Theorem 4.5 [24]. Let Π be a decomposition of a MDP 〈S, A, T, R〉 and let V be
the optimal value function of this MDP. Let A′ =

⋃
R∈Π

{
πR

1 , . . . , πR
mR

}
be a set of

macro-actions generated by the solution of the local MDPs for some combinations
of peripheral values, some of these verifying |λ(s) − V (s)| ≤ ε for each region R
and for all s ∈ Per(R). If V ′ is the optimal value function of the abstract MDP
induced by Π using macro-actions set A′, then:

|V ′(s)− V (s)| ≤ 2εβ

1− β
·

Since we do not know the optimal value function of the global MDP for the pe-
ripheral states of the regions but only its bounds, we must generate an exhaustive
range of peripheral values within the lower and upper bounds given by:

V ∗
min =

min
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′) · R(s, a, s′)

1 − β
and V ∗

max =

max
s∈S

max
a∈A

∑
s′∈S

T (s, a, s′) · R(s, a, s′)

1 − β
·

Two different methods have been compared for the generation of such a “sufficient”
or “optimal” range of peripheral values, i.e. such that at least one peripheral value
corresponds to the global optimal value function on the corresponding peripheral
states of the region at stake.

4.5. Comparison of two methods for generating macro-actions

4.5.1. Coverage technique (CT) [24]

CT consists in generating a mesh of peripheral values covering [V ∗
min, V ∗

max]
with a sampling step δ that is small enough so that there exist at least one pe-
ripheral value in the mesh, and therefore a corresponding local policy, which ap-
proximates the optimal policy value on that peripheral state with an error smaller
than δ

2 . This method is rather inefficient because it requires to generate at least∏
s∈Xper(R)

V ∗
max(s)−V ∗

min(s)
δ grid points and to solve as many local MDPs for this

region. Many generated local policies are redundant because many different poli-
cies can be obtained for a same value. Redundant policies that have been unnec-
essarily computed need to be eliminated.

As a consequence, it would be preferable to generate only one policy per com-
bination of values on the exit states. This is precisely what linear programming
optimization algorithms can achieve while furthermore eliminating the dominated
policies: these methods are inspired by the solution algorithms developped for
Partially Observable MDPs [10, 30].
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Figure 9. Value of the dominating policy at an internal state of
a region with 2 exit states.

4.5.2. Linear programming (LP) [31]

LP is based on the following theorem that is illustrated in Figure 9:

Theorem 4.6 [31]. The value of internal states for a given policy and a given
region is a linear function of the exit states of the region. It follows that the
dominating policies at any state form a piecewise-linear convex function of the
peripheral values.

For a given policy π, the optimal linear value V π
s

(
λ1, . . . , λ|XPer(R)|

)
for each

inner state of a region R is a solution of the following linear system:

V π
s

(
λ1, . . . , λ|XPer(R)|

)
= Kπ

s +

|XPer(R)|∑
i=1

aπ
s iλi with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kπ
s = V π

s (0, . . . , 0)
aπ

s 1 = V π
s (1, 0, . . . , 0) − Kπ

s

.

..
aπ

s |XPer(R)| = V π
s (0, . . . , 0, 1)−Kπ

s .

This system is not solved for each state s but for each distribution of values
{(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. Since applying a number of value it-
eration steps on the local MDP with a chosen policy π is an efficient way of
computing the corresponding value on every state, the calculation of the linear
value function V π

s

(
λ1, . . . , λ|XPer(R)|

)
only requires to run the value iteration al-

gorithm a number |XPer(R)|+ 1 of times. Once the value function is computed,
it is possible to compute the necessary and sufficient number of local policies, so
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Table 1. Comparison of local policies generation in seconds be-
tween CT and LP for β = 0.7 while decomposing the 4-regions
MDP of the Figure 7.

Number of states Decomposition Generated policies
per region time R1 R2 R3 R4

CT 9 19.88 4 15 9 12
LP 0.23 5 5 5 5
CT 25 58.89 24 15 14 15
LP 2.9 17 5 5 5
CT 49 92.78 63 38 32 30
LP 17.72 30 5 5 5

that at least one of these local policies matches the global optimal policy on the
considered sub-region. From an initial optimal policy for the peripheral values
Λ0 = (V ∗

min, . . . , V ∗
min), a cache of policies Π = (π1, . . . , πq) and a cache of linear

value functions
(
(V π1

s )s∈Si
, . . . ,

(
V

πq
s

)
s∈Si

)
are built, that both grow as long as

there can be found at least one distribution of peripheral values for which there
is no optimal policy in the cache. This amounts to finding, for each policy of the
cache, that is to say for each linear component of the value function, a point in
the Λ space where the policy can be improved.

