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OPTIMAL CONTROL AND PERFORMANCE ANALYSIS
OF AN MX/M/1 QUEUE WITH BATCHES

OF NEGATIVE CUSTOMERS
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Abstract. We consider a Markov decision process for an MX/M/1
queue that is controlled by batches of negative customers. More specif-
ically, we derive conditions that imply threshold-type optimal policies,
under either the total discounted cost criterion or the average cost
criterion. The performance analysis of the model when it operates un-
der a given threshold-type policy is also studied. We prove a stability
condition and a complete stochastic comparison characterization for
models operating under different thresholds. Exact and asymptotic re-
sults concerning the computation of the stationary distribution of the
model are also derived.

Keywords. Queueing, Markov decision processes, negative customers,
stationary distribution, stochastic comparison.

1. Introduction

Queueing systems with negative customers have attracted the interest of many
investigators during the last fifteen years, since they can be successfully used
for modeling and studying queueing systems with signalling mechanisms. The
idea of negative customers was originated by Gelenbe [8] in the context of neural
networks and subsequently was developed within the area of queueing networks
(Gelenbe [9]). There now exists a significant amount of results about product-form
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queueing networks with negative customers and other relevant entities as triggers,
signals etc. A broad review of such results can be found in Gelenbe and Pujolle [13]
and Chao et al. [5].

The notion of negative customers was also used in more intricate models with
non-Markovian assumptions. In this sense, we mention Harrison and Pitel [14]
who studied the M/G/1 queue with negative customers while Yang et al. [30]
studied an M/G/1 stochastic clearing system. Artalejo [1] summarizes several
diverse applications of negative customers as a mechanism for work removal in
queueing systems.

However, although the performance evaluation of such systems has been ex-
tensively studied, it seems that there do not exist results in the literature on the
control of queueing systems using negative customers. The purpose of the present
paper is to study in detail a Markov decision problem for the basic model of an
MX/M/1 queue that is controlled by batches of negative customers. The necessity
of dealing with a Markovian model should be understandable since the analysis
of the M/G/1 model is very complicated (see Harrison and Pitel [14]) and the
control problem for such a model seems too difficult to solve.

Queueing systems with batch transitions (arrivals or departures) that incorpo-
rate some kind of dynamic control mechanism appear in many Operations Research
problems and more specifically in assembly and transportation problems occurring
in manufacturing, inventory control etc. These models are inherently much more
complex than the single transition models and in most cases we cannot character-
ize their optimal policy nor can we extract an exact formula for their stationary
distribution under a given policy.

Most of the reported results concern either systems with batch arrivals, single
departures and a control mechanism that affects the speed (rate) of the service
(see for example Federgruen and Tijms [7], Nishigaya et al. [18], Nishimura and
Jiang [19] and Nobel and Tijms [20]) or systems with a control mechanism that
introduces total catastrophes which remove all the units of the system (see for
example Kyriakidis [16,17] and Economou [6]). Moreover, Deb and Serfozo [4] and
Deb [3] studied optimal control problems for bulk queues. Teghem [28] summarizes
the early results about the control of service in queueing systems. The dynamic
programming approach prevails in this kind of problems. Standard references are
Ross [22,23] and Bertsekas [2]. For a recent account and queueing applications see
Hernandez-Lerma and Lasserre [15], Puterman [21] and Sennott [24].

A flow of negative arrivals can be viewed as a second flow of departures. From
a performance analysis point of view for a Markovian queueing system with both
regular services and negative arrivals, the model is equivalent to a model with only
one service flow consisting in the superposition of regular (service) and negative
departures. However, from the control point of view there exists essential difference
in the cost structure. In a system with negative arrivals, it seems natural to
assign costs associated with the erased customers. These costs are accumulated
every time that one or several customers are removed by negative arrivals and
correspond to loss-of-profit, reimbursement or removal costs that should be paid
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by the administrator of the system. It is exactly this enriched cost structure that
differentiates our study radically from the above mentioned works.

The following service system is considered: groups of customers arrive at a
service station according to a Poisson process at rate λ. The sizes of successive
arriving groups are independent identically distributed random variables and in-
dependent of the arrival times. Let (gj : j = 1, 2, ...) be the group size discrete
probability mass function. There is a single server who serves one customer at a
time. The service times are independent exponentially distributed random vari-
ables with parameter µ, independent of everything else. The system has an infinite
waiting room and is equipped with a negative batch mechanism (batch removing
mechanism) which can be in one of two modes: on or off. The mechanism is char-
acterized by its capability N and its rate ν. Whenever the mechanism is off it does
not have any influence to the system. If it is on then it produces batches of N neg-
ative customers at rate ν. A batch of N negative customers remove immediately
at most N of the present customers, i.e. if there exist n present customers in the
system, it removes min(n, N) of them. The controller may turn the negative batch
mechanism on or off at any transition epoch. This system will be referred as the
MX/M/1 queue with a negative batch control mechanism. The negative batch
mechanism can be thought of as a “vehicle” with capacity N that is activated to
move some customers elsewhere when the system is congested. Alternatively, it
can be thought of as a signaling mechanism that produces batches of N negative
arrivals that remove (or cancel) regular customers of the system.

In the present study, we are interested in characterizing the optimal policy
under a natural cost structure, in computing the stationary distribution and in
proving qualitative properties concerning stochastic comparison and asymptotic
questions. The complete understanding of such a simple system may facilitate the
study of more complex systems, in particular the study of tree-like networks that
occur in several fields of applications.

It should be noted that the batch mechanism consisting in removing min(n, N)
of the n present customers can be viewed as a particular case of the batch removal
mechanism investigated by Gelenbe [10], in the more general context of an open
G-network with a finite number of nodes. In Gelenbe [10] a negative arrival is
allowed to remove a batch of random size. Since we assume a batch arrival input,
it is mathematically convenient to reduce the batch removal size to the constant N ;
otherwise, the underlying matricial structure could yield to a matrix having all its
elements strictly positive. A reduction to the single arrival case would allow us to
consider more general batch removal distributions. The investigation of optimal
control problems for models of type M/MX/1 could be the subject matter of any
subsequent paper.

The paper is organized as follows. In Section 2 we describe a natural cost
structure and we deduce conditions that imply the existence of an optimal sta-
tionary policy of threshold type under the expected total discounted cost criterion.
In Section 3 we study the stability of the system and its stationary distribution
under an arbitrary threshold policy. More specifically, we present an exact and an
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asymptotic result for the computation of the stationary distribution in the gen-
eral case. In Section 4 we also illustrate a more efficient way of computation for
the single arrivals case. In Section 5 we prove a complete stochastic comparison
characterization for models with identical parameters that operate under differ-
ent thresholds. In Section 6 we examine the original control problem under the
average cost criterion.

2. The total discounted cost Markov decision problem

We consider the system that we described in the introduction with the following
cost structure: there is a running cost s per time unit (i.e. a cost that incurred
at rate s whenever the server is busy) and a holding cost c per customer and time
unit. Whenever the negative batch mechanism is in the on mode there is a cost
d per time unit (this encompasses the cost of power for running the mechanism,
labor costs for maintaining the mechanism etc.). In addition there exists a cost e
per erased customer. Note that costs s, c and d are accumulated in a continuous
manner, during a sojourn time (i.e. a transition interval). However, cost e per
erased customer is charged at the end of a sojourn time in state i if the negative
batch mechanism is on and a negative arrival has occurred.

Let {X(t)} be the stochastic process that describes the evolution of the number
of the customers in the system (state of the system). Its state space is the set of
non-negative integers Z+

0 . Now whenever a transition occurs and state i is entered,
we can take one of two possible control actions: set the batch removing mechanism
on or off. Define

f =
{

1 when the on mode is chosen,
0 when the off mode is chosen. (1)

We consider the problem of finding an optimal policy under the expected total
discounted cost criterion. To this end we define V π

β (i) to be the total expected
β-discounted cost under a given arbitrary policy π, starting from an initial state i.
By well-known theorems on the expected total discounted cost criterion (see e.g.
Ross [23]), we conclude that there exists an optimal stationary policy. We use
the standard uniformization technique; for details see Serfozo [26]. We choose
the uniformization rate γ = λ + µ + ν and set α = γ/(β + γ), pk = λgk/γ,
k ≥ 1, p = λ/γ, q = µ/γ and r = ν/γ. Consider an arbitrary stationary policy
f = (f(i) : i = 0, 1, ...). Then

V f
β (i) =

1
β + γ

E

[ ∞∑
k=0

αkc(Xk, f(Xk))|X0 = i

]
, (2)

where Xk is the corresponding uniformized discrete-time Markov decision process
and c(i, f)/(β + γ) is the expected discounted one-step cost when taking action f
in state i in the uniformized model. Applying Serfozo [26] formulas about the cost
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structure of the uniformized model we obtain

c(i, f) = min(i, 1)s + ci + df + min(i, N)eνf. (3)

The transition probabilities of the uniformized discrete-time Markov decision pro-
cess {Xk} are given by

p0j(f) =
{

pk if j = k, k ≥ 1
r + q if j = 0,

pij(f) =




pk if j = i + k, k ≥ 1
r(1 − f) if j = i
q if j = i − 1
rf if j = 0,

1 ≤ i ≤ N − 1,

pij(f) =




pk if j = i + k, k ≥ 1
r(1 − f) if j = i
q if j = i − 1
rf if j = i − N,

i ≥ N. (4)

Therefore the problem reduces to find an optimal policy for the corresponding
α-discounted discrete time model, that is to minimize

E

[ ∞∑
k=0

αkc(Xk, f(Xk))|X0 = i

]
.

