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BRANCH AND CUT BASED ON THE VOLUME
ALGORITHM: STEINER TREES IN GRAPHS

AND MAX-CUT
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1

and László Ladányi
1

Abstract. We present a Branch-and-Cut algorithm where the vol-
ume algorithm is applied instead of the traditionally used dual simplex
algorithm to the linear programming relaxations in the root node of
the search tree. This means that we use fast approximate solutions to
these linear programs instead of exact but slower solutions. We present
computational results with the Steiner tree and Max-Cut problems. We
show evidence that one can solve these problems much faster with the
volume algorithm based Branch-and-Cut code than with a dual sim-
plex based one. We discuss when the volume based approach might be
more efficient than the simplex based approach.

1. Introduction

Since the early eighties, the Branch-and-Cut (B&C) algorithm has been used
for a variety of combinatorial optimization problems, see [11] for a survey. In
B&C, families of cutting planes are added to the formulation to tighten the lin-
ear programming relaxation at each search tree node. Traditionally these linear
programming (LP) relaxations are solved by the dual simplex method, since the
dual simplex method is well suited to warmstart the subsequent LP relaxations.
Many authors have reported difficulties due to degeneracy and to the number of
dense rows in the LPs coming from combinatorial problems. In many cases most
of the computing time in B&C methods is devoted to solve these LPs. The main
result of our paper is that when solving the LP relaxations it can be advantageous
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to replace the dual simplex method with a fast approximate method, the volume
algorithm [6].

Note that our aim was to compare B&C codes based on the simplex method
and the volume algorithm when all else are equal. The speed of a B&C code very
heavily depends on the quality of cut generation and primal heuristics. While we
have implemented reasonable procedures, our main focus was on the LP engine
comparison. Our max-cut code happens to be very competitive while the Steiner
tree code is slower than the one presented in [28].

The volume algorithm (VA) is an extension of the subgradient method that
produces an approximate primal as well as a dual solution and lower bound for a
minimization problem. Note that the primal solution delivered by the VA algo-
rithm to an LP relaxation is a fractional approximate solution, which can then be
used in primal heuristics to produce integer solutions. The traditional subgradient
method produces only a dual solution and a lower bound for the LP relaxation.
Like the subgradient method, the VA can be warmstarted using a dual feasible
solution.

The subgradient method has been extensively used in combinatorial optimiza-
tion, in cutting plane procedures it has been used under the name of “relax-and-
cut”, see [18, 22, 30, 31]. In relax-and-cut the cutting planes are produced based
on a solution to the Lagrangean problem (see (4) in Sect. 2). This is a point
usually outside the optimal face of the LP relaxation. The difference with our
procedure is that we produce the cutting planes based on a vector near the center
of the optimal face. We claim that this makes the cutting planes very effective. A
further discussion appears in Section 5. Note that a B&C code using an interior
point method based LP engine should exhibit similar behavior as one based on the
VA, since both LP engines produce primal solutions near the center of the optimal
face. Indeed, Mitchell [33] has shown that this is the case. However, interior point
methods suffer from the lack of warmstarting ability unlike the VA, which can be
warmstarted with the previous dual feasible solution.

For a B&C code to work efficiently with an LP solver the following conditions
have to be met. The LP solver must provide a lower bound on the LP optimum
(for bounding); it must be possible to warmstart the LP solver (for efficiency) and
a primal solution of the linear program must be produced by the LP solver (for cut
generation and branching). This primal solution need not necessarily be optimal; it
is up to the the cut generation routine to separate the fractional solution from the
integer programming (IP) polytope. If the cut generation routine cannot separate
the primal solution (exact or approximate) from the IP polytope then branching is
performed. The VA satisfies all three conditions, therefore a VA based B&C code
should be successful for any problem which has an LP relaxation the VA is good
at approximately solving. Besides the problem classes discussed in this paper set
partitioning type problems also fall into this category (see [7]). We believe that
other combinatorial optimization problems (where the matrix is a 0/1 matrix and
the problem is dual and/or primal degenerate) should also exhibit this behavior.
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Our B&C implementation uses BCP, a state of the art Branch-Cut-Price frame-
work designed to aid problem specific mixed integer programming implementa-
tions. BCP handles all general B&C related tasks allowing us to focus on problem
specific issues like cut generation. Also, using BCP made the comparison of the
dual simplex and VA based B&C easy, since BCP already has interfaces to both
of these methods for solving the LP relaxations.

We have chosen two combinatorial problems for which simplex-based B&C al-
gorithms are used as the common practice, these are the Max-Cut and the Steiner
tree problems. We show that although the almost universal choice is the dual
simplex method, our VA based code outperforms the other for the problem classes
studied here.

We found that the VA was useful to deal with the LP relaxation at the root node
of the B&C tree, we switched to the simplex method once branching was needed.
We believe that this approach is useful for many other combinatorial problems for
which solving the LP relaxation at the root node is computationally very intensive.
There are other alternatives to the VA, for instance some experiments based on
the bundle method have been presented in [20]. We used CLP an open source LP
solver, we believe that our findings are independent of the LP solver used.

This paper is organized as follows. In Section 2 we describe the volume algo-
rithm. In Section 3 we describe the BCP framework. Sections 4 and 5 are devoted
to the Steiner tree problem in graphs and to computational results. Similarly, Sec-
tions 6 and 7 deal with the Max-Cut problem. Finally, conclusions and insights
into when it might be advantageous to jump-start the branch-and-cut algorithm
with the volume algorithm are given in Section 8.

2. Solving the linear programming relaxations

with the volume algorithm

We use Lagrangean relaxation to deal with the arising linear programming relax-
ations during the B&C run. Lagrangean relaxation has been used in combinatorial
optimization since the seminal papers of Held and Karp [23, 24] and Held, Wolfe
and Crowder [25]. Lagrangean relaxation for solving LPs has been implemented
via the subgradient algorithm. We use an extension of the subgradient algorithm,
the volume algorithm [6]. This method produces not only a lower bound and a
dual solution, but also an approximate (fractional) primal solution to the linear
program. The convergence properties of the VA have been studied in [4].

At any stage of the the B&C algorithm the linear relaxation of the combinatorial
problem can be stated as

min cx (1)
Ax ≥ b (2)
0 ≤ x ≤ 1. (3)
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We use Lagrangian relaxation on inequalities (2). This approach has also been
used in [7] for solving set partitioning problems. For a vector of dual multipliers
π ≥ 0, a lower bound on the minimum of (1) is given by

L(π) = min
x

(c− πA)x + πb (4)

0 ≤ x ≤ 1.