The new linear components of the value function are solutions of the following
linear problem, for each state s of the region R, for each state t of the entrance
periphery EPer(R), for each action a and for each policy π of the current cache Π:

Maximize:
∑

s′∈Si

T (s, a, s′) · (
R(s, a, s′) + βV π

s′
(
λ1, . . . , λ|XP er(R)|

)) − V π
s

(
λ1, . . . , λ|XP er(R)|

)

Subject to: ∀ π′ ∈ Π , V π′
t

(
λ1, . . . , λ|XP er(R)|

) ≤ V π
t

(
λ1, . . . , λ|XP er(R)|

)
∀ 1 ≤ i ≤ |XPer(R)| , λi ≤ V ∗

max.

A new linear component is generated from the point (λi)1≤i≤|XPer(R)| as long as
the maximum Bellman error over all states of the region, all actions and all policies
is not equal to zero (with a small ε margin).

4.5.3. Comparative test

Since the author in [31] does not provide any numerical results, we have com-
pared these two methods on the very classical problem of Figure 7, as shown in
Table 1. The LP method appears to be the most efficient one from many view-
points. Firstly, the complexity of LP is polynomial in the number of exit states
whereas that of CT is exponential. Secondly, CT generates a number of useless
dominated policies, contrary to LP whose policies are all non-dominated. Thirdly,
more than 99% of the policies generated by CT are superfluous and must be elim-
inated because they correspond to equivalent peripheral values. Eventually, CT
sometimes generates fewer policies than LP because some optimal policies for some
peripheral values on exit states lie exactly between two points of the mesh. For
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Figure 10. Worst Bellman error for the decomposition of the
MDP depicted in Figure 7 with the linear programming method
but with twice more gates between the regions.

these reasons, we decided to implement the LP technique in our planner in order
to exploit the decomposition of the navigation-grid state space into sub-regions
and in order to compute the corresponding navigation macro-actions.

When the number of gates between the regions is doubled on the instance
shown in Figure 7, and if the optimality requirements are lowered down to accept,
for instance 0.2-optimal policies instead of 0.01-optimal ones (Fig. 10), then CT
decomposes the MDP in more than 4 h, compared to a few seconds with LP.

5. State space factorization

In this section, we give an introduction to factored MDPs, but the reader can
refer to [9] for a more complete overview.

In factored MDPs, the state space is defined as the cartesian product of the
possible values of a number of state variables. For each action, the probability of
transition into a given state is no longer given as a function of the initial state
but now depends conditionally on the different state variables. Therefore, state
transitions can be represented either as Dynamic Bayesian Networks [11] or with
probabilistic Strips operators [13]. The iteration scheme on which are based the
solution algorithms for factored MDPs, is called Decision-Theoretic Regression.
It consists in avoiding the explicit enumeration of all states at each iteration, by
manipulating implicitly sets of states.

5.1. Dynamic Bayesian Networks (DBNs)

A factored MDP can be represented by a set of action networks represented as
DBNs, as shown in the left part of Figure 14. These networks describe the effects
of actions through conditional dependencies between the state variables before and
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after the actions have been performed. They include diachronic arcs, directed from
pre-action variables to post-action variables. They may also include synchronic
arcs standing for the dependences between post-action variables only. Given a
factored state space S = ⊗n

i=1xi and an action a, the probability of reaching a
state st+1 from a state st = ∧n

i=1x
t
i is:

T (st, a, st+1) =
n∏

i=1

P
(
xt+1

i |a, xt
i ∧

(
∧j �=i

(
xt

j ∧ xt+1
j

)))
.

Synchronic seriously complicate the solution algorithms, but they are required in
most realistic applications, for instance in our model of stochastic exploration-like
problem as we will see in Section 5. Algorithms are proposed in [6] to solve factored
MDPs whose action networks contains synchronic arcs.