The cost function c(i, f) is unbounded due to its linear dependence on the queue
length i. However since all costs are non-negative, the standard optimality equa-
tion for the total expected discounted cost criterion is applicable (see Ross [22],
Sect. 6.4). Let Vα(i) be the minimum expected α-discounted cost when the initial
state of the process is i. Then

Vα(0) = α

∞∑
k=1

pkVα(k) + α(r + q)Vα(0) + min
f∈{0,1}

[fd] , (5)

Vα(i) = ci + s + α

∞∑
k=1

pkVα(i + k) + αrVα(i) + αqVα(i − 1)

+ min
f∈{0,1}

[f(d + ieν − αr(Vα(i) − Vα(0)))], 1 ≤ i ≤ N − 1, (6)

Vα(i) = ci + s + α
∞∑

k=1

pkVα(i + k) + αrVα(i) + αqVα(i − 1)

+ min
f∈{0,1}

[f(d + Neν − αr(Vα(i) − Vα(i − N)))], i ≥ N. (7)



126 J.R. ARTALEJO AND A. ECONOMOU

Let f∗
α = (f∗

α(i)) be an optimal stationary policy which attains the minimum in
the right side of Vα(i). Set

∆Vα(i) = Vα(i) − Vα((i − N)+) =
{

Vα(i) − Vα(0) if i ≤ N − 1
Vα(i) − Vα(i − N) if i ≥ N.

(8)

We can immediately conclude that the optimal control action at state i is de-
fined by:

f∗
α(0) = 0

f∗
α(i) = 1 ⇐⇒ Fα(i) < 0, i ≥ 1, (9)

where

Fα(i) = d + min(i, N)eν − αr∆Vα(i), i ≥ 0. (10)

We are interested in finding conditions that assure that the optimal policy is of
threshold type (also known as control-limit type). A stationary policy f∗

α = (f∗
α(i))

is said to be of threshold type if there exists a number i∗α (the threshold) such that

f∗
α(i) = 1 ⇐⇒ i ≥ i∗α.

We will use the so-called method of successive approximations of the value func-
tion Vα(i), i.e. we consider the sequence of the corresponding finite-horizon ver-
sions of the problem. We denote by Vn,α(i) the minimum n-step expected α-
discounted cost, starting from state i. Similarly we define ∆Vn,α(i) = Vn,α(i) −
Vn,α((i − N)+) and Fn,α(i) = d + min(i, N)eν − αr∆Vn,α(i), for i ≥ 0.

The proofs of this section use inductive arguments and so we need first to estab-
lish recursive relations for the quantities Vn,α(i), ∆Vn,α(i) and Fn,α(i). Denote by

δij =
{

1 if i = j
0 if i �= j

the Kronecker’s symbol. We have:

V0,α(i) = 0, i ≥ 0,

Vn+1,α(i) = ci + s(1 − δi0) + α

∞∑
k=1

pkVn,α(i + k) + αrVn,α(i)

+ αqVn,α((i − 1)+) + min[d + min(i, N)eν − αr∆Vn,α(i), 0],

i ≥ 0, n ≥ 0. (11)
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For the difference Vn,α(i+1)−Vn,α(i) of two successive terms of the value function
we obtain the recursion:

V0,α(i + 1) − V0,α(i) = 0, i ≥ 0,

Vn+1,α(i + 1) − Vn+1,α(i) = c + sδi0 + α

∞∑
k=1

pk(Vn,α(i + k + 1) − Vn,α(i + k))

+ αr(Vn,α(i + 1) − Vn,α(i)) + αq(Vn,α(i) − Vn,α((i − 1)+))

+ min[d + min(i + 1, N)eν − αr∆Vn,α(i + 1), 0]

− min[d + min(i, N)eν − αr∆Vn,α(i), 0],

i ≥ 0, n ≥ 0. (12)

For obtaining recursive relations for the function ∆Vn,α we should consider two
different cases for i ≤ N − 1 and i ≥ N. We have:

∆V0,α(i) = 0, i ≥ 0,

∆Vn+1,α(i) = ci + s(1 − δi0) + α

∞∑
k=1

pk(Vn,α(i + k) − Vn,α(k))

+ αr∆Vn,α(i) + αq∆Vn,α((i − 1)+)

+ min[d + min(i, N)eν − αr∆Vn,α(i), 0],

i ≤ N − 1, n ≥ 0, (13)

∆Vn+1,α(i) = cN + sδiN + α
∞∑

k=1

pk∆Vn,α(i + k)

+ αr∆Vn,α(i) + αq∆Vn,α(i − 1) + min[d + Neν − αr∆Vn,α(i), 0]

− min[d + min(i − N, N)eν − αr∆Vn,α(i − N), 0],

i ≥ N, n ≥ 0. (14)
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Then for the differences ∆Vn,α(i+1)−∆Vn,α(i) of successive terms of the function
∆Vn,α(i) we obtain the recursion:

∆V0,α(i + 1) − ∆V0,α(i) = 0, i ≥ 0,

∆Vn+1,α(i + 1) − ∆Vn+1,α(i) = c + sδi0 + α

∞∑
k=1

pk(Vn,α(i + k + 1)−Vn,α(i + k))

+ αr(∆Vn,α(i + 1) − ∆Vn,α(i))

+ αq(∆Vn,α(i) − ∆Vn,α((i − 1)+))

+ min[d + (i + 1)eν − αr∆Vn,α(i + 1), 0]

− min[d + ieν − αr∆Vn,α(i), 0],

i ≤ N − 1, n ≥ 0, (15)

∆Vn+1,α(i + 1) − ∆Vn+1,α(i) = −sδiN +α

∞∑
k=1

pk(∆Vn,α(i+k+1)−∆Vn,α(i+k))

+ αr(∆Vn,α(i + 1) − ∆Vn,α(i))

+ αq(∆Vn,α(i) − ∆Vn,α(i − 1))

+ [min[d + Neν − αr∆Vn,α(i + 1), 0]

− min[d + Neν − αr∆Vn,α(i), 0]]

− [min[d + min(i + 1 − N, N)eν

− αr∆Vn,α(i + 1 − N), 0]

− min[d + min(i−N, N)eν−αr∆Vn,α(i−N), 0]],

i ≥ N, n ≥ 0. (16)

Since we are interested in monotonicity and non-negativity properties of Fn,α(i),
we will also use the relation

Fn,α(i+1)−Fn,α(i) =
{

eν − αr(∆Vn,α(i + 1) − ∆Vn,α(i)) if i ≤ N − 1
−αr(∆Vn,α(i + 1) − ∆Vn,α(i)) if i ≥ N

(17)

and the equivalences

Fn,α(i + 1) ≤ Fn,α(i) ⇐⇒
{

∆Vn,α(i + 1) − ∆Vn,α(i) ≥ eν
αr if i ≤ N − 1

∆Vn,α(i + 1) − ∆Vn,α(i) ≥ 0 if i ≥ N
(18)

and

Fn,α(i) ≤ 0 ⇐⇒ ∆Vn,α(i) ≥ d + min(i, N)eν
αr

· (19)

We will also frequently use the elementary fact that for any x, y ∈ R:

min(x, 0) − min(y, 0) ≥ min(x − y, 0). (20)

We are now in position to prove the first proposition that states a monotonicity
result about Vn,α(i).
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Proposition 1. Vn,α(i) is non-decreasing in i, for all n = 0, 1, ...