In order to maximize the function L(·) we apply the volume algorithm sketched
out in Algorithm 1, see also [6].

Algorithm 1: Volume algorithm
1 t← 1
2 Initilize π̄ ≥ 0.
3 Solve (4) with π = π̄ to obtain x̄ = x0 and z̄ = L(π̄).
4 while new iteration should be done do
5 Compute vt = b−Ax̄ and π′ = π̄ + svt for a step size s given by (6).
6 πt

i ← max(0, π′
i)

7 Solve (4) with π = πt to get its solution xt and zt = L(πt).
8 x̄← αxt + (1 − α)x̄, where 0 < α < 1.
9 if zt > z̄ then

10 π̄ ← πt, z̄ ← zt

11 t← t + 1

Notice that in Step 10 we update π̄ only if zt > z̄, so this is an ascent method.
We are trying to mimic the bundle method [29], but we want to avoid the extra
effort of solving a quadratic problem at each iteration.

One difference between this and the subgradient algorithm is the use of the
primal update formula in Step 8. If x0, . . . , xt is the sequence of vectors produced
by problem (4), then VA yields

x̄ = αxt + (1 − α)αxt−1 + · · ·+ (1 − α)tx0. (5)

So we should look at x̄ as a convex combination of {x0, . . . , xt}. The assump-
tion that this sequence approximates an optimal solution of (1)–(3) is based on
a theorem in linear programming duality that appears in [6]. This says that the
values of the primal variables correspond to the volumes below the faces of the
dual problem. With the primal update we estimate these volumes. Notice the
exponential decrease of the coefficients of this convex combination; later vectors
thus receive much larger weights than earlier ones. At every iteration the direction
of movement is being updated based on x̄, so this is a method with “memory” that
does not have the same zig-zagging behavior as the subgradient method.

Here the formula for the step size is

s = λ
T − z̄

‖vt‖2 , (6)
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where λ is a number between 0 and 2, and T is a target value. We start with a
small value for T , and each time that z̄ ≥ 0.95 T , we increase T to T = 1.05 z̄. In
our implementation we set the value of λ based on counting how many iterations
of the following types are encountered:

Red: Each time that we do not find an improvement (i.e. zt ≤ z̄), we call
this iteration red. A sequence of red iterations suggests the need for a
smaller step-size.

Yellow: If zt > z̄ we compute

d = vt · (b−Axt
)
.

If d < 0 it means that a longer step in the direction vt would have given
a smaller value for zt, we call this iteration yellow.

Green: If d ≥ 0 we call this iteration green. A green iteration suggests the
need for a larger step-size.

At each green iteration, we multiply λ by 1.1. If the result is greater than 2, we set
λ = 2. After two consecutive yellow iterations we also multiply λ by 1.1 and we
set it to min{λ, 2}. After a sequence of 20 consecutive red iterations, we multiply
λ by 0.66, unless λ < 0.0005, in which case we keep it constant.

The value of α in the primal update formula is chosen as the solution of the
following 1-dimensional problem:

min
∥∥b−A

(
αxt + (1− α)x̄

)∥∥ (7)
subject to
u/10 ≤ α ≤ u. (8)

The value u is originally set to 0.1 and then every 100 iterations we check if z̄ has
increased by at least 1%. If not, we divide u by 2, unless u is already less than
10−5, in which case it is kept constant. This choice of α is very similar to the one
proposed in [38]; the difference is in the bounds u/10 and u.

3. The Branch-and-Cut framework

We used BCP, a Branch-and-Cut-and-Price framework. BCP handles all gen-
eral B&C related tasks allowing us to focus on problem specific issues like cut
generation. Also, using BCP made the comparison of the dual simplex and VA
based B&C easy, since BCP already has interfaces to both of these methods for
solving the LP relaxations. To solve LPs with the simplex method we have used
CLP [19]. All these codes (an implementation of the Volume Algorithm, CLP and
BCP) are open source codes and available from the COIN-OR project [13].

For the Steiner tree problem, when we branched, on one side we forced a non-
terminal node to become a terminal, on the other branch we forced that node
to not be included in the Steiner tree. We used the strong branching technique
introduced in [2]. Each time, five nodes were used as branching candidates.
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For the max-cut problem we branched on a fractional variable. We also used
strong branching, choosing five variables close to 0.5 as branching candidates.

We also used reduced cost fixing, see [34]. Namely, given a dual vector π̄, let
L(π̄) be the lower bound given by (4). Let UB be an upper bound and denote
c̄ = c− π̄A. With this notation if L(π̄) + c̄j > UB for an index j then xj = 0 can
be fixed and, respectively, if L(π̄)− c̄j > UB then xj = 1 can be fixed.

We allowed a maximum of 2000 inequalities to be added at any particular
iteration. An inequality was removed if its dual variable had been zero for two
consecutive iterations and the lower bound had increased.

Branching was used each time the gap between lower and upper bounds did not
decrease by at least 0.1% in the last three iterations.

In the volume based code we switched to the simplex method when tailing
off (through several consecutive iterations the gap between the lower and upper
bounds does not shrink sufficiently) in the root node was detected and from then
on we have used the simplex method. This is needed, since the approximate lower
bound given by the volume algorithm is 1–2% off of the exact LP value and this
inaccuracy prevents proving optimality.

4. Steiner tree problems in graphs

Given an undirected graph G = (V, E) and a subset of the nodes T ⊆ V called
terminals, a Steiner tree for T in G is an acyclic connected subgraph of G that
spans T . Let cij ≥ 0 for each edge ij ∈ E, be an edge-cost. The Steiner tree
Problem in graphs asks for the Steiner tree of minimum total edge cost. A natural
formulation comes from looking at cuts in the graph that separate terminals and
write an inequality saying that at least one edge in the cut should be taken. It has
been shown in [21] that the “cut formulation” associated with a directed graph
gives a stronger linear programming relaxation than a similar formulation associ-
ated with an undirected graph. For that reason we work with directed graphs, we
choose one terminal as a root r and look for a Steiner arborescence. The linear
programming relaxation is

min cx (9)
∑

i/∈S, j∈S

xij ≥ 1, for all S ⊂ V, r /∈ S, S ∩ T 	= ∅ (10)

0 ≤ x ≤ 1. (11)

We deal with this relaxation in a cutting plane fashion. This formulation was pro-
posed in [1] and has been used in [12,28]. An equivalent formulation has been used
in [32]. Computational results using the VA with an equivalent multicommodity
flow formulation have been presented in [3].