5.2. Decision trees

In DBNs, the transition probabilities are represented by Conditional Probabil-
ity Tables, i.e. large matrices, one for each post-action variables. However, these
tables are sparse in most problems. [9] propose to represent the conditional prob-
abilities as probability “decision trees” that are particularly compact because each
leaf does not necessarily correspond to a single state. For each post-action variable
state, each leaf of its probability tree stores a list containing the probabilities to
obtain each possible value xt+1

i of this variable, knowing the values of the other
variables xt

i, xt
j xt+1

j , which correspond to the path xt
i ∧

(
∧j �=i

(
xt

j ∧ xt+1
j

))
from

the root of the tree to the considered leaf (see Fig. 16). In the same way, the tran-
sition rewards are stored in decision trees as shown in Figure 15. These trees are
often very compact, consisting most of the time in, on the one hand a single value
for a particular set of variables, which depicts some special conditional effect of
the action network, and on the other hand a constant value for the other variables.
Like probability trees, the nodes of reward trees can be post-action variables that
can be removed and replaced by pre-action variables with the same techniques
proposed in [6] for uncorrelated probability trees.

5.3. Operations on decision trees

Both the value function and the policy are represented as decision trees to take
advantage of such a compact description of the state space all along the different
iteration steps of the optimization process. The handling of all these decision trees
at each iteration is based on two basic operations (Fig. 11):

• the merging of two trees: successively adding a tree to all the leaves of the
current growing tree while labeling the new leaves with both the labels of
the previous tree leaves and those of the leaves of the added tree;
• the simplification of a tree: removing redundant interior nodes in a tree

and fusing nodes whose subtrees are identical.
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Figure 11. Merging of two probability tree and simplification of
the resulted tree.

A systematic “simplification while merging” process enables to limit the memory
space spent to store the trees and insures a quicker parsing of the trees. In par-
ticular, we are sure that the depth of the value function and policy trees does not
exceed the number of state variables.

The first stage of the solution is the value tree regression: i.e. the building,
for each action network, of a regressed probability tree. In order to propagate
Bellman’s equations, this stage is performed by first merging, for the considered
action network, the probability trees of the state variables involved in the previous
value tree, in order to compute the probabilities of reaching, with this action, all
the states having a same value (same leaf) in the previous value tree. This stage
is depicted in Figure 12.

The second stage depends on the chosen solution algorithm. In the value it-
eration algorithm, the new value tree is obtained by merging the regressed value
trees with the previous value tree and the reward trees for all the actions, so as
to keep the maximum value at each leaf of the new tree. After the last iteration,
the policy tree is built by replacing the maximum value of each leaf by the action
corresponding to this value. In the policy iteration algorithm, the new value tree
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Figure 12. Building of the value tree of an action network know-
ing the value tree at the next time of the process, the reward tree
and the probability trees of Figure 11 for this action.

is built by merging at each leaf of the current policy tree, the regressed value tree
of the action network which corresponds to the action that labels this leaf. A full
description of these algorithms with many examples is presented in [6, 9].

5.4. Reachability analysis

On nice feature of factored MDPs, is that they allow to combine MDP solution
algorithms with techniques recently used in the field of symbolic Artificial Intel-
ligence Planning, based on reachability analysis or heuristic search. If we know
the initial state of the agent, we can dismiss the combinations of values of the
state variables that correspond to states that will not be reached. For instance,
the algorithm ReachableK proposed in [7] enables to remove the nodes of states
that are not reachable in K iterations.

Moreover, the solution algorithms require a systematic variable replacement
operation in order to keep only pre-action variables at each decision tree nodes. If
this was to be performed online, it would occur each time a post-action variable is
encountered in the trees. In most cases, it saves time to do it once and for all at
the creation of the MDP, even if some decision tree are uselessly processed. Action
networks are thus initialized by examining all the decision trees, except the reward
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trees, and by replacing all post-action variables by the corresponding pre-action
variables.

5.5. State variables with large range of values

State variables with large range of values considerably slows down the solution
algorithms because the trees to be parsed have a very large width. Particularly for
exploration problems, we can not define the robot’s position as a single variable
whose range is the number of atomic navigation states. Even if the position is
factorized in the three classical space variables, the range of these variables is very
rapidly not tractable.

Therefore, we propose in the next section to aggregate states that present a
large range of possible values and cannot be efficiently factored, like navigation
sub-states, into fewer macro-states, which will become the possible values of one
state variable named region, by applying the state space decomposition techniques
presented above [12, 24].