Proof. We use induction on n. For n = 0 the proposition is true trivially since
V0,α(i) = 0 for all i ≥ 0. Suppose that the proposition is true for some fixed n,
i.e. Vn,α(i) is non-decreasing in i. Next we make use of (12) and (20) to get that

Vn+1,α(i + 1) − Vn+1,α(i) ≥ c + sδi0 + α
∞∑

k=1

pk(Vn,α(i + k + 1) − Vn,α(i + k))

+ αr(Vn,α(i + 1) − Vn,α(i)) + αq(Vn,α(i) − Vn,α((i − 1)+))

+ min[min(i + 1, N)eν − min(i, N)eν

− αr(∆Vn,α(i + 1) − ∆Vn,α(i)), 0], i ≥ 0. (21)

We consider two cases. If the minimum on the right hand side of expression (21)
is zero then Vn+1,α(i + 1) − Vn+1,α(i) ≥ 0 by the inductive hypothesis. In the
other case, by replacing ∆Vn,α(i) by Vn,α(i) − Vn,α((i − N)+), expression (21) is
written as

Vn+1,α(i + 1) − Vn+1,α(i) ≥ c + sδi0 + α

∞∑
k=1

pk(Vn,α(i + k + 1) − Vn,α(i + k))

+ αr(Vn,α((i + 1 − N)+) − Vn,α((i − N)+))

+ αq(Vn,α(i) − Vn,α((i − 1)+))

+ min(i + 1, N)eν − min(i, N)eν,

which is non-negative due to the inductive hypothesis and the inequality min(i +
1, N)eν − min(i, N)eν ≥ 0 which is obviously valid. �

Since the method of successive approximations relies on inductive arguments, we
need conditions that assure that the properties of the optimal policy (equivalently
properties of Fn,α(i)) are preserved for the various values of n, as n → ∞. We
have the following two lemmas:

Lemma 2. If

eν ≤ min
{

αr(c + s)
1 − αr

,
αrc

1 − α(1 − p)

}
(22)

and for some n0 ≥ 1, Fn0,α(i) is non-increasing in the domain i ∈ {0, ..., N} then
Fn,α(i) is non-increasing in the domain i ∈ {0, ..., N} for all n ≥ n0.

Proof. We use induction on n. By the statement of the lemma we have that for
n = n0, Fn,α(i) is non-increasing in the domain i ∈ {0, ..., N}. Suppose that it is
valid for some fixed n ≥ n0.
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Then by (15) we have that for i ≤ N − 1

∆Vn+1,α(i + 1) − ∆Vn+1,α(i) = c + sδi0 + α

∞∑
k=1

pk(Vn,α(i + k + 1) − Vn,α(i + k))

+ αr(∆Vn,α(i + 1) − ∆Vn,α(i))

+ αq(∆Vn,α(i) − ∆Vn,α((i − 1)+))

+ min(Fn,α(i + 1), 0) − min(Fn,α(i), 0). (23)

Note that
∑∞

k=1 pk(Vn,α(i + k + 1) − Vn,α(i + k)) ≥ 0 because of Proposition 1.
Moreover, using (20) we have

min(Fn,α(i + 1), 0) − min(Fn,α(i), 0) ≥ min(Fn,α(i + 1) − Fn,α(i), 0)

= Fn,α(i + 1) − Fn,α(i)

= eν − αr(∆Vn,α(i + 1) − ∆Vn,α(i)),

because of the inductive hypothesis and (17). We consider two cases:

Case I: 1 ≤ i ≤ N − 1. Then (23) implies that

∆Vn+1,α(i + 1) − ∆Vn+1,α(i) ≥ c + αr(∆Vn,α(i + 1) − ∆Vn,α(i))

+ αq(∆Vn,α(i) − ∆Vn,α((i − 1)+))

+ eν − αr(∆Vn,α(i + 1) − ∆Vn,α(i))

≥ c + αq
eν

αr
+ eν,

where the last inequality results from the inductive hypothesis and (18). By the
Condition (22)

(
eν ≤ αrc

1−α(1−p)

)
we obtain ∆Vn+1,α(i + 1) − ∆Vn+1,α(i) ≥ eν

αr ·
But now (18) implies that Fn+1,α(i + 1) ≤ Fn+1,α(i).

Case II: i = 0. In that case ∆Vn+1,α(i) = 0 and therefore

∆Vn+1,α(1) − ∆Vn+1,α(0) ≥ c + s + αr∆Vn,α(1) + (eν − αr∆Vn,α(1))
= c + s + eν.

By the Condition (22) (eν ≤ αr(c+s)
1−αr ) and (17) we easily find that Fn+1,α(1) ≤

Fn+1,α(0). �

Lemma 3. If

d + Neν ≤ min
{

αrcN

1 − α
,

αr(cN + s)
1 − α(1 − q)

}
(24)

and for some n0 ≥ 1, Fn0,α(i) ≤ 0 for i ≥ N then for all n ≥ n0 we have
Fn,α(i) ≤ 0 for i ≥ N.
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Proof. We use induction on n. By the statement of the lemma we have the result
for n = n0. Assume that it is valid for some n ≥ n0. Then by (14) we have

∆Vn+1,α(N) = cN + s + α

∞∑
k=1

pk∆Vn,α(N + k) + αr∆Vn,α(N)

+ αq∆Vn,α(N − 1) + min(Fn,α(N), 0) − min(Fn,α(0), 0). (25)

But ∆Vn,α(N + k) ≥ (d + Neν)/αr, k = 1, 2, ... by the inductive hypothesis
and (19). Moreover the inductive hypothesis implies that min(Fn,α(N), 0) =
Fn,α(N) = d + Neν −αr∆Vn,α(N). We have also that min(Fn,α(0), 0) = 0 and by
Proposition 1 that αq∆Vn,α(N − 1) ≥ 0. Therefore (25) implies that

∆Vn+1,α(N) ≥ cN + s + α

∞∑
k=1

pk
d + Neν

αr
+ d + Neν. (26)

By the Condition (24)
(
d + Neν ≤ αr(cN+s)

1−α(1−q)

)
we obtain

∆Vn+1,α(N) ≥ d + Neν

αr
· (27)

Now (19) and (27) imply that Fn+1,α(N) ≤ 0.
We now analyse Fn+1,α(i) for i ≥ N + 1. Using (14) we have

∆Vn+1,α(i) = cN + α

∞∑
k=1

pk∆Vn,α(i + k) + αr∆Vn,α(i) + αq∆Vn,α(i − 1)

+ min(Fn,α(i), 0) − min(Fn,α(i − N), 0). (28)

But ∆Vn,α(i − 1) ≥ (d + Neν)/αr and ∆Vn,α(i + k) ≥ (d + Neν)/αr, k = 1, 2, ...,
by the inductive hypothesis and (19). Moreover min(Fn,α(i), 0) = Fn,α(i) = d +
Neν − αr∆Vn,α(i) by the inductive hypothesis and −min(Fn,α(i − N), 0) ≥ 0.

Then, using Condition (24)
(
d + Neν ≤ αrcN

1−α

)
, (28) implies that

∆Vn+1,α(i) ≥ cN + α

∞∑
k=1

pk
d + Neν

αr
+ αq

d + Neν

αr
+ d + Neν

= cN +
d + Neν

r
≥ d + Neν

αr
·

Then by (19) we obtain that Fn+1,α(i) ≤ 0, i ≥ N + 1. �
The conditions of Lemma 2 establish the monotonicity of Fα(i) in the domain

i ∈ {0, ..., N}. In contrast the conditions of Lemma 3 imply the non-positivity of
Fα(i) in the domain i ∈ {N, N +1, ...}. By combining Lemmas 2 and 3 we obtain
the following.
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Corollary 4. If the Condition (22) holds and the strict inequality is given in
Condition (24), and for some n0 ≥ 1 we have that Fn0,α(i) is non-increasing in
the domain i ∈ {0, ..., N} and Fn0,α(i) ≤ 0 for i ≥ N then

Fα(N) ≤ Fα(N − 1) ≤ ... ≤ Fα(1) ≤ Fα(0) (29)

and
Fα(i) < 0, i ≥ N. (30)

Proof. The conditions of Lemmas 2 and 3 are valid, so we conclude that for all
n ≥ n0 Fn,α(i) is non-increasing in the domain i ∈ {0, ..., N} and Fn,α(i) ≤ 0, for
i ≥ N. It is also known that Vn,α(i) −→ Vα(i) as n −→ ∞; hence we also obtain
that ∆Vn,α(i) −→ ∆Vα(i) and Fn,α(i) −→ Fα(i) as n −→ ∞ and we obtain (29)
and Fα(i) ≤ 0 for i ≥ N . To obtain (30) we have to prove that Fα(i) �= 0 for
i ≥ N.

To a contradiction, suppose there exists an ı̃ ≥ N such that Fα(̃ı) = 0, or
equivalently ∆Vα(̃ı) = (d + Neν)/αr. Then we observe that

d + Neν

αr
= ∆Vα(̃ı) = cN + sδı̃N + α

∞∑
k=1

pk∆Vα(̃ı + k) + αr∆Vα (̃ı)

+ αq∆Vα (̃ı − 1) + min(d + Neν − αr∆Vα (̃ı), 0)

− min(d + min(̃ı − N, N)eν − αr∆Vα (̃ı − N), 0).

But d+Neν−αr∆Vα (̃ı) = 0 and −min(d+min(̃ı−N, N)eν−αr∆Vα(̃ı−N), 0) ≥ 0,
so we obtain

d + Neν

αr
≥ cN + sδı̃N + α

∞∑
k=1

pk∆Vα(̃ı + k) + d + Neν + αq∆Vα(̃ı − 1). (31)

We distinguish the following two cases:

Case I: ı̃ = N. Then (31) and Condition (24)
(
d + Neν < αr(cN+s)

1−α(1−q))

)
imply that

d + Neν

αr
≥ cN + s + α

∞∑
k=1

pk
d + Neν

αr
+ d + Neν >

d + Neν

αr
,

a contradiction.