Although the separation problem for inequalities (10) reduces to a minimum
st-cut problem, we use a faster heuristic as follows. Let x̄ be the current solu-
tion vector in the cutting plane procedure. Define the weights on the arcs as
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wij = dij(1 − x̄ij) (we will specify the multiplier dij later) and find a minimum
weight arborescence A. From A we derive cutting planes in two different ways.
First, for each arc of A we remove it, thus dividing the node set of the graph into
two parts, and test whether the associated inequality is violated. Second, while
we execute Edmonds’ [17] algorithm for finding a minimum weight arborescence
we repeatedly contract cycles creating a sequence of supernodes. We always test
whether the inequality corresponding to the original nodes in a newly created
supernode is violated or not.

For selecting the multipliers dij we employ three different methods: set all of
them to 1, set dij = cij and set dij = c̄ij , the reduced cost of variable xij . We have
found that we got the best results when we generated cuts based on each setting;
none of them could be left out without taking a performance hit.

Another advantage of using this heuristic instead of exact cut generation (be-
sides much faster execution) is that we can also derive upper bounds simultane-
ously with the cut generation. Given an arborescence A we construct a Steiner
tree by simply recursively deleting all arcs leading to leaves that are non-terminal
nodes.

To compensate for possible misses of our heuristic we do run the exact cut
generation routine for every terminal node that is not separated from the root by
any of the heuristically generated cuts. In our experience this rarely had to be
done.

Another way to produce upper bounds is based on a heuristic due to Takahashi-
Matsuyama [36] and is described in Algorithm 2. We have used an extended version
of this algorithm (see, e.g., [28]) as follows:

• Given a starting vertex v, run the Takahashi-Matsuyama heuristic for the
digraph D = (V, A) with arc weights wij = (1 − x̄ij)cij . The resulting
Steiner tree is T .
• Find a minimum spanning tree in the subgraph induced by the vertices

included in the tree obtained in the previous step, considering original
costs cij as weights.
• Prune all non-terminal leaves.

Algorithm 2: Takahashi-Matsuyama Steiner tree heuristics
1 Chose an initial terminal vertex v.
2 Let T be a tree containing only v.
3 while there exists a terminal node t 	∈ T do
4 foreach terminal node t 	∈ T do
5 Compute the shortest path from t to T .;

6 Add the terminal node closest to T and the corresponding path to T .

Since this heuristic is computationally expensive, we ran it every 5 iterations of
the cutting plane procedure.
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5. Computational results on the Steiner tree problem

We ran all experiments on an IBM RS/6000 44P Model 270 workstation with
a 375 MHz processor and 1GB of core memory.

Our implementation is very similar to the one presented in [28], the main differ-
ence is that we use the VA to handle the linear programs. In Table 1 we present a
comparison between our simplex based code and our volume based code. We took
instances from Steinlib [27], a library for Steiner tree problem in graphs. We did
not treat the instances in Tables VI and VII of [28] because they were solved in [28]
with a different technique. This consisted of running a branch and cut code to fix
many variables and then restart the code from scratch when a certain percentage
of the variables can be fixed. From the remaining problems treated in [28] we
chose those instances that took more than 50 seconds to solve with either of our
codes. A few problems (alue7065, alue7080, alut2610, and alut2625) were too big
even after preprocessing to fit into our matchine. We have used a pre-processing
code, obtained from Koch, which is a successor of the one used in [28]. Since the
publication of [28] much stronger preprocessing methods were designed (see [37]
and [35]). With those methods many problems in Steinlib can be reduced to near
trivial size. However, we believe that preprocessing is orthogonal to comparing the
volume and simplex based branch and cut methods, thus we have not implemented
these very sophisticated preprocessing techniques. Therefore our computational
results are not comparable to the ones in [37] and [35].

In the first column of Table 1 we have the name of the instance, then we
present the number of nodes, number of edges, and number of terminals after pre-
processing. These numbers are sometimes different than those in [28] since the
preprocessing code has been updated since the publication of that paper. Then
we present the time, lower bound, upper bound, the number of search tree nodes
and the number of iterations in the root node for the volume based code. Finally
we have the same data for the simplex-based code. Note that two numbers are
listed for the number of iterations in the root node for the volume based code. The
first is the total number of iterations while the second is the number of times we
used the volume algorithm to solve the LP relaxation. We mark with a bullet (•)
all cases where we have a proof of optimality. We had set a limit of 3 hours.
Since the code checked the time only after solving each LP, the times reported are
sometimes slightly larger than 10 800 s.

Observe that the volume based code is nearly always faster than the simplex
based one, frequently significantly faster. The number of instances solved to opti-
mality with the volume based code is larger than the number of instances solved
to optimality by the simplex based code. There is only one problem (e12) the
simplex based code solves but the volume based one does not. However when we
have examined the log files, we found that when the simplex based run was faster
the primal heuristics in the volume based run found the optimal solution (or in the
case of e12, did not happen to find it at all) very late. If the optimal solution value
were given to both runs then the volume based runs would always have finished
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faster. Also notice, that for those cases not solved to optimality, the volume based
code always produced a better lower bound.

Figure 1 gives an even more striking picture of the superiority of the volume
based code. Here we chose several instances from Steinlib and plotted how the
lower bound progressed in the root node (plots for other instances would exhibit
the same structure). On these charts the results based on the VA are drawn with
bold lines, those based on dual simplex are drawn with thin lines.

The charts on the left depict the value of the lower bound with respect to the
elapsed time. It is clear that at any particular time the volume based lower bound
is significantly better.

In charts on the right we have plotted the lower bounds against the iteration
count. Notice, that the simplex based runs almost always do fewer iterations
showing that the volume based runs take less time per iteration, i.e., the VA
solves these LP relaxations faster. Also, we can see that the lower bounds are
better with VA at any given iteration as well (not only at any given time).

The fact that the volume based lower bounds are superior indicates that the
cuts generated from the primal solution provided by the VA are stronger. Notice
that the primal vector used for producing cutting planes is the convex combination
showed in (5). This is a point near the center of the optimal face. We believe that
this explains the superiority of the cuts produced by the volume based code. A
similar observation has been made in [33] when using a cutting plane method based
on an interior point algorithm.

Finally, although we do not have exact figures, we have monitored the memory
usage of the running programs and the simplex based runs used 2–4 times the
memory than the corresponding volume based runs (before they switched over to
the simplex based bounding).