6. A hybrid model of structured MDP

In this section, we propose a hybrid model of MDPs that takes advantage of
both the MDP factorization and the MDP decomposition, contrary to [27] where
a partition is used to solve a factored MDP. Our proposal shares some similarities
with what is proposed in [14]. The MAXQ approach also leads to a factored MDP
resulting from a decomposition of the problem consisting in a MAXQ hierarchical
abstraction graph designed by hand. Our approach rather proposes to automati-
cally generate the factored MDP, on the basis of a first topological decomposition
of the navigation sub-space, that can also be automated [36]. A state variable R
can stand for the navigation state variable corresponding to the occupied region
in the factored MDP.

Therefore, our planner includes and optimizes the solution at two hierarchical
levels: a local, lower abstraction, navigation solution level and a higher abstraction
factored solution level.

Although we illustrate our hybrid model on the little example of Figure 3, the
following methods and algorithms can of course be applied to any factored MDPs
for which some state variables have a big range of possible values and sparse
transition probabilities.

6.1. Local MDPs and abstract factored MDP

A preprocessor initially decomposes the subspace of navigation states with the
LP technique so that we obtain the abstract MDP represented in Figure 13. A
factored MDP is then built, whose atomic actions are the local policies stemming
from the decomposition. The regions are the values of a same state variable R
whose range is 3 in our example. We can add other state variables describing
the problem to solve, like the binary variables O1, O2 and O3 standing for the
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Figure 13. Example of abstract MDP decomposed from the
MDP of Figure 3. The thick strokes correspond to wished transi-
tions.

agent’s sub-goals status (achieved or not) or the agent energy autonomy level A.
Note that our planner assumes that state variables are not continuous so that we
suppose that the energy autonomy is a binary variable too: which correspond to
a test function returning “1= enough autonomy” or “0= insufficient autonomy”.
Furthemore, the transition model from “1” to “0” is not history-dependent. This
is certainly not sufficient as a model of “energy autonomy level” but we can use
different models in future work. Moreover, we intend to study the extension of
our model to continuous variables.

6.2. Transitions model of the abstract MDP

In our approach, all the decision trees of the factored abstract MDP are auto-
matically built (see Fig. 14). These decision trees are the DBNs representing all
the local policies generated as the macro-actions of the obtained factored abstract
MDP. Even the partition of the navigation-space can be automated in the future.

The probability tree of the state variable R comes directly from the macro-
transitions of the decomposed MDP that provides the macro-probabilities and
macro-rewards of the transitions between the regions. Dependences toward other
variables can be added to the variable R depending on the problem to solve. For
instance, our exploration problem requires that the probability to reach some given
region from a another given region depends on the energy autonomy level of the
agent, as shown in Figure 16.

It is assumed that the agent only has a chance to achieve a goal, if and only if it
is already located in the region that contains the goal position, if the goal has not
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been already achieved and if the agent has a sufficient energy autonomy level to
do so. As a consequence, for each action network corresponding to a local policy
applicable in region R, the probability tree of each “goal” state variable outside R
is like a NO-OP operator (no value change for the “goal” variable). A non-trivial
probability tree defines the transition probabilities for the variables corresponding
to the goals in the region R. The transition is possible provided that the goal has
not been achieved yet and that the autonomy level is sufficient to achieve it (see
Figs. 15 and 16).

The probability trees involving the energy autonomy level variable, as depicted
on the right in Figure 16 for instance, are parameterized by a function of the
achieved macro-transition f(R, R′, π): the energy consumption depends on the
region transition and on the applied local policies.

The macro-rewards of the decomposed navigation MDP are in the leaves of the
reward tree corresponding to the macro-actions. In Figure 15, the reward tree
corresponds to a macro-action applicable in region R1 and the tree shows that the
agent receives a macro-reward either when the goal O1 is achieved or when the
region R2 is reached.

6.3. Global solution scheme

The solution algorithm of our hybrid model of MDP is presented in Figure 17.
Our decomposition technique is used in a preprocessing phase. It creates a number
of macro-states using a partition of the sub-space of states that correspond to
the state variables with relatively large ranges of values (navigation states). The
decomposition also generates the corresponding macro-actions, that is to say the
local policies, defined in each macro-state. Then, the solver builds the factored
MDP with the macro-states as values of a single “region” state variable and with
the macro-actions as atomic actions. The solution of the hybrid MDP is global
policy pointing, depending on the region, towards a set of local policies indicating
the microscopic behavior of the agent inside the regions.