Case II: ı̃ ≥ N +1. Then, similarly to case I, (31) and Condition (24)
(
d+Neν <

αrcN
1−α

)
imply that

d + Neν

αr
≥ cN + α

∞∑
k=1

pk
d + Neν

αr
+ d + Neν + αq

d + Neν

αr
>

d + Neν

αr
,

a contradiction. �
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We are now in position to prove the following.

Theorem 5. Under the infinite horizon total discounted cost criterion and the
condition

d ≤ N(αrc − eν) (32)
there exists a threshold type optimal stationary policy of the form

f∗
α(i) = 1 ⇐⇒ i ≥ i∗α, (33)

where i∗α ∈ {1, ..., N}·
Proof. We first consider the one-step α-discounted problem. We have that

V1,α(i) = ci + s(1 − δi0),

∆V1,α(i) =
{

ci + s(1 − δi0) if i ≤ N − 1
cN + sδiN if i ≥ N

and we obtain that

F1,α(0) = d,

F1,α(i) = d + ieν − αr(ci + s), 1 ≤ i ≤ N,

F1,α(i) = d + Neν − αrcN, i ≥ N + 1. (34)

The Condition (32) implies that αrc − eν ≥ 0 so F1,α(i) is non-increasing in the
domain i ∈ {0, ..., N} and that F1,α(i) ≤ 0 for i ≥ N. Therefore we have the
desired properties for the function Fn0,α(i) of Corollary 4, for n0 = 1. Note also
that

(1 − αr)eν < eν ≤ αrc ≤ αr(c + s) =⇒ eν <
αr(c + s)
1 − αr

,

(1 − α(1 − p))eν < eν ≤ αrc =⇒ eν <
αrc

1 − α(1 − p)

i.e. (22) holds. Similarly we have

(d + Neν)(1 − α) < d + Neν ≤ αrcN =⇒ d + Neν <
αrcN

1 − α
,

(d + Neν)(1 − α(1 − q)) < d + Neν ≤ αr(cN + s) =⇒ d + Neν <
αr(cN + s)
1 − α(1 − q)

,

and we conclude that (24) holds and the inequality is strict. Therefore Corollary 4
is applicable and we conclude that (29) and (30) hold. Moreover Fα(0) = d ≥ 0
and Fα(N) < 0 so we conclude that there exists i∗α ∈ {1, ..., N} such that

Fα(i) =
{ ≥ 0 for i = 0, ..., i∗α − 1

< 0 for i = i∗α, i∗α + 1, ...

and the optimal policy is of the form (33). �
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Remark 6. A careful examination of Lemmas 2 and 3 and the proof of Theorem
5 reveals that the Condition (32) is sufficient for having

Fn,α(N) ≤ Fn,α(N − 1) ≤ ... ≤ Fn,α(1) ≤ Fn,α(0) (35)
Fn,α(i) ≤ 0, i ≥ N, (36)

for all n ≥ 1. On the other hand, if (35) and (36) hold for all n ≥ 1, we have in
particular F1,α(N + 1) ≤ 0 which implies (32). Thus, Condition (32) is necessary
and sufficient for the validity of (35) and (36) for all n ≥ 1. This shows that
Condition (32) is in some sense minimal and cannot be weakened if ones uses the
method of successive approximations for deriving the above structural properties
of the optimal function.

Remark 7. Another approach that seems more natural at first glance than ours
is to try to find conditions that imply that Fn,α(i) is non-increasing in the domain
i ∈ {0, 1, ...} for all n ≥ 1. In the classical control problems in queueing (e.g.
M/M/1 queue with controlled service rate, M/M/1 queue with controlled arrival
rate, routing in a two station network etc.) that are summarized in Bertsekas [2]
a similar argument is used. However, in the framework of the present model this
approach does not work. The reason is that the function F1,α(i) is not monotone
as it readily seen by (34):

F1,α(0) ≥ F1,α(1) ≥ ... ≥ F1,α(N) ≤ F1,α(N + 1) = F1,α(N + 2) = ....

This singularity at i = N for n = 1 is transferred to greater n′s and destroys
completely the monotonicity behavior of Fn,α(i) for i ≥ N. This is why it is
needed to handle differently the cases i ≤ N and i ≥ N in the lines of Lemmas 2
and 3.

In the case where s = 0 this singularity disappears and we can prove that
Fn,α(i) is non-increasing in i for all n ≥ 1, under the condition eν − αrc ≤ 0.

Theorem 5 assures that for sufficiently small d the optimal policy is of threshold
type. On the other extreme, that is when d becomes large, we have that the trivial
off-policy is optimal.

Theorem 8. If

d ≥ αr(cN + s)
1 − α

(37)

then Fn,α(i) ≥ 0 and ∆Vn,α(i) ≤ d
αr , for i ≥ 0, n ≥ 0. Hence the trivial off-policy

f∗
α(i) = 0, i ≥ 0, is optimal.

Proof. By (34) we have that F1,α(i) ≥ d−αr(cN + s) and ∆V1,α(i) ≤ cN + s, for
i ≥ 0. Using Condition (37) we can easily see that F1,α(i) ≥ 0, and ∆V1,α(i) ≤
d/αr, for i ≥ 0, i.e. the result is valid for n = 1. Suppose that it is valid for some
n ≥ 1, i.e. Fn,α(i) ≥ 0, and ∆Vn,α(i) ≤ d/αr, for i ≥ 0. We analyse the case for
n + 1.
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Case I: i ≤ N − 1. By (13) we have that

∆Vn+1,α(i) = ci + s(1 − δi0) + α

∞∑
k=1

pk(Vn,α(i + k) − Vn,α(k))

+ αr∆Vn,α(i) + αq∆Vn,α((i − 1)+)

+ min(Fn,α(i), 0), i ≤ N − 1. (38)

Note that because of Proposition 1 we have that

Vn,α(i + k) − Vn,α(k) ≤ Vn,α(i + k) − Vn,α((i + k − N)+) = ∆Vn,α(i + k)

and by the inductive hypothesis ∆Vn,α(i) ≤ d
αr ≤ d+Neν

αr and min(Fn,α(i), 0) = 0.
Hence (37) and (38) imply that

∆Vn+1,α(i) ≤ cN + s + α

( ∞∑
k=1

pk + r + q

)
d

αr

= cN + s +
d

r
≤ d

αr
,

and we obtain ∆Vn+1,α(i) ≤ d+min(i,N)eν
αr , i.e. Fn+1,α(i) ≥ 0.

Case II: i ≥ N. By (14) we have that

∆Vn+1,α(i) = cN + sδiN + α

∞∑
k=1

pk∆Vn,α(i + k) + αr∆Vn,α(i)

+ αq∆Vn,α(i − 1) + min(Fn,α(i), 0)

− min(Fn,α(i − N), 0), i ≥ N.

But by the inductive hypothesis and the Condition (37) we obtain as in Case I
that ∆Vn+1,α(i) ≤ d

αr so Fn+1,α(i) ≥ 0. �

3. Model stability and stationary distribution

In this section we study the stability (i.e. the positive recurrence) of a model
that operates under a given threshold policy and its stationary distribution. Let i∗

be the given threshold. Then the infinitesimal rates qij of the process {X(t)} that
describes the evolution of the number of customers in the system are given by

q(i, j) =




λgj−i if i ≥ 0, j ≥ i + 1
µ if i ≥ 1, j = i − 1
ν if i ≥ i∗, j = (i − N)+

0 otherwise.

(39)
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Proposition 9. The queueing model with transition rates (39) is positive recurrent
if and only if

λḡ < µ + νN. (40)

Proof. Let {X̂n : n = 0, 1, ...} be the embedded discrete-time Markov chain of
{X(t)} at its transition epochs. Let also qi be the rate of the exponential distribu-
tion that governs the length of a sojourn time in state i for the process {X(t)}. We
observe that supi≥0{qi} = λ + µ + ν < ∞ and infi≥0{qi} = λ > 0. Thus, {X(t)}
is positive recurrent if and only if {X̂n} is positive recurrent. To investigate the
positive recurrence of {X̂n} we use the classical criteria based on the mean drifts
of {X̂n}.

Sufficiency of Condition (40) for positive recurrence:
a sufficient condition for the ergodicity of {X̂n} is the existence of a non-negative

function f(i), i ∈ S = {0, 1, ...} (known as Lyapunov function), a positive number
ε > 0 and a finite subset H ⊆ S such that the mean drift γi = E[f(X̂n+1)|X̂n =
i]− f(i) is finite for all i ∈ S and γi ≤ −ε for all i /∈ H (Foster’s criterion). Let us
consider f(i) = i, i ∈ S. Then

γ0 =
∞∑

k=1

λgk

λ
k = ḡ > 0

γi =
∞∑

k=1

λgk

λ + µ
(i + k) +

µ

λ + µ
(i − 1) − i =

λḡ − µ

λ + µ
, 1 ≤ i ≤ i∗ − 1

γi =
∞∑

k=1

λgk

λ + µ + ν
(i + k) +

µ

λ + µ + ν
(i − 1) +

ν

λ + µ + ν
(i − N)+ − i

=
λḡ − µ − min(i, N)ν

λ + µ + ν
, i ≥ i∗.