6. The max-cut problem

Given a graph G = (V, E) with edge weights, the max-cut problem is defined
as partitioning the set of nodes into two sets that maximize the total weight of the
edges between the two sets. B&C algorithms for complete or highly dense graphs
have been presented in [9, 16]. Max-cut in complete graphs has also been treated
with Semidefinite Programming in [26]. In this paper we treat sparse graphs. The
linear programming relaxation of the Max-Cut problem for sparse graphs is

max cT x

subject to
∑

e∈F

xe −
∑

e∈C\F

xe ≤ |F | − 1, where C is a cycle, and F ⊆ C with |F | = 2k + 1

(12)

0 ≤ x ≤ 1.
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T
a
b
le

1
:

C
o
m

p
u
ta

ti
o
n
a
l
R

es
u
lt

s
o
n

th
e

S
te

in
er

tr
ee

p
ro

b
le

m
.

N
a
m

e
|V

|
|E

|
|T

|
V

o
lu

m
e

S
im

p
le

x

T
im

e
L
B

U
B

T
re

e
R

o
o
t

T
im

e
L
B

U
B

T
re

e
R

o
o
t

a
lu

e3
1
4
6

2
9
5
1

5
0
8
8

6
4

1
6
1
6

2
2
4
0
.0

0
•

2
2
4
0

3
7
6
/
7
5

3
0
7
1

2
2
4
0
.0

0
•

2
2
4
0

3
8
4

a
lu

e5
0
6
7

2
7
6
6

4
6
9
3

6
8

8
4
3

2
5
8
6
.0

0
•

2
5
8
6

1
4
1
/
4
0

1
9
6
3

2
5
8
6
.0

0
•

2
5
8
6

1
5
3

a
lu

e5
3
4
5

4
1
6
8

7
0
6
0

6
8

1
1
8
8
6

3
5
0
1
.6

8
3
5
3
7

5
2
4
4
/
2
3
9

1
1
0
2
7

3
2
9
8
.9

5
3
5
9
0

1
7
9

a
lu

e5
6
2
3

3
4
9
9

5
8
6
9

6
8

1
0
8
3
9

3
4
0
6
.3

3
3
4
7
0

1
2
7
2
/
2
1
8

1
0
9
0
0

3
2
9
7
.4

6
3
4
7
4

1
9
8

a
lu

e5
9
0
1

9
6
5
0

1
6
4
1
5

6
8

1
0
8
0
5

3
6
6
6
.6

2
4
0
7
5

1
6
6
/
6
6

1
0
9
5
9

3
3
2
7
.8

3
4
0
3
9

1
5
0

a
lu

e6
1
7
9

2
6
3
0

4
4
0
0

6
6

8
4
6

2
4
4
7
.0

0
•

2
4
4
7

3
4
5
/
4
4

1
5
3
7

2
4
4
7
.0

0
•

2
4
4
7

3
5
6

a
lu

e6
4
5
7

3
1
6
7

5
3
0
7

6
8

3
7
2
8

3
0
5
7
.0

0
•

3
0
5
7

1
1
3
0
/
1
2
9

1
0
8
7
0

3
0
4
3
.6

9
3
1
0
4

1
1
3
5

a
lu

e6
7
3
5

3
4
2
2

5
9
1
0

6
8

1
8
8
8

2
6
9
6
.0

0
•

2
6
9
6

1
7
0
/
6
9

3
3
0
2

2
6
9
6
.0

0
•

2
6
9
6

1
6
5

a
lu

e6
9
5
1

2
1
8
8

3
7
2
3

6
7

5
9
8

2
3
8
6
.0

0
•

2
3
8
6

1
4
8
/
4
7

1
0
1
4

2
3
8
6
.0

0
•

2
3
8
6

1
5
8

a
lu

e7
0
6
6

5
4
4
4

9
4
0
0

1
4

1
1
0
5
1

1
8
4
6
.4

9
2
2
7
8

1
1
3
6
/
1
3
1

1
1
0
2
1

1
7
4
7
.6

1
2
2
7
8

1
1
0
3

a
lu

t1
1
8
1

2
8
9
4

5
4
8
6

6
4

5
2
8
3

2
3
5
3
.0

0
•

2
3
5
3

1
2
2
7
/
2
2
6

1
0
8
7
7

2
2
6
2
.5

2
2
4
2
0

1
9
7

a
lu

t2
0
1
0

5
7
1
0

1
0
5
3
5

6
8

1
1
5
4
6

3
3
0
7
.0

0
•

3
3
0
7

1
1
7
4
/
1
7
3

1
1
0
7
5

3
0
7
2
.5

2
3
3
9
1

1
7
1

a
lu

t2
2
8
8

8
7
5
8

1
6
2
2
7

6
8

1
0
8
0
9

3
5
4
8
.5

8
3
9
5
5

1
7
6
/
7
6

1
1
1
5
9

3
0
9
5
.1

8
3
9
7
3

1
4
9

a
lu

t2
5
6
6

4
6
9
7

8
6
5
6

6
7

1
0
8
0
2

3
0
5
5
.2

7
3
1
0
8

1
2
2
8
/
2
2
8

1
0
9
3
5

2
8
5
2
.3

1
3
1
2
6

1
8
2

d
iw

0
2
3
4

5
2
5
8

9
9
6
8

2
5

1
0
9
0
1

1
9
7
4
.5

9
2
0
1
0

1
1
2
9
/
9
4

1
0
9
1
4

1
9
3
3
.7

1
2
0
1
7

1
1
0
5

d
iw

0
4
4
5

1
7
0
9

3
1
8
6

3
3

3
0
0
8

1
3
6
3
.0

0
•

1
3
6
3

3
2
0
9
/
1
4
6

3
2
8
5

1
3
6
3
.0

0
•

1
3
6
3

3
1
2
8

d
iw

0
4
5
9

3
4
9
1

6
5
9
5

2
5

3
5
4
6

1
3
6
2
.0

0
•

1
3
6
2

1
2
3
4
/
1
1
3

6
2
7
0

1
3
6
2
.0

0
•

1
3
6
2

1
1
7
1

d
iw

0
4
7
3

2
0
9
7

3
9
8
6

2
5

1
1
8
8

1
0
9
8
.0

0
•

1
0
9
8

1
9
5
/
6
1

1
4
6
6

1
0
9
8
.0

0
•

1
0
9
8

1
1
0
8

d
iw

0
4
8
7

2
2
5
0

4
1
6
8

2
5

1
6
8
4

1
4
1
9
.0

0
•

1
4
1
9

1
1
5
1
/
1
4
7

2
3
0
6

1
4
1
9
.0

0
•

1
4
1
9

1
1
4
8

d
iw

0
5
5
9

3
5
9
7

6
8
3
7

1
8

1
1
1
7
0

1
4
5
3
.8

4
1
5
7
7

1
1

2
7
9
/
2
5
2

1
0
8
5
8

1
4
4
0
.4

4
1
5
8
3

1
1
6
8

d
iw

0
7
7
8

7
1
3
4

1
3
6
1
2

2
4

1
0
8
3
3

2
0
1
8
.9

6
2
2
0
0

1
1
3
0
/
1
3
0

1
0
9
2
6

1
7
9
4
.1

2
2
1
9
0

1
9
3

d
iw

0
7
7
9

1
1
6
8
0

2
2
3
4
6

5
0

1
1
0
1
2

3
2
3
2
.4

9
4
6
8
6

1
4
8
/
4
8

1
0
8
6
6

2
6
8
2
.5

6
4
7
1
0

1
4
3

d
iw

0
7
9
5

3
0
7
6

5
7
5
2

1
0

1
0
9
6
0

1
4
3
5
.6

3
1
5
9
3

1
2
1
5
/
1
9
5

1
0
8
3
4

1
3
9
9
.1

6
1
5
9
8

1
1
3
9

d
iw

0
8
0
1

2
8
4
8

5
3
5
0

1
0

1
0
8
4
9

1
4
7
5
.2

6
1
5
9
4

1
3
3
4
/
2
1
2

1
0
8
6
8

1
4
4
2
.1

5
1
5
9
4

1
1
4
7

d
iw

0
8
1
9

1
0
4
2
7

1
9
9
1
4

3
2

1
0
9
0
8

2
7
5
2
.9

3
3
4
2
9

1
6
5
/
6
5

1
0
9
1
7

2
2
7
8
.2

8
3
4
5
7

1
5
2

d
iw

0
8
2
0

1
1
6
0
4

2
2
2
0
2

3
7

1
1
0
2
5

2
8
9
0
.4

6
4
3
1
0

1
4
8
/
4
8

1
1
0
7
3

2
0
3
6
.9

9
4
3
3
2

1
5
0

d
m

x
a
0
3
6
8

1
9
2
6

3
5
3
2

1
8

3
1
7
3

1
0
1
7
.0

0
•

1
0
1
7

1
3
1
9
/
1
1
0

3
3
6
9

1
0
1
7
.0

0
•

1
0
1
7

1
3
0
0

d
m

x
a
0
4
5
4

1
7
0
7

3
1
0
1

1
6

7
1
0

9
1
4
.0

0
•

9
1
4

1
1
0
9
/
1
0
9

1
0
1
2

9
1
4
.0

0
•

9
1
4

1
9
6

d
m

x
a
1
0
1
0

3
6
8
0

6
7
3
3

2
3

4
7
0
9

1
4
8
8
.0

0
•

1
4
8
8

1
3
3
5
/
1
9
4

8
8
0
0

1
4
8
8
.0

0
•

1
4
8
8

3
2
2
5

d
m

x
a
1
8
0
1

2
0
8
7

3
8
4
0

1
7

2
4
4
9

1
3
6
5
.0

0
•

1
3
6
5

1
2
0
1
/
2
0
1

9
9
4
0

1
3
6
5
.0

0
•

1
3
6
5

1
2
2
7



BRANCH AND CUT WITH THE VOLUME ALGORITHM 63

T
a
b
le

1
:

C
o
n
ti

n
u
ed

.