6.4. Solution algorithms for the factored MDP

The solution algorithms corresponding to factored MDPs, named Decision-
Theoretic Regression, consist in avoiding the explicit enumeration of all states at
each iteration. They apply factored versions of the Dynamic Programming scheme,
either on decision trees or on ADDs, like SPUDD [25]. There are some techni-
calities though: in DBNs, diachronic arcs are directed from pre-action variables
to post-action variables, and synchronic arcs stand for the dependences between
post-action variables at the same time point, as in our instance represented in Fig-
ure 14. Synchronic arcs make the algorithm, still feasible [6] but more complicate.
The most efficient solution to take synchronic correlations into account remains
to compute a total action diagram for each action network as proposed in [26], so
that all correlations between pre- or post-action variables are implicitly computed.
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Figure 17. Global solution scheme.

We first tested a modified policy iteration algorithm for solving factored MDP,
which simply was an adaptation of the classical policy iteration algorithm to de-
cision trees. In particular, the solution of our simple instance shown in Figure 16
was obtained with this modified policy iteration algorithm. Most of the basic op-
erations on decision trees have been described in Section 5. Decision tree based
algorithms do in fact loose a lot of cpu time in the treatment of correlations,
especially when the size of the problem grows.

We eventually found it more efficient to adopt ADDs and binary variable en-
codings in our problem [39], e.g. with a region variable R splitted into as many
boolean variables as needed. Again, for readability reasons, we did not make it ap-
pear as a boolean variable in the ADD instance in Figure 19, just as we present the
decision tree versions of our probability and reward ADDs in Figures 16 and 15.
In ADD based algorithms, both the value function and the policy are represented
as ADDs as in the example presented in Figure 19, which correspond to an ADD
strictly equivalent to the decision tree shown in Figure 18.

The first stage of a dynamic programming iteration is the value ADD regression:
for each action network, the probability of reaching each leaf of the current value
ADD has to be computed. Then, for the value iteration algorithm, the new value
ADD is obtained by comparing for all the actions, the regressed value ADDs
merged with both the previous value ADD and the corresponding reward ADDs.
The maximum value at each leaf of the new ADD is kept. After the last iteration,
the policy ADD is built by replacing the maximum value of each leaf by the action
corresponding to this value. For the policy iteration algorithm, the new value
ADD is built by merging at each leaf of the current policy ADD the regressed
value ADD of the action network corresponding to the action that labels this leaf.
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Figure 18. Optimal policy tree of the simple abstract factored MDP.

A full description of the equivalent algorithms based on decision trees is pre-
sented with many examples in [6, 9, 26]. More technicalities can also be found in
[39].

The global solution algorithm of our hybrid model of MDP is the one presented
in Figure 17. The factored MDP solution was first performed using SPUDD/VI
for value iteration. We implemented a symbolic policy iteration algorithm using
ADDs of our own: SPUDD/PI. We have tested our method with the example of
Figure 3 for which we have just presented the hybrid model of MDP. This algorithm
was applied to our instance of exploration-like MDP. The factored MDP was built
and solved using our modified policy iteration algorithm using ADDs. The optimal
policy tree is depicted in Figure 19 (see Tab. 2 for the optimal macro-actions stored
in the leafs of the optimal policy tree for region R1).

7. Our simple instance solved

We first tested our approach with the example of Figure 3 for which we have
presented in details the hybrid model of MDP using decision trees. We have used
an infinite horizon discounted criterion with β = 0.9. For simplicity, we assumed
in this instance that the consumption of energy is constant, and thus independent
of the regions and of the followed local policies, which is not very realistic. The
function f giving the probability of “loosing the minimal energy autonomy level”
at the leaves of the right tree in Figure 16 is chosen to be f(Ri, Rj , π) = [ 0.65 0.35 ]
for all i,j and π: it only accounts for the fact that after some flight time, chances
are that the aircraft will run out of petrol.