Now we can take H = {0, 1, ..., N−1} and ε = 1
2

νN+µ−λḡ
λ+µ+ν . Since γi < −ε, i /∈ H, by

the Foster’s criterion it follows that Condition (40) is sufficient for the ergodicity
of {X̂n}.

Necessity of Condition (40) for positive recurrence:
We use Sennott et al. [25] Theorem 1 that states the following: let (p̂ij) be the

transition probability matrix associated to an irreducible, aperiodic discrete-time
Markov chain {X̂n} with state-space S. If E[X̂n+1|X̂n = i] − i is finite for all
i ∈ S, δi =

∑
j≤i(j − i)p̂ij ≥ −c (a constant) for all i ∈ S and there exists N such

that E[X̂n+1|X̂n = i] − i ≥ 0 for all i ≥ N then X̂n is not ergodic.
If λḡ ≥ µ+νN then γi ≥ 0 for all i. We also note that p̂ij = 0 for j < i−N. This

guarantees that the condition on δi is satisfied so Sennott et al. theorem applies
and we conclude that X̂n is not ergodic. Therefore Condition (40) is necessary for
positive recurrence. �

If we reduce to the single arrival case (i.e., g1 = 1, gk = 0 for k ≥ 2), then
it is possible to check that the stability Condition (40) agrees with appropriate
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particularizations of the stability results given by Gelenbe and Schassberger [12]
in the context of G-networks and by Gelenbe et al. [11] for single node queues with
more general descriptions of arrival and service processes.

Suppose now that the stability Condition (40) holds. We are interested in
determining the stationary distribution (πi : i = 0, 1, ...) of the model. The balance
equations for the model are

λπ0 = µπ1 + ν

N∑
i=i∗

πi

(λ + µ + ν1[i ≥ i∗])πi = λ

i−1∑
k=0

gi−kπk + µπi+1 +νπi+N1[i + N ≥ i∗], i ≥ 1. (41)

We introduce the generating functions Π(z) =
∑∞

i=0 πiz
i and G(z) =

∑∞
i=1 giz

i,
|z| ≤ 1. As it will be apparent below, the computation of Π(z) requires the study
of the function

D(z) = λ(1 − G(z))zN + µ(z − 1)zN−1 + ν(zN − 1). (42)

Lemma 10. If the stability Condition (40) holds, then the equation D(z) has N
zeros z1, z2, ..., zN in the unit disk {z : |z| ≤ 1}. Order them so as |z1| ≤ |z2| ≤
... ≤ |zN |. Then zN = 1 and |zr| < 1, for 1 ≤ r ≤ N − 1.

Proof. We have that

D(z) = 0 ⇔ zN =
µzN−1 + ν

λ(1 − G(z)) + µ + ν
· (43)

To investigate the roots of this equation we will use Rouché’s theorem: if f(z) and
g(z) are analytic functions of z inside and on a closed contour C on the complex
z−plane and if |g(z)| < |f(z)| on C, then f(z) and f(z) + g(z) have the same
number of zeros inside C.

Take f(z) = zN and g(z) = −(µzN−1 + ν)/(λ(1 − G(z)) + µ + ν). Note that

−g(z) =
µzN−1 + ν

µ + ν

µ + ν

λ(1 − G(z)) + µ + ν
· (44)

The first factor in (44) is the probability generating function of a random variable
with probability masses µ

µ+ν at N − 1 and ν
µ+ν at 0 respectively, while the second

factor is the probability generating function of a random variable representing
the number of events of a compound Poisson process with rate λ and group-size
distribution (gk) during an exponentially distributed interval with rate µ + ν.
Hence −g(z) is a probability generating function and we have that

−g(z) =
∞∑

k=0

akzk, (45)



138 J.R. ARTALEJO AND A. ECONOMOU

with ak ≥ 0, k = 0, 1, .... The mean
∑∞

k=0 kak of the underlying distribution is
obviously µ

µ+ν (N − 1) + λḡ 1
µ+ν , because of the above interpretation of the factors

in (44). Consider the function h(z) = zN − ∑∞
k=0 akzk. Then h(1) = 0 and

h′(1) = N − µ(N−1)+λḡ
µ+ν . The stability Condition(40) implies that h′(1) > 0 and

we conclude that for sufficient small ε > 0 we have h(1 + ε) > 0, that is

∞∑
k=0

ak(1 + ε)k < (1 + ε)N . (46)

Consider the contour C = {z : |z| = 1 + ε}. Then for z on this contour we have

|g(z)| ≤
∣∣∣∣∣
∞∑

k=0

akzk

∣∣∣∣∣ ≤
∞∑

k=0

ak|z|k =
∞∑

k=0

ak(1 + ε)k < (1 + ε)N = |f(z)|,

using (45) and (46). Rouché’s theorem is applicable and we have that f(z) and
f(z) + g(z) have the same number of zeros inside C. Clearly f(z) has N zeros
inside C, so by (43) D(z) has also N zeros inside C. By letting ε → 0 we obtain
that D(z) has N zeros in {z : |z| ≤ 1}. One of them is zN = 1. There do not exist
other zeros on the unit circle {z : |z| = 1}. Indeed consider a zero zr with |zr| ≤ 1
and zr �= 1. Then we have Re(G(zr)) < 1 which gives Re(λ(1 − G(zr))) > 0 and
we conclude that

|zr| =
∣∣∣∣ µzN−1

r + ν

λ(1 − G(zr)) + µ + ν

∣∣∣∣
1/N

< 1.

We have proved that N − 1 zeros are in the unit open disk {z : |z| < 1} while
another one is 1. �

We are now in position to obtain an exact expression for Π(z). We consider two
cases according to if i∗ < N or i∗ ≥ N .

Theorem 11. If the stability Condition (40) holds and i∗ < N then

Π(z) =
µ(z − 1)zN−1π0 + ν(zN − 1)

∑i∗−1
k=0 πkzk + ν

∑N−1
k=i∗ πk(zN − zk)

λ(1 − G(z))zN + µ(z − 1)zN−1 + ν(zN − 1)
· (47)

The stationary probabilities πi, i = 0, ..., N − 1, are determined by solving the
following N × N linear system of equations

µ(zr − 1)zN−1
r π0 + ν(zN

r − 1)
i∗−1∑
k=0

πkzk
r + ν

N−1∑
k=i∗

πk(zN
r − zk

r ) = 0,

r = 1, ..., N − 1 (48)

and

µπ0 + νN

i∗−1∑
k=0

πk + ν

N−1∑
k=i∗

πk(N − k) = µ + νN − λḡ. (49)
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Proof. By multiplying the ith equation (41) by zi and adding all of them we obtain
after some algebra

(λ + µ + ν)Π(z) = λG(z)Π(z) + µ

(
1 − 1

z

)
π0 +

µ

z
Π(z)

+ ν

i∗−1∑
k=0

πkzk + ν

N∑
k=i∗

πk − ν

zN

N∑
k=0

πkzk +
ν

zN
Π(z). (50)

Multiplying (50) by zN and solving for Π(z) results in (47).
We are now able to obtain the unknowns π0, ..., πN−1. From Lemma 10 we

have that the denominator D(z) of Π(z) in (47) has N −1 roots z1, ..., zN−1 in the
open unit disk {z : |z| < 1}. These roots must also be roots of the numerator N(z)
because Π(z) is analytic on the open unit disk. Hence we obtain the equations (48).
Another equation (49) is provided by the normalization equation Π(1) = 1, using
the L’ Hopital rule. �

Theorem 12. If the stability Condition (40) holds and i∗ ≥ N then

Π(z) =
µ(z − 1)zN−1π0 + ν(zN − 1)

∑i∗−1
k=0 πkzk

λ(1 − G(z))zN + µ(z − 1)zN−1 + ν(zN − 1)
· (51)

The stationary probabilities πi, i = 0, ..., i∗−1 are determined by solving the i∗× i∗

linear system of the equations

µ(zr − 1)zN−1
r π0 + ν(zN

r − 1)
i∗−1∑
k=0

πkzk
r = 0,

r = 1, ..., N − 1 (52)

µπ0 + νN

i∗−1∑
k=0

πk = µ + νN − λḡ, (53)

and the balance equations (41) corresponding to indexes i = 0, ..., i∗ − N − 1.