N
a
m

e
|V

|
|E

|
|T

|
V

o
lu

m
e

S
im

p
le

x

T
im

e
L
B

U
B

T
re

e
R

o
o
t

T
im

e
L
B

U
B

T
re

e
R

o
o
t

e1
2

2
4
8
7

1
1
3
6
2

1
0

1
0
8
0
0

6
6
.9

9
6
8

1
4
9
/
4
9

1
0
0
0

6
7
.0

0
•

6
7

1
7
7

e1
3

1
8
8
4

4
3
0
0

3
9
5

1
3
3
5

1
1
9
0
.0

0
•

1
1
9
0

1
2
6
/
2
4

2
2
6
2

1
1
9
0
.0

0
•

1
1
9
0

1
5
1

e1
4

1
5
1
4

3
0
5
8

4
8
4

1
0
3
1

1
3
3
3
.0

0
•

1
3
3
3

1
2
7
/
2
1

1
6
8
6

1
3
3
3
.0

0
•

1
3
3
3

3
3
3

e1
6

2
5
0
0

2
5
1
8
4

5
5
7
3

1
5
.0

0
•

1
5

1
1
1
/
1
1

4
8
1
0

1
5
.0

0
•

1
5

5
1
1

e1
7

2
5
0
0

2
1
5
0
8

1
0

5
8
1

2
5
.0

0
•

2
5

1
1
8
/
1
8

1
1
1
8
6

2
4
.0

0
2
5

2
1

1
3

e1
8

2
3
8
2

7
3
6
8

4
0
8

1
0
9
8
9

5
5
2
.4

7
5
5
4

2
5

3
8
/
3
5

1
0
8
1
4

5
5
2
.2

5
5
5
4

1
5

8
9

e1
9

2
1
2
7

5
3
5
2

5
7
4

4
2
0
9

6
9
7
.0

0
•

6
9
7

7
4
2
/
3
5

1
1
5
8
3

6
9
3
.6

0
7
0
9

1
7

3
4

e2
0

9
0
4

1
6
1
8

5
3
4

2
0

5
8
9
.0

0
•

5
8
9

1
5
/
5

1
7
2
8

5
8
9
.0

0
•

5
8
9

7
2
0

es
3
0
c

6
4
9

1
2
4
6

3
0

9
4
7

4
2
0
1
6
0
7
9
.0

0
•

4
2
0
1
6
0
7
9

1
2
7
0
/
1
5
9

1
0
7
4

4
2
0
1
6
0
7
9
.0

0
•

4
2
0
1
6
0
7
9

1
2
4
4

es
3
0
f

5
8
9

1
1
2
6

3
0

5
5
3

3
6
9
8
9
3
9
4
.0

0
•

3
6
9
8
9
3
9
4

1
2
1
1
/
1
8
9

1
0
7
6

3
6
9
8
9
3
9
4
.0

0
•

3
6
9
8
9
3
9
4

1
2
8
5

es
4
0
a

1
1
6
9

2
2
6
8

3
9

1
4
3
6

4
3
7
9
3
6
2
3
.0

0
•

4
3
7
9
3
6
2
3

1
2
1
7
/
2
1
5

2
6
0
9

4
3
7
9
3
6
2
3
.0

0
•

4
3
7
9
3
6
2
3

1
2
0
4

es
4
0
b

1
1
2
3

2
1
7
3

3
9

1
6
8
9

4
4
5
6
0
1
8
7
.0

0
•

4
4
5
6
0
1
8
7

1
2
2
1
/
1
8
4

3
1
8
6

4
4
5
6
0
1
8
7
.0

0
•

4
4
5
6
0
1
8
7

1
2
3
5

es
4
0
c

1
1
4
7

2
2
2
5

4
0

7
2
9
2

4
9
1
8
5
7
0
9
.0

0
•

4
9
1
8
5
7
0
9

3
2
0
3
/
1
4
1

5
2
5
0

4
9
1
8
5
7
0
9
.0

0
•

4
9
1
8
5
7
0
9

1
3
1
0

es
4
0
d

1
1
2
0

2
1
6
6

4
0

1
5
7
4

4
3
5
8
7
5
8
4
.0

0
•

4
3
5
8
7
5
8
4

1
2
1
9
/
2
0
3

2
7
3
4

4
3
5
8
7
5
8
4
.0

0
•

4
3
5
8
7
5
8
4

1
2
0
8

es
4
0
e

1
2
8
0

2
4
8
8

4
0

1
1
1
9
5

5
0
6
3
1
4
6
7
.9

9
5
1
4
8
6
7
1
7

1
1

2
6
5
/
2
2
7

1
0
8
1
2

5
0
6
2
0
7
9
6
.9

6
5
1
8
8
6
5
2
5

7
2
0
3

es
4
0
f

1
0
9
8

2
1
2
9

4
0

6
0
3
7

4
9
3
2
8
2
4
6
.0

0
•

4
9
3
2
8
2
4
6

5
2
7
7
/
1
7
9

5
1
0
0

4
9
3
2
8
2
4
6
.0

0
•

4
9
3
2
8
2
4
6

1
4
7
4

es
4
0
g

1
1
6
2

2
2
5
1

3
9

1
1
5
2

4
4
5
4
6
1
3
7
.0

0
•

4
4
5
4
6
1
3
7

1
1
5
9
/
1
3
8

1
8
6
7

4
4
5
4
6
1
3
7
.0

0
•

4
4
5
4
6
1
3
7

1
1
4
4

es
4
0
h

1
2
4
8

2
4
2
4

4
0

1
7
7
7

4
6
5
0
5
7
9
6
.0

0
•

4
6
5
0
5
7
9
6

1
2
1
2
/
2
0
1

4
4
9
3

4
6
5
0
5
7
9
6
.0

0
•

4
6
5
0
5
7
9
6

1
2
5
5

es
4
0
i

1
2
2
0

2
3
6
9

4
0

1
0
8
0
6

5
0
1
5
9
6
8
1
.4

6
5
0
5
4
6
3
0
5

3
2
5
5
/
2
3
9

1
0
8
0
2

5
0
5
2
1
1
4
2
.5

7
5