The navigation MDP was decomposed with the linear programming decomposi-
tion technique and produced 7, 6 and 2 local policies respectively in regions R1, R2

and R3. The computed macro-transitions for each generated local policy are shown
in Table 2. Although we do not specify the micro-actions of local policies, whose
three of them are depicted in Figure 3, the probabilities of the macro-transitions
give a good idea of the local behaviors.

The factored MDP was solved after 28 iterations using the modified policy
iteration algorithm based on decision trees. The optimal policy tree is depicted in
Figure 18 with its equivalent ADD shown in Figure 19. Refer to Table 2 for an
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Table 2. Local policies and corresponding macro-transitions
stemming from the decomposition of the navigation subspace.

Origin region Local policies End region Probability Value
R1 π1

1 R1 1 17.6327
π1

2 R1 0.111317 2.21295
R2 0.888683 0

π1
3 R1 0.211306 4.00467

R2 0.788694 0
π1

4 R1 0.433556 8.18566
R2 0.566444 0

π1
5 R1 0.666778 11.5589

R2 0.333222 0
π1

6 R1 0.988889 17.1386
R2 0.0111111 0

π1
7 R1 0.446756 8.21195

R2 0.553244 0
R2 π2

1 R2 1 8.77549
π2

2 R1 1 0
π2

3 R3 1 0
π2

4 R1 0.977632 0
R3 0.0222222 0

π2
5 R1 0.0111111 0

R2 0.0135267 0
R3 0.975362 0

π2
6 R2 0.988889 8.52971

R3 0.0111111 0
R3 π3

1 R2 0.0333333 0
R3 0.966667 24.0827

π3
2 R2 0.5 0

R3 0.5 14.4589

overview of the optimal macro-actions stored in the leaves of the optimal policy
tree.

Note the action Abort, whose network only contains no-ops trees and is added at
the end of the action networks list, so that it is chosen by the solution algorithm
when no action can be achieved instead. Abort logically labels the tree leaves
corresponding to the states where there is not a sufficient energy autonomy level
for the agent to pursue its mission (security crash for an aircraft) or those states
where all goals have been reached and the mission is ended.

The compactness of the solution is noticeable since, on the one hand only 31 sets
of states, or tree branches, are enumerated in the solution diagram over a total of
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Figure 19. Optimal policy ADD of the simple abstract factored MDP.

6×4×24 = 384 possible states, and on the other hand only 8 leaves appear in the
optimal policy ADD (see Fig. 19), which makes it easier to interpret. This policy
(except for Abort) corresponds to the thick transitions arrows in Figure 13.

8. Efficient solution algorithms for factored MDPs

In this last section, we only give a sketch view on the scalability and efficiency
of our hybrid approach combining factorization and decomposition techniques, in
order to tackle larger size MDPs. We cannot describe in more details our on-going
research on efficient solution algorithms for factored MDPs: the results obtained
so far can be found in [18, 39, 40].

The general algorithm presented in Figure 17 has been developped into various
versions that only differs in the solution stage: “Solve Factored MDP”.

8.1. Symbolic Heuristic dynamic programming

All the algorithms developped and compared in the following preliminary re-
sults, follow the general “Symbolic Heuristic Dynamic Programming” scheme pre-
sented in Algorithm 8.1.

We assume in the following the case where a (set of) initial state(s) I and a
(set of) goal state(s) G are given prior to the solution. If no initial set of states
is given, then the reachability stage does not reduce the size of the state space,
but the rest of the scheme still applies. An initial state is generally given in our
stochastic exploration planning problems. Besides, it is noticeable that the use
of ADDs naturally makes no difference between a unique initial or goal state, or
a set of initial or goal states, since ADDs represent states as sets of states. As
proposed in [7], we apply an initial reachability analysis that allows us to provide
our dynamic programming iterative algorithm with an initial policy or an initial
value and an initial sub-state space. Contrary to the function ReachableK used
in [7], we propose to make full use of the information available.
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We call Reachable(I, ΠA, Stop) a function that takes as inputs the sets of initial
and goal states I and G, uses the set of applicable actions ΠA ⊂ A (ΠA can be
a policy or A itself) and computes the set R0 of all the states that are reachable
from I with successive applications of deterministic actions in A in an iterative
loop that stops as soon as the Stop condition is reached: e.g. Stop can be G ⊂ R0

or 1 step lookahead. The actions are made deterministic by setting the maximum
transition probability to 1 and the other one to 0, which enables us to convert the
ADDs into BDDs (Binary Decision Diagrams) that are more efficient [34].