Proof. The proof is similar to the case i∗ < N so it is omitted. �

Remark 13. For the exact computation of the stationary distribution when i∗ <
N , we first compute the initial πi, i = 0, ..., N − 1 by solving the system (48),
(49). Then the probabilities πi, for i ≥ N, are obtained recursively using the
balance equations (41) for i = 0, 1, ... Similarly for the case i∗ ≥ N we compute
πi, i = 0, ..., i∗− 1 by solving the system integrated by (52)–(53) and the balanced
equations associated to indexes i = 0, ..., i∗ − N − 1, and then the probabilities
πi for i ≥ i∗ are obtained recursively using the balance equations (41) for i =
i∗ − N, ...
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Remark 14. The expression (51) agrees with formula (47), by noting that sums
of the type

∑N−1
k=i∗ are 0 for i∗ ≥ N . This enables us to treat the two cases i∗ ≥ N

and i∗ < N simultaneously, by using the formula (47).

We will now derive an asymptotic expression for the stationary probabilities of
the model using the representation (47) of the generating function Π(z).

Theorem 15. Under the stability Condition (40), the equation D(z) = 0 has a
unique real solution η in (1,∞). The stationary distribution (πj) is asymptotically
geometric with parameter η−1. More specifically

πj ∼ − N(η)
ηD′(η)

η−j , j → ∞, (54)

where N(z) and D(z) are the numerator and the denominator of Π(z) in the
representation (47).

Proof. We will use the following proposition of Tijms [29] (p. 453, Th. C.1). Let
P (z) be a probability generating function represented as

P (z) =
N(z)
D(z)

, |z| ≤ 1,

where N(z) and D(z) are analytic functions on a domain {z : |z| < R}, for some
R > 1. Under the conditions: (i) D(z) = 0 has a real root z0 in (1, R); (ii) D(z)
has no zeros in the domain {z : 1 < |z| < z0}; (iii) the zero z = z0 of D(z) is of
multiplicity 1 and is the only zero of D(z) on the circle {z : |z| = z0}; we have
that pj is asymptotically of the form given in (54), as j → ∞.

We will apply this proposition for P (z) = Π(z). We have to check that the
conditions (i)–(iii) are valid for the function D(z) given by (42). Note that D(z) =
(λ + µ + ν)zND1(z), where

D1(z) = 1 − λ

λ + µ + ν
G(z) − µ

λ + µ + ν
z−1 − ν

λ + µ + ν
z−N .

Equivalently, we can check conditions (i)–(iii) for D1(z). Let R = sup{|z| :
|G(z)| < ∞}. Then for z with 1 < |z| < R we have that |D1(z)| < ∞.

Set

f(x) = 1 − λ

λ + µ + ν
G(x) − µ

λ + µ + ν
x−1 − ν

λ + µ + ν
x−N , x ∈ [1, R).

Then

f ′(x) = − λ

λ + µ + ν
G′(x) +

µ

λ + µ + ν
x−2 +

Nν

λ + µ + ν
x−N−1, x ∈ [1, R),

f ′′(x) = − λ

λ + µ + ν
G′′(x) − 2µ

λ + µ + ν
x−3 − N(N + 1)ν

λ + µ + ν
x−N−2, x ∈ [1, R).
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Hence f ′′(x) < 0 for x ∈ [1, R) (f ′(x) decreasing, f(x) concave). Moreover f ′(1) >
0 (because of the stability Condition (40)) while limx→R− f ′(x) = −∞ (because of
the definition of R). Therefore there exists a unique s ∈ (1, R) such that f ′(s) = 0
in which the maximum of f occurs. Note that f(s) > f(1) = 0.

We have that f is strictly increasing in (1, s) and f(1) = 0 so we conclude
that there does not exist a zero of f(x) in (1, s). On the other hand, f is strictly
decreasing in (s, R) and f(s) limx→R− f(x) < 0, so we have that there exists a
unique root η ∈ (s, R) of f(x). Therefore, η is the unique real root in (1, R) of
D1(z) and condition (i) is satisfied.

Since the coefficients of G(z) are non-negative we have

|1 − D1(z)| ≤ λ

λ + µ + ν
G(|z|) +

µ

λ + µ + ν
|z|−1 +

ν

λ + µ + ν
|z|−N = 1 − f(|z|).

But f is strictly positive in (1, η), hence for z with 1 < |z| < η we have |1 − D1(z)| <
1 and we conclude that D1(z) does not have roots in the domain {z : 1 < |z| < η},
i.e. condition (ii) is satisfied.

For condition (iii), note that η has multiplicity 1, since the only root of f ′(x)
is s (hence D′

1(η) = f ′(η) �= 0). Moreover η is the only zero of D1(z) on the circle
{z : |z| = η}. Indeed, consider z with |z| = η such that D1(z) = 0, i.e.

λ

λ + µ + ν
G(z) +

µ

λ + µ + ν
z−1 +

ν

λ + µ + ν
z−N = 1.

Since the coefficients of A(z) are all non-negative we have

1 =
λ

λ + µ + ν

∞∑
k=1

gkRe(zk) +
µ

λ + µ + ν
Re(z−1) +

ν

λ + µ + ν
Re(z−N )

≤ λ

λ + µ + ν
G(η) +

µ

λ + µ + ν
η−1 +

ν

λ + µ + ν
η−N = 1.

Therefore we have Re(z−1) = |z−1| = η−1, i.e. z−1 is real and z = η, so the only
zero of D1(z) with |z| = η is z = η and condition (iii) is satisfied. �

The usefulness of the asymptotic expression is that enables us to use the eas-
ily computable approximation (54) for large j instead of computing πj from the
recursive scheme described in Remark 13.

4. The single arrivals case

The stationary distribution of the special case with single arrivals is not only
asymptotically geometric as it was proved above in Theorem 15 but it is exactly
geometric from a point and thereafter. In that case there is no need to compute
the roots of the denominator of the probability generating function Π(z) in the
unit disk to obtain the stationary probabilities. More specifically we have the
following.
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Theorem 16. In the case of single arrivals (g1 = 1, gk = 0 for k ≥ 2) the
stationary probabilities πj are given by

πj =
{

crj , 0 ≤ j ≤ i∗ − 2
cη−j j ≥ i∗ − 1,

(55)

where η is the asymptotic parameter of Theorem 15, i.e. η is the unique solution
in (1,∞) of D(z) = 0, and rj are computed recursively starting from

ri∗−2 =
η−i∗+1

λ

(
µ + ν

1 − η1−N

η − 1

)
(56)

by the backward recursion for j = i∗ − 3, ..., 0:

rj =

{
µ
λrj+1 if N + j < i∗
µ
λrj+1 + ν

λη−i∗+1 1−ηi∗−N−j−1

η−1 if N + j ≥ i∗
(57)

and

c =


i∗−2∑

j=0

rj +
η−i∗+1

1 − η−1




−1

. (58)

Proof. The balance equations (41) are equivalent to the cross balance equations
which result by equating the rates between the sets of states {0, ..., j} and {j+1, ...}
for all j:

λπj = µπj+1 + ν

N+j∑
k=max(j+1,i∗)

πk, j = 0, 1, ... (59)

For j ≥ i∗ − 1 by substituting πj given by (55) in (59) we obtain

λcη−j = µcη−j−1 + ν

N+j∑
k=j+1

cη−k

which after some simplifications is reduced to λ(1−η)ηN +µ(η−1)ηN−1 +ν(ηN −
1) = 0 which is valid from the definition of η.

For j = i∗ − 2 by substituting πj given by (55) in (59) we obtain

λcri∗−2 = µcη−i∗+1 + ν

N+i∗−2∑
k=i∗

cη−k

which reduced easily to (56).
For j ≤ i∗ − 3 by substituting πj in (59) we obtain

λcrj = µcrj+1 + ν

N+j∑
k=i∗

cη−k.
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But
N+j∑
k=i∗

η−k =

{
0 if N + j < i∗

η−i∗+1 1−ηi∗−N−j−1

η−1 if N + j ≥ i∗

and we arrive at (57). Finally the normalization equation yields (58). �

5. Stochastic comparison of models with different

thresholds

In this section we study the stochastic domination of MX/M/1 systems with
a negative batch mechanism and identical parameters, operating under different
threshold policies. Recall that if P (t) = (pxy(t) : x, y = 0, 1, ...) and P ′(t) =
(p′xy(t) : x, y = 0, 1, ...) are the families of the transition probability matrices of
two continuous-time Markov chains, then P is said to be stochastically dominated
by P ′ (denoted as P ≤st P ′) if x ≤ y implies that px.(t) ≤st py.(t) for all t ≥ 0.
This is equivalent to (X(t)|X(0) = x) ≤st (X ′(t)|X ′(0) = y) for every x and y
with x ≤ y. Note also that P ≤st P ′ implies that π̄ ≤st π̄′, where π̄, π̄′ are the
stationary distributions of P and P ′ respectively (when both exist). We have the
following.