0
5
4
8
4
4
2

1
4
1
0

es
4
0
j

1
2
4
6

2
4
1
9

4
0

4
0
2
1

5
6
5
8
3
1
1
2
.0

0
•

5
6
5
8
3
1
1
2

1
2
9
7
/
2
2
2

8
1
1
6

5
6
5
8
3
1
1
2
.0

0
•

5
6
5
8
3
1
1
2

1
2
7
5

es
4
0
k

1
1
8
4

2
2
9
3

4
0

2
6
7
9

4
6
2
8
2
3
7
8
.0

0
•

4
6
2
8
2
3
7
8

1
3
1
4
/
2
8
6

5
7
3
7

4
6
2
8
2
3
7
8
.0

0
•

4
6
2
8
2
3
7
8

1
3
1
0

es
4
0
l

1
2
5
2

2
4
3
0

4
0

1
5
2
1

4
1
4
2
3
5
7
9
.0

0
•

4
1
4
2
3
5
7
9

1
1
6
4
/
1
3
3

2
5
4
2

4
1
4
2
3
5
7
9
.0

0
•

4
1
4
2
3
5
7
9

1
1
4
1

es
4
0
m

1
3
7
3

2
6
7
1

4
0

3
5
4
5

5
1
3
1
6
9
5
4
.0

0
•

5
1
3
1
6
9
5
4

1
2
7
7
/
1
9
4

5
9
8
6

5
1
3
1
6
9
5
4
.0

0
•

5
1
3
1
6
9
5
4

1
2
8
1

es
4
0
n

1
3
0
0

2
5
2
8

4
0

2
2
2
8

4
8
3
4
0
3
6
3
.0

0
•

4
8
3
4
0
3
6
3

1
2
2
0
/
1
8
3

4
4
2
9

4
8
3
4
0
3
6
3
.0

0
•

4
8
3
4
0
3
6
3

1
1
9
1

es
4
0
o

1
3
0
3

2
5
3
0

4
0

2
5
7
3

5
0
0
2
3
4
7
0
.0

0
•

5
0
0
2
3
4
7
0

3
1
9
7
/
1
7
8

1
0
8
0
0

4
9
9
9
2
1
9
7
.9

0
5
0
0
2
3
4
7
0

1
3

2
2
0

g
a
p
3
1
2
8

9
6
1
2

1
7
1
7
1

1
0
4

1
0
8
9
3

4
1
2
7
.1

0
4
3
7
7

1
7
3
/
7
3

1
1
1
1
0

3
6
8
9
.8

5
4
4
0
3

1
5
6



64 F. BARAHONA AND L. LADÁNYI
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Figure 1. Lower bound vs. seconds elapsed (left) in the root
and Lower bound vs. iteration count (right) in the root. Bold
lines: Volume Algorithm. Thin lines: simplex.
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Here xe should take the value 1 if the edge e appears in the cut, and 0 otherwise.
Constraints (12) are called cycle inequalities and they ensure that the intersection
of a cycle and a cut has even cardinality. A polynomial time separation algorithm
for this class of inequalities has been given in [10], however we use a faster heuristic
from [8]. Let x̄ be the vector to separate, define weights

we = ce ·max(x̄e, 1− x̄e).

Then find a maximum weighted spanning tree T with weights w. For an edge
e ∈ T , if x̄e ≥ 1 − x̄e then the end-nodes of e should be on opposite sides of
the cut. We give the label “A” to this edge. Otherwise, if x̄e < 1 − x̄e then the
end-nodes should be on the same side of the cut and we give the label “B” to the
edge. Once every edge in T has been labeled the edges with label “A” define a
heuristic cut K. Then for an edge e /∈ T we add it to T and look at the created
cycle C. If e ∈ K then we test the violation of the inequality (12), where the set
F is given by the A-edges. If e /∈ K the set F is given by the A-edges and the
edge e.

7. Computational results on the max-cut problem

We have run our experiments on an IBM RS/6000 44P Model 270 workstation
with a 375 MHz processor and 1GB of core memory and 1 hour time limit. We
have considered six different classes of sparse graphs.