We call ShortestStochasticPath(R0 → G) a function that takes R0 and G as
inputs and computes a shortest stochastic path from each state in R0, using the
stochastic actions in A without considering their rewards. Better simplification
schemes should certainly be studied, but this heuristic function seems to be efficient
in many problems, such as in navigation grid MDPs in [23] and in [4].

We call FilterStates(R0, P (s) < ε · P (I)) a filtering function that filters the
states that have a very low reachability in terms of probability when the non-
deterministic actions are applied along the shortest path trajectories. Low prob-
ability of reachability is assessed compared to the probability of the initial states.
All three functions, included in the scheme shown in Algorithm 8.1, constitute
our common algorithmic basis for testing and comparing different heuristic dy-
namic programming schemes, with value iteration or more originally with policy
iteration.

Algorithm 8.1 (Solve Factored MDP with Symbolic Heuristic Dynamic Program-
ming Iteration).

Init
R0 ← Reachable(I,A, G)
Π0 ← ShortestStochasticPath(R0 → G)
S0 ← FilterStates(R0, P (s) < ε · P (I))

=⇒ (Π0, V0, S0)

k ← 0
repeat

Sk+1 ← Reachable(I, Sk, Πk, G)
DynamicProgramming(Πk, Vk, Sk+1)
k ← k + 1

until convergence over Sk

Six factored MDP solution algorithms using ADDs and inspired from SPUDD,
sRTDP and sLAO were implemented for the Solve Factored MDP stage, to which
we gave the following numbers: 1.SPUDD/VI – 2.SPUDD/PI – 3.sLAO/VI
– 4.sLAO/PI – 5.sRTDP/VI – 6.sRTDP/PI.

8.2. Experimentations

We run all the algorithms on exploration-like MDP instances of different sizes:
see Figures 20a and b. The “Concentric problem” shown in Figures 20a has
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(a) (b)

Figure 20. Concentric problems (a) and Linear problems (b).

17 goals, 1 binary energy autonomy variable, a 45 × 45 navigation-grid, a total
number of 530 841 600 enumerated states and leads to solve an abstract MDP with
23 variables and 17 local MDPs. The “Linear problem” shown in Figures 20b has
30 goals, 1 binary energy autonomy variable, a 8 × 30 navigation-grid, a total
number of 515 396 075 520 enumerated states and leads to solve an abstract MDP
with 36 state variables and 30 local MDPs. We first performed the comparison
between the factored MDP and enumerated MDP approaches whose results are in
Figure 21, which shows that state space modeling is really a crucial issue. Columns
are for problems type (either “linear” or “concentric”), state space size, number
rg. of regions, model of the MDP (F for factored MDP and E for enumerated
MDP), time B. for building the MDP, time D. for decomposition, number πr of
macro-actions (local policies computed), total solution time T. The time required
for the building of the state transition data structures for the enumerated MDP
illustrates handicap of the enumerated approach. Problems of larger size could not
be solved in comparable time: this is why they do not appear in the table. The
complexity burden is apparently higher for “concentric problems” than for “linear
problems” (compare the complexity step between the “linear problems” and the
“concentric problems”).

Figure 22 presents the comparison between the six factored algorithms pre-
sented above, with the cpu time given in seconds. The respective columns stand
for problems state space sizes, the number rg. of regions, the number πr of local
policies computed, the algorithm number A. ∈ {1, 6}, the cpu time D. for de-
composition, the total solution time T., the region number of the initial state I.,
the size of the explored search space in percentage %s of the state space, and the
evolution of it in %r percentage between the starting and the end of the search.

It is noticeable that large scale problems with up to 5× 1011 states are solved.
It is interesting to notice that our global optimal approach matches the state
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type size rg. model B. D. πr T .
linear 384 3 F < 0.01 0.08 10 0.02

E 0.03 – – 0.01
6 · 103 6 F 0.01 0.38 33 1.51

E 4.21 – – 0.38
7 · 104 9 F 0.03 0.56 47 26.8

E 587.62 – – 5.03
concentric 8 · 105 9 (9 s./r.) F 0.02 0.13 21 0.12

E 746.98 – – 2.25
7 · 106 9 (81 s./r.) F 0.02 40.61 61 16.77

E > 1hr – – –

Figure 21. Comparison between the factored MDP and enumer-
ated MDP approaches with the elapsed time given in seconds.

space sizes solved in [22] with approximate solution algorithms. Furthermore, we
can claim that our results were obtained on quite different MDPs: our problems
combine boolean variables and variables with large ranges of values (navigation
variables). Eventually, the results obtained on “Linear problems” show that the
size of the state space is not always a good criteria to assess the problem difficulty.
In our experimentations, we show that, depending on the respective positions
(“proximity”) of the initial and goal states in the state space, problems of larger
state space can be simpler than much smaller problems (see Fig. 22).