Theorem 17. Consider two MX/M/1 systems with a negative batch mechanism
and identical parameters λ, {gk}, µ, ν and N , operating under different threshold
policies. Let P = (P (t)) and P ′ = (P ′(t)) be their transition probability matrices
corresponding to the thresholds I and I ′ respectively, I < I ′. Then we have:

• Case I: I = 1 or I ′ = ∞. Then P ≤st P ′;
• Case II: 2 ≤ I < I ′ < ∞. Then P ≤st P ′ ⇐⇒ (I ′ − I ≥ N − 1) or

(I ′ − I = N − 2 and µ ≥ ν) or (I ′ − I ≤ N − 3 and I = 2 and µ ≥ ν).

Proof. We will apply the following characterization of the stochastic domination
(see e.g. Stoyan [27]): let P and P ′ be transition probability matrices correspond-
ing to the infinitesimal generators Q = (q(x, y)) and Q′ = (q′(x, y)) respectively.
Then P ≤st P ′ if and only if both of the following conditions hold:

(i)
∑

z≥w q(x, z) ≤∑z≥w q′(y, z), for every x, y, w with x ≤ y < w;
(ii)

∑
z≤w q(x, z) ≥∑z≤w q′(y, z), for every x, y, w with w < x ≤ y.

In the context of our model, we have that for x ≤ y < w:

∑
z≥w

q(x, z) =
∞∑

k=w−x

λgk and
∑
z≥w

q′(y, z) =
∞∑

k=w−y

λgk.

Since w − y ≤ w − x we have
∑

z≥w q(x, z) ≤ ∑
z≥w q′(y, z), i.e. conditions (i)

always hold.
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For w < x ≤ y we have

∑
z≤w

q(x, z) = µ1[w = x − 1] + ν1[x ≥ I]1[w ≥ x − N ]

∑
z≤w

q′(y, z) = µ1[w = y − 1] + ν1[y ≥ I ′]1[w ≥ y − N ].

Case Ia: I = 1. We have that

1[x ≥ I] = 1[x ≥ 1] = 1 ≥ 1[y ≥ I ′].

Moreover, 1[ w = y − 1] = 1 means that w = y − 1 which implies y − 1 < x ≤ y.
Then we obtain x = y and we conclude that 1[w = x − 1] = 1. Hence

1[w = x − 1] ≥ 1[w = y − 1].

We also have that 1[w ≥ y − N ] = 1 implies that 1[w ≥ x − N ] = 1, because of
y ≥ x, and we obtain

1[w ≥ x − N ] ≥ 1[w ≥ y − N ].

Therefore
∑

z≤w q(x, z) ≥∑z≤w q′(y, z), i.e. conditions (ii) hold for all w < x ≤ y

and we obtain that P ≤st P ′.

Case Ib: I ′ = ∞. We have that

1[x ≥ I] ≥ 0 = 1[y ≥ I ′],

and identically to Case Ia we have that 1[w = x − 1] ≥ 1[w = y − 1] and 1[w ≥
x − N ] ≥ 1[w ≥ y − N ]. We obtain again that (ii) holds for all w < x ≤ y and
P ≤st P ′.

For the Case II we will prove that
a) I ′ − I ≥ N − 1 =⇒ P ≤st P ′;
b) I ′ − I = N − 2, µ ≥ ν =⇒ P ≤st P ′;
c) I ′ − I = N − 2, µ < ν =⇒ P �st P ′;
d) I ′ − I ≤ N − 3, I ≥ 3 =⇒ P �st P ′;
e) I ′ − I ≤ N − 3, I = 2, µ ≥ ν =⇒ P ≤st P ′;
f) I ′ − I ≤ N − 3, I = 2, µ < ν =⇒ P �st P ′.

These 6 subcases cover all possible relative values of I, I ′, µ and ν for Case II and
show the claimed equivalence.

Case IIa: I ′ − I ≥ N − 1. Consider w < x ≤ y. Identically to Case Ia we have
that

1[w = x − 1] ≥ 1[w = y − 1].
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Moreover 1[y ≥ I ′]1[w ≥ y − N ] = 1 means that y ≥ I ′ and w ≥ y − N . But then
we have that

x > w ≥ y − N ≥ I ′ − N ≥ I − 1,

where the last inequality holds because of the condition I ′ − I ≥ N − 1. Hence
x ≥ I. On the other hand we have that

w ≥ y − N ≥ x − N,

and we conclude that 1[x ≥ I]1[w ≥ x − N ] = 1. Therefore

1[x ≥ I]1[w ≥ x − N ] ≥ 1[y ≥ I ′]1[w ≥ y − N ],

and conditions (ii) hold for all w < x ≤ y. We obtain P ≤st P ′.

Case IIb: I ′ − I = N − 2 and µ ≥ ν. Consider w < x ≤ y. We consider two
subcases: w ≤ x − 2 (Case IIb-i) and w = x − 1 (Case IIb-ii).

IIb-i) Suppose that w ≤ x − 2. Then

µ1[w = x − 1] = µ1[w = y − 1] = 0,

since y − 1 ≥ x − 1 > x − 2 ≥ w. Moreover 1[y ≥ I ′]1[w ≥ y −N ] = 1 means that
y ≥ I ′ and w ≥ y − N. But then we have that

x − 2 ≥ w ≥ y − N ≥ I ′ − N = I − 2.

Hence x ≥ I. We also have that w ≥ y − N ≥ x − N, and we conclude that
1[x ≥ I]1[w ≥ x − N ] = 1. Therefore

1[x ≥ I]1[w ≥ x − N ] ≥ 1[y ≥ I ′]1[w ≥ y − N ],

and conditions (ii) hold for all w < x ≤ y.
IIb-ii) Suppose that w = x − 1. If x = y then we have

µ1[w = x − 1] = µ1[w = y − 1] = µ,

while

1[x ≥ I]1[w ≥ x − N ] ≥ 1[x ≥ I ′]1[w ≥ x − N ] = 1[y ≥ I ′]1[w ≥ y − N ]

and conditions (ii) hold. If x < y then 1[w = y − 1] = 0 and we obtain

∑
z≤w

q(x, z) ≥ µ1[w = x − 1] = µ ≥ ν

≥ µ1[w = y − 1] + ν1[y ≥ I ′]1[w ≥ y − N ] =
∑
z≤w

q′(y, z),
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where the second inequality holds because of the condition µ ≥ ν. Again condi-
tions (ii) hold for all w < x ≤ y and we obtain P ≤st P ′ in either subcase.

Case IIc: I ′− I = N −2, µ < ν. It suffices to find a particular choice for x, y and
w for which the conditions (ii) fail. Indeed, take y = I ′, x = I − 1 and w = I − 2.
Then ∑

z≤w

q(x, z) = µ and
∑
z≤w

q′(y, z) ≥ ν.

Indeed the last equality holds since y − w = I ′ − (I − 2) = N and therefore there
exists z ≤ w with q′(y, z) = ν. Hence for the choice (x, y, w) = (I − 1, I ′, I − 2)
condition (ii) fails and we obtain P �st P ′.

Case IId: I ′ − I ≤ N − 3, I ≥ 3. Again it suffices to find a particular choice for
x, y and w for which the conditions (ii) fail. In this case we take y = I ′, x = I − 1
and w = I − 3. Then

∑
z≤w

q(x, z) = 0 and
∑
z≤w

q′(y, z) = ν.

Here, the last inequality holds because y − w = I ′ − (I − 3) ≤ N and therefore
there exists z ≤ w with q′(y, z) = ν. For (x, y, w) = (I − 1, I ′, I − 3) condition (ii)
fails and we obtain P �st P ′.

Case IIe: I ′ − I ≤ N − 3, I = 2, µ ≥ ν. We consider 3 subcases: x ≥ I = 2,
w ≤ x − 2 (Case IIe-i), x ≥ I = 2, w = x − 1 (Case IIe-ii) and x < I = 2
(Case IIe-iii).

IIe-i) Suppose that x ≥ I = 2, w ≤ x − 2. Then

µ1[w = x − 1] = µ1[w = y − 1] = 0,

since y − 1 ≥ x − 1 > x − 2 ≥ w. Moreover 1[y ≥ I ′]1[w ≥ y − N ] = 1 easily
implies 1[x ≥ I]1[w ≥ x − N ] = 1. Indeed, we have that w ≥ y − N ≥ x − N and
x ≥ I by assumption and we conclude that

1[x ≥ I]1[w ≥ x − N ] ≥ 1[y ≥ I ′]1[w ≥ y − N ],

i.e. conditions (ii) hold.
IIe-ii) Suppose that x ≥ I = 2, w = x − 1. Then

µ1[w = x − 1] = µ ≥ µ1[w = y − 1]

and 1[x ≥ I]1[w ≥ x − N ] ≥ 1[y ≥ I ′]1[w ≥ y − N ], as in IIe-i. Conditions (ii)
hold.

IIe-iii) Suppose that x < I = 2. The only possible values for x and w are x = 1,
w = 0 and we have that

∑
z≤w q(x, z) = q(1, 0) = µ.
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If y = x then we have that
∑

z≤w q′(y, z) = q′(1, 0) = µ and condition (ii) holds.
If y > x then 1[w = y − 1] = 0, hence

∑
z≤w

q(x, z) = µ ≥ ν ≥
∑
z≤w

q′(y, z),

i.e. condition (ii) holds.