The first four classes are max-cut problems arising from variations of the so
called Ising spin glass model, a model in statistical physics, that has been studied
in [5, 8, 14, 15, 33]. In one case the corresponding problem is to find the maximum
cut in a toroidal grid where half of the edge weights in the grid are 1, the other half
are –1. This problem class has been identified as a challenging case for simplex
based cutting plane algorithms. In [15] the authors report that a 70×70 grid takes
on the order of 16 h on a Sun SPARC 10 machine. (Our running times are on the
order of a minute on a roughly 30 times faster machine.) Toroidal grids have also
been treated with a cutting plane algorithm based on an interior point algorithm
in [33]. In that paper times of the order of 2200 s and 12 000 s are reported for
70×70 and 100×100 grids on a Sun SPARC 20/71 (which corresponds to roughly
110 and 600 s on our machine).

We have studied four variations of this problem. First the edge weights are
either randomly generated from {1,−1} or generated with a gaussian distribution
(keeping 6 significant digits). Also, an external magnetic field can be present or
not, this is modelled by an extra node connected to every node in the grid (all the
new edges have the same weight, which represents the strength of the field). All
these models have significance in physics.

Tables 2–5 show the results of the Ising experiments. To somewhat smooth out
the randomness in the experiments we have generated 8 instances for each entry
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Table 2. Ising spinglass problems: ±1 weights, no external field
(8 instances/type).

solved by both solved by vol solved by sim
size # vol time sim time # time # time
70 0 – – 8 90.72 0 –
80 0 – – 8 238.35 0 –
90 0 – – 8 313.13 0 –

100 0 – – 8 491.14 0 –
110 0 – – 8 785.48 0 –
120 0 – – 6 1701.34 0 –
130 0 – – 5 2295.42 0 –

Table 3. Ising spinglass problems: gaussian weights, no external
field (8 instances/type).

solved by both solved by vol solved by sim
size # vol time sim time # time # time
40 8 34.50 32.39 8 34.50 8 32.39
50 8 62.47 79.28 8 62.47 8 79.28
60 8 129.55 186.40 8 129.55 8 186.40
70 8 171.88 448.72 8 171.88 8 448.72
80 8 282.21 1267.05 8 282.21 8 1267.05
90 6 408.68 2671.25 8 427.68 6 2903.43

100 0 – – 8 868.23 0 –
110 0 – – 8 1254.86 0 –

where there is no external field and (due to the large number of distinct problem
characteristics) 4 instances when there was an external field. First the size of the
toroidal grid is given (possibly followed by the field strength). Then we present
the instances that could be solved to optimality by both algorithms. For them we
present the the number of instances solved and for both codes the average running
time of the solved instances. Then for the volume based algorithm we present the
number of instances solved to optimality, then we present the average running time
among all instances regardless of whether they were solved or not (for those not
solved we use 3600 seconds as their running time). Finally, the same information
for the simplex based code is presented.

The fifth set of instances are quadratic 0–1 programming problems that have
been transformed into max-cut problems (for details see [9]). The results are
displayed in Table 6 which has the same layout as the previous tables.

Finally, we have received a set of eight spin glasses problems that were reported
to be very difficult in [15]. Table 7 gives our running times for these problems.
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Table 4. Ising spinglass problems: ±1 weights, external field
present (4 instances/type).

solved by both solved by vol solved by sim
size field # vol time sim time # time # time

70 0.3981 4 264.62 572.78 4 264.62 4 572.78
0.5012 4 155.10 194.61 4 155.10 4 194.61
0.6310 4 125.63 134.67 4 125.63 4 134.67
0.7943 4 128.89 79.59 4 128.89 4 79.59
1.0000 4 108.77 61.62 4 108.77 4 61.62
1.2589 4 77.39 36.42 4 77.39 4 36.42
1.5849 4 46.13 28.44 4 46.13 4 28.44
1.9953 4 75.17 28.78 4 75.17 4 28.78
2.5119 4 17.99 8.69 4 17.99 4 8.69

80 0.3981 4 318.55 1171.19 4 318.55 4 1171.19
0.5012 4 260.86 517.97 4 260.86 4 517.97
0.6310 4 221.11 236.93 4 221.11 4 236.93
0.7943 4 150.10 116.44 4 150.10 4 116.44
1.0000 4 178.69 110.98 4 178.69 4 110.98
1.2589 4 120.92 61.18 4 120.92 4 61.18

1.5849 4 75.42 43.63 4 75.42 4 43.63
1.9953 4 106.33 42.98 4 106.33 4 42.98
2.5119 4 30.92 12.39 4 30.92 4 12.39

90 0.3981 3 583.74 2361.65 4 609.09 3 2671.24
0.5012 4 457.04 896.88 4 457.04 4 896.88
0.6310 4 339.04 446.67 4 339.04 4 446.67
0.7943 4 240.82 186.76 4 240.82 4 186.76
1.0000 4 360.57 185.18 4 360.57 4 185.18
1.2589 4 142.91 87.89 4 142.91 4 87.89
1.5849 4 124.27 68.16 4 124.27 4 68.16
1.9953 4 160.64 66.48 4 160.64 4 66.48
2.5119 4 46.98 18.45 4 46.98 4 18.45

100 0.3981 2 725.50 3249.31 4 827.65 2 3424.65
0.5012 4 553.16 1755.30 4 553.16 4 1755.30
0.6310 4 428.70 848.11 4 428.70 4 848.11
0.7943 4 342.21 331.11 4 342.21 4 331.11

1.0000 4 318.21 250.64 4 318.21 4 250.64
1.2589 4 252.32 130.23 4 252.32 4 130.23
1.5849 4 185.65 101.45 4 185.65 4 101.45
1.9953 4 219.37 107.28 4 219.37 4 107.28
2.5119 4 52.33 25.86 4 52.33 4 25.86

110 0.3981 0 – – 4 1385.94 0 –
0.5012 3 794.66 2486.20 4 889.40 3 2764.65
0.6310 4 548.28 1020.89 4 548.28 4 1020.89
0.7943 4 554.24 502.86 4 554.24 4 502.86
1.0000 4 579.62 368.93 4 579.62 4 368.93
1.2589 4 309.13 195.74 4 309.13 4 195.74
1.5849 4 203.00 137.80 4 203.00 4 137.80
1.9953 4 330.64 145.39 4 330.64 4 145.39
2.5119 4 78.09 37.40 4 78.09 4 37.40
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Table 5. Ising spinglass problems: gaussian weights, external
field present (4 instances/type).

solved by both solved by vol solved by sim
size field # vol time sim time # time # time