9. Conclusion

This paper has presented a range of possible modeling structures for state space
representations in MDPs and discussed the influence of the possible modeling
choices with respect to both the tractability and the efficiency of the corresponding
approach to the MDP solution.

It is proposed to develop a hybrid approach combining both MDP decompo-
sition and factorization techniques. Many algorithmic perspectives are now open
on this basis and preliminary results show interesting behaviors in termes of effi-
ciency and scalability: symbolic heuristic search dynamic programming algorithms
are presently studied. This proposal is not completely new [14], yet the abstraction
process and the resulting approach to the MDP solution using symbolic dynamic
programming is original.

In any case, the approach proposed in [14] provides another perspective of
combination, towards a generalized automatic abstraction process, for large size
MDPs. Possible original future developments with respect to the MDP solution
algorithms in this perspective could be in a research on either heuristic, approxi-
mated, or learning based methods.

Models combining factored state variables and enumerated state sub-spaces
with large ranges of possible values are susceptible to apply in robotics problems
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size rg. πr A. D. T. I. %s %r

384 3 10 1 0.08 0.02 – – –
2 0.07 0.03 – – –
3 0.06 0.03 1 67 78
4 0.06 0.03 1 67 78
5 0.06 0.03 1 42 11
6 0.06 0.03 1 42 11

6.103 6 33 1 0.38 1.51 – – –
2 0.36 1.73 – – –
3 0.37 1.89 3 60 129
4 0.37 0.88 3 63 115
5 0.37 1.28 3 56 114
6 0.38 0.71 3 56 91

7.104 9 47 1 0.56 26.8 – – –
2 0.56 45.86 – – –
3 0.55 16.89 4 54 112
4 0.54 15.23 4 56 114
5 0.56 5.38 4 43 70
6 0.56 4.35 4 43 66

7.106 12 59 1 0.63 192.1 – – –
2 0.65 391.95 – – –
3 0.65 0.12 6 46 -66
4 0.63 0.11 6 46 -66
5 0.64 0.85 6 19 -86
6 0.62 0.57 6 19 -86

7.107 15 73 1 0.76 > 1hr – – –
2 0.76 >1hr – – –
3 0.79 0.29 7 50 -53
4 0.76 25.97 7 26 74
5 0.77 0.97 7 17 -84
6 0.75 18.86 7 13 -11

5.1011 30 156 3 2.19 4.77 25 18 -83
4 2.17 8.25 25 14 119
5 2.2 1.56 25 5 -95
6 2.19 6.51 25 8 34

size Nreg Nspr πr A. D. T. %s %r

8.105 9 9 21 1 0.13 0.12 – –
2 0.13 0.15 – –
3 0.15 0.04 8 -40
4 0.13 0.03 11 -20
5 0.14 0.04 14 0
6 0.13 0.04 14 0

7.106 9 81 61 1 40.61 16.77 – –
2 40.44 21.42 – –
3 40.59 0.16 8 -40
4 40.45 0.14 11 -20
5 40.94 0.2 14 0
6 40.64 0.15 14 0

6.108 17 9 69 1 0.58 1.6.103 – –
2 0.55 >1hr – –
3 1.01 2.34 0.19 -0.09
4 0.97 2.22 0.19 -0.09
5 1.0 1.65 0.1 -0.5
6 0.98 1.45 0.1 -0.5

5.109 17 81 117 3 93.83 36.88 44 48
4 93.88 96.95 44 49
5 93.83 1.32 10 -68
6 93.88 8.87 10 -68

Figure 22. Linear (top) and concentric (bottom) MDPs.

including navigation and information acquisition tasks. Further work will focus on
the on-line behavior of factored MDP solution algorithms and should also attempt
to deal with continuous variables.
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