Case IIf: I ′ − I ≤ N − 3, I = 2, µ < ν. Take (x, y, w) = (1, I ′, 0). Then∑
z≤w q(x, z) = q(1, 0) = µ, while

∑
z≤w q′(y, z) = q′(I ′, 0) = ν. Condition (ii)

fails since µ < ν and we conclude that P �st P ′. �

The above theorem gives a complete characterization of the stochastic domi-
nation within the class of models with identical parameters that operate under
different threshold policies.

6. The average cost Markov decision problem

In this section we consider the model with the same cost structure of Section 2,
but under the average cost criterion. We use again the uniformization technique
for reducing the original continuous time problem to a discrete control problem
and stationary policies; for details see Serfozo [26]. Our approach relies on certain
theorems that allow one to obtain an average cost optimal policy as the limit
point of a sequence of total discounted cost optimal policies. This enables us to
use the results that we have established in Section 2. Our standard reference in
this section is Sennott [24] Chapter 7. For convenience we summarize the basic
notions and the necessary results below.

A stationary policy f is said to be a limit point of a sequence of αn−discounted
optimal policies fαn with αn → 1 if there exists a subsequence {βn} of {αn}
such that limn→∞ fβn = f. This means that for a given i and sufficiently large n
(dependent on i), we have that fβn(i) = f(i) (Sennott [24], Def. 7.2.2).

In a general context, several authors have reported conditions that assure the
existence of an average cost optimal policy that can be obtained as a limit of
discounted optimal policies. We will use Sennott’s [24] 7.2 conditions:

• (SEN1) for α ∈ (0, 1), (1 − α)Vα(z) < ∞, for any distinguished state z;
• (SEN2) there exists a non-negative function M such that Vα(i)−Vα(z) ≤

M(i) for all i ≥ 0 and α ∈ (0, 1);
• (SEN3) there exists a non-negative constant L such that −L ≤ Vα(i) −

Vα(z) for all i ≥ 0 and α ∈ (0, 1).
Then we have the following basic result (Sennott [24], Th. 7.2.3(i) and (iii)): if
{Xn} is a Markov decision chain for which the (SEN) assumptions hold then

• there exists a finite constant g = limα→1−(1 − α)Vα(i) for i ≥ 0;
• any limit point f of a sequence of discounted optimal policies is average

cost optimal with average cost g.
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The verification of (SEN1)-(SEN3) assumptions is in general difficult. In the case
of our model we can exploit the monotonicity of the value function that has been
proved in Proposition 1. Recall that a policy for a discrete-time Markov decision
chain is said to be 0-standard if mi0 < ∞ and ci0 < ∞ for all states i, where mi0

is the expected first passage time from i to state 0 and ci0 is the expected cost
incurred during such a passage time. Then the following result holds (Sennott [24],
Corollary 7.5.4): if {Xn} is a Markov decision chain with state space {0, 1, ...} and
Vα is increasing in i for α ∈ (0, 1) and exists a 0-standard policy, then the (SEN)
assumptions hold.

We will apply this result for our model. We have already proved that Vα is
increasing in i in Proposition 1 so it remains to prove that there exists a 0-standard
policy.

We first show that the value function under the total discounted cost criterion
is always finite.

Theorem 18. For every α ∈ (0, 1)

Vα(i) < ∞, i = 0, 1, ... (60)

Proof. Let

Vf,α(i) = E

[ ∞∑
k=0

αkc(Xk, f(Xk))|X0 = i

]

be the minimum expected α-discounted cost under a stationary policy f for the
uniformized model of Section 2, where c(i, f) is given by (3). We have obviously
that

Vf,α(i) ≤ c

∞∑
k=0

αkEf [Xk|X0 = i] +
M

1 − α
, (61)

where M = d + s + Neν. The uniformized chain {Xk} exhibits transitions to the
right only when batch arrivals occur (see pij(f) given by (4)). Thus

Xk ≤st X0 +
k∑

l=1

ξl (62)

where ξ1, ξ2, ... are independent, identically distributed random variables with
Pr[ξl = 0] = r + q and Pr[ξl = j] = pj = λgj/γ for j = 1, 2, .... Hence E[ξl] = λḡ/γ
and (62) yields

Ef [Xk|X0 = i] ≤ i + kλḡ/γ. (63)
By (61) and (63) we obtain

Vf,α(i) ≤ c

∞∑
k=0

αk(i + kλḡ/γ) +
M

1 − α
=

ci + M

1 − α
+

cλḡα

γ(1 − α)2
< ∞,

and we conclude that Vα(i) = inff Vf,α(i) < ∞ for i ≥ 0. �
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We will now show that the policy d(i) = 1 − δi0, i ≥ 0, i.e. switch on the
removing mechanism as soon as the queue is non empty, is 0-standard. Denote by
(πd(k) : k = 0, 1, ...) the stationary distribution that corresponds to the Markov
chain induced by d and by c(k) = c(k, d(k)) the cost structure associated with d.

Lemma 19. The discrete-time Markov chain induced by d is positive recurrent if
and only if the stability Condition (40) holds. Let assume that the size of a batch
arrival has second moment ḡ2 < ∞. Then

∞∑
k=0

c(k)πd(k) < ∞. (64)

Proof. It is well known that any uniformizable continuous-time Markov chain is
positive recurrent if and only if the associated uniformized discrete-time Markov
chain is positive recurrent. Moreover, both Markov chains have the same station-
ary distribution. Since (40) is the positive recurrence condition of the continuous-
time Markov chain with threshold i∗ = 1, we conclude that it is also the positive
recurrence condition for the induced discrete-time Markov chain. We now observe
that

∞∑
k=0

c(k)πd(k) < c

∞∑
k=0

kπd(k) + s + d + Neν.

The quantity
∑∞

k=0 kπd(k) is the mean queue length in the MX/M/1 queue with
a removing mechanism and threshold i∗ = 1. However, the probability generating
function of the stationary distribution of this model is of the form (47). The
expected value

∑∞
k=0 kπd(k) = Π′(1) is calculated using L’Hopital rule. In that

process the second derivative of the denominator D(z) is involved and consequently
G′′(1) = ḡ2 − ḡ arises. It is now clear that the finiteness condition ḡ2 < ∞
guarantees that

∑∞
k=0 kπd(k) < ∞, hence

∑∞
k=0 c(k)πd(k) < ∞. �

Lemma 20. If the stability Condition (40) holds and ḡ2 < ∞ then the policy d is
0-standard.

Proof. Under the Condition (40) the discrete-time Markov chain induced by d is
positive recurrent so all the expected first passage times mij are finite (see e.g.
Sennott [24], Prop. C.1.4(v)). On the other hand, positive recurrence and the
relation (64) give that the expected costs cij during first passage times are finite
for all i, j (see e.g. Sennott [24], Prop. C.2.2(iv)). In particular ci0 < ∞ and
mi0 < ∞ for all i ≥ 0 and we obtain that the policy d is 0-standard. �

We can now apply the aforementioned propositions of Sennott [24] and conclude
the discussion about the average cost criterion for the MX/M/1 model with the
removing mechanism. We have the following

Theorem 21. Suppose that the stability Condition (40) holds and ḡ2 < ∞ and
Condition (32) for existence of α−policy holds. Then there exists a threshold type
stationary average cost optimal policy f∗ of the form
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f∗(i) = 1 ⇐⇒ i ≥ i∗,

where i∗ ∈ {1, ..., N}·
Proof. Proposition 1 establishes that Vn,α(i) is non-decreasing in i for all n. Hence
Vα(i) = limn−→∞ Vn,α(i) is non-decreasing for α ∈ (0, 1). In addition there exists
an 0-standard policy (Lem. 20). Hence the conditions of Sennott [24] (Cor. 7.5.4)
are fulfilled and we obtain that the SEN assumptions hold. Then by Sennott [24]
(Th. 7.2.3) we have that there exists a finite constant g = limα→1−(1 − α)Vα(i)
for i ≥ 0, which is the minimum average cost.

Condition (32) is meaningful for every discount factor α ∈ [α0, 1), where α0 =
d+Neν

Nrc ∈ (0, 1). Now, for every α ∈ [α0, 1) let f∗
α be an optimal threshold policy

for the α-discounted problem with threshold i∗α ∈ {1, ..., N} (which exists from
Th. 5 since Condition (32) holds). Take a sequence {αn} with αn → 1. The set
of threshold policies with threshold in {1, ..., N} is finite. This means that there
exists a subsequence {βn} of {αn} such that f∗

βn
(i) = f∗(i) for n sufficiently large,

that is f∗ is one of the f∗
α policies. Hence we have find a stationary policy f∗ which

is a limit point of a sequence of discounted optimal policies. Again by Sennott [24]
(Th. 7.2.3) we have that f∗ is average cost optimal with average cost g. �
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