40 0.01778 4 253.73 1160.88 4 253.73 4 1160.88
0.03162 4 256.99 797.88 4 256.99 4 797.88
0.05623 4 210.22 319.88 4 210.22 4 319.88
0.10000 4 122.48 131.65 4 122.48 4 131.65
0.17783 4 69.96 77.14 4 69.96 4 77.14
0.31623 4 47.52 40.31 4 47.52 4 40.31
0.56234 4 23.09 14.16 4 23.09 4 14.16
1.00000 4 11.14 7.15 4 11.14 4 7.15
1.77828 4 7.00 3.78 4 7.00 4 3.78

50 0.01778 0 – – 4 506.07 0 –
0.03162 2 442.59 1922.75 4 536.82 2 2761.38
0.05623 2 212.81 1741.23 4 441.87 2 2670.61
0.10000 4 291.66 617.21 4 291.66 4 617.21
0.17783 4 163.26 283.26 4 163.26 4 283.26
0.31623 4 83.02 77.17 4 83.02 4 77.17

0.56234 4 45.67 28.00 4 45.67 4 28.00
1.00000 4 25.52 15.89 4 25.52 4 15.89
1.77828 4 12.08 6.65 4 12.08 4 6.65

60 0.01778 0 – – 4 887.02 0 –
0.03162 0 – – 4 1039.82 0 –
0.05623 1 348.39 2689.18 4 694.35 1 3372.30
0.10000 3 463.64 1239.43 4 602.55 3 1829.58
0.17783 4 270.89 549.34 4 270.89 4 549.34
0.31623 4 202.14 328.31 4 202.14 4 328.31
0.56234 4 80.47 58.01 4 80.47 4 58.01
1.00000 4 44.69 30.05 4 44.69 4 30.05
1.77828 4 19.64 11.87 4 19.64 4 11.87

70 0.01778 0 – – 4 1923.28 0 –
0.03162 0 – – 3 2040.43 0 –
0.05623 0 – – 4 1671.77 0 –
0.10000 0 – – 4 935.32 0 –

0.17783 3 653.49 2367.66 4 634.84 3 2675.75
0.31623 4 260.91 499.81 4 260.91 4 499.81
0.56234 4 137.87 104.60 4 137.87 4 104.60
1.00000 4 60.71 50.23 4 60.71 4 50.23
1.77828 4 38.26 21.87 4 38.26 4 21.87

80 0.01778 0 – – 3 2996.72 0 –
0.03162 0 – – 3 2240.55 0 –
0.05623 0 – – 3 2592.82 0 –
0.10000 0 – – 4 1551.79 0 –
0.17783 1 705.02 2718.90 4 829.74 1 3379.72
0.31623 4 392.07 746.16 4 392.07 4 746.16
0.56234 4 242.04 187.32 4 242.04 4 187.32
1.00000 4 107.81 78.35 4 107.81 4 78.35
1.77828 4 52.70 33.73 4 52.70 4 33.73
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Table 6. Quadratic 0-1 programming based problems (4 instances/type).

solved by both solved by vol solved by sim
size % of 1’s # vol time sim time # time # time
60 20 4 9.18 12.34 4 9.18 4 12.34

30 4 137.31 123.89 4 137.31 4 123.89
40 4 109.12 130.38 4 109.12 4 130.38
50 4 349.85 417.58 4 349.85 4 417.58
60 4 521.01 752.20 4 521.01 4 752.20
70 3 491.15 650.46 3 1268.37 3 1387.85

80 20 4 231.84 272.00 4 231.84 4 272.00
30 4 236.16 412.35 4 236.16 4 412.35
40 4 2083.01 2442.76 4 2083.01 4 2442.76
50 4 828.84 1445.77 4 828.84 4 1445.77

100 20 4 891.66 1118.72 4 891.66 4 1118.72
30 2 1631.98 2361.07 3 2471.69 2 2980.53
40 2 511.06 1879.82 2 2055.53 2 2739.91

Table 7. Instances from [15].

instance simplex volume
L 70 1 – 139.72
L 70 2 – 66.48
L 70 3 – 141.35
L 70 4 – 332.10
L 70 5 – 238.52
L 70 6 – 158.92
L 70 7 – 216.79
L 70 8 – 205.18

These tables also show that it is advantageous to use the volume algorithm
until it starts to tail off, but the superiority is not as clear-cut as it was for the
Steiner tree problem. This is especially apparent for smaller sized Ising spinglass
problems when stronger external field is present. For those problems the purely
simplex based code consistently outperforms the other one. Upon examining the
log files we have found the reason for this behavior, a reason which is very natural
in hindsight.

If a problem can be solved in the root node quickly (in about 10 iterations) then
the volume based code is at a disadvantage since first the volume algorithm has
to tail off, then we switch over to the simplex method, and although that nearly
always proves optimality, the extra 3–5 LPs solved with the volume algorithm
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slows down the code. On the other hand, if switching over to the simplex method
does not prove optimality and we have to explore a reasonably large search tree
then it is more or less random which code is faster (it depends on which one is
luckier to find an optimal solution sooner).

8. Conclusions

We have presented B&C algorithms where the LP relaxations can be treated
either with the VA or with the simplex method. We first considered the Steiner
tree problem in graphs. The volume based approach was able to solve to optimality
substantially more instances. For the instances not solved to optimality, the lower
bounds produced by the volume based code were always better than the lower
bounds produced by the simplex based approach.

Then we presented similar experiments with the max-cut problem. Again the
superiority of the volume based approach is clear as we could handle sizes that
had not been solved before. However this problem class presented a better insight
to when it is advantageous to jump-start the B&C algorithm by solving the LP
relaxations with the Volume Algorithm: whenever the bulk of the work is done in
the root node (i.e., the search tree is reasonably small), but the problem cannot
be solved in just a few cutting plane iterations.

Most B&C methods are being implemented based on the simplex method. For
many combinatorial problems the resulting linear programs are extremely difficult
to solve due to degeneracy and numerical difficulties. We expect that in these
cases a volume based approach will be more advantageous.
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some max-cut instances from [15]. We are also grateful to Dr. Márta Eső for providing
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[4] L. Bahiense, N. Maculan and C. Sagastizábal, The volume algorithm revisited: relation with
bundle methods. Math. Program. 94 (2002) 41–69.

[5] F. Barahona, Ground state magnetization of Ising spin glasses. Phys. Rev. B 49 (1994)
2864–2867.

[6] F. Barahona and R. Anbil, The volume algorithm: producing primal solutions with a sub-
gradient method. Math. Program. 87 (2000) 385–399.



72 F. BARAHONA AND L. LADÁNYI
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