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Abstract. We analyze the convergence of the prox-regularization al-
gorithms introduced in [1], to solve generalized fractional programs,
without assuming that the optimal solutions set of the considered
problem is nonempty, and since the objective functions are variable
with respect to the iterations in the auxiliary problems generated by
Dinkelbach-type algorithms DT1 and DT2, we consider that the reg-
ularizing parameter is also variable. On the other hand we study the
convergence when the iterates are only ηk-minimizers of the auxiliary
problems. This situation is more general than the one considered in [1].
We also give some results concerning the rate of convergence of these
algorithms, and show that it is linear and some times superlinear for
some classes of functions. Illustrations by numerical examples are given
in [1].

Keywords: Generalized fractional programs, Dinkelbach-type algo-
rithms, proximal point algorithm, rate of convergence.

1. Introduction

The prox-regularization algorithms for generalized fractional programming stud-
ied in [1] are two methods based on Dinkelbach-type algorithms introduced in [2,3].
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These algorithms are for solving problems of the form

(P ) inf
x∈X

{
max
i∈I
{fi(x)/gi(x)}

}

where I = {1, . . . ,m}, m ≥ 1, and X a nonempty, closed subset of R
n, and the

functions fi and gi are defined on X , continuous and satisfy gi(x) > 0 for all x ∈ X
and i ∈ I. Next we will use the notation

f(x) := max
i∈I
{fi(x)/gi(x)}·

The Dinkelbach-type algorithms DT1 and DT2 [2, 3] generalize Dinkelbach algo-
rithm [4] to the case m > 1. In these algorithms, at each iteration an auxiliary
problem that has in some situations simpler structure than the original problem
is solved. The algorithms DT1 and DT2 are based on the same principle but DT2
is generally faster than DT1 (see [2, 3, 5]).

The algorithms DTR1 and DTR2 introduced in [1] combine the last algorithms
with the proximal point algorithm [6–9]. These algorithms are useful in some
situations and particularly when the auxiliary problems generated by DT1 and
DT2 has no solutions. On the other hand, DTR1 and DTR2 extend the proximal
point algorithm to a class of nonconvex problems, but under the assumption that
the optimal solutions set of (P ) is nonempty and with a constant regularizing
parameter.

Since regularization is useful in the case of ill-conditioned problems (see for
example [10]), and since the objective functions in DT1 and DT2 are variable with
respect to the iterations, it is natural to consider a variable regularizing parameter
in DTR1 and DTR2. In this paper we analyze the convergence of these algorithms
with a variable parameter of regularization, and without the assumption that
optimal solutions set is nonempty used in [1].

On the other hand, by refining Lemma 3.5 given in [1], we establish the con-
vergence of these algorithms under other conditions on the approximate solutions
of the intermediate problems, and that are weaker in some cases than those used
in [1]. We will also analyze the rate of convergence of these algorithms and show
that it is linear and superlinear in some cases.

2. Convergence and rate of convergence

of algorithm DTR1

We will denote by λ̄ the optimal value of (P ), and by X∗ its optimal solutions
set and we will assume in all what follows that:

1) there exists γ > 0, such that for all x ∈ X and i ∈ I, 0 < gi(x) ≤ γ;
2) X is convex, and for all λ ≥ λ̄, and i ∈ I, the functions fi − λgi are convex.

The last hypothesis is fulfilled for example when the functions fi and −gi are
convex and λ̄ ≥ 0, or when the functions fi are convex and the functions gi are
affine.
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For x ∈ X and λ ∈ R, we define the function

J(λ, x) = max
i∈I
{fi(x) − λgi(x)}·

Also, for α ∈ R, λ ∈ R and x ∈ X , we define the function

Gα(λ, x) = inf
y∈X
{J(λ, y) + α‖y − x‖2}·

In the following we describe DTR1; the algorithm DTR2 will be described later.

Algorithm 2.1. Let {ηk} be a given sequence of nonnegative reals.
0. Choose x0 ∈ X and set λ0 = f(x0).
1. At Step k we have xk and λk. Then, find xk+1 ∈ X satisfying

ψ(λk, x
k, ηk) ≥ J(λk, x

k+1) + α‖xk+1 − xk‖2,

set λk+1 = f(xk+1), k ← k + 1 and go back to 1.

It is shown in [1], Theorem 3.1, with

ψ(λk, x
k, ηk) = min{0, Gα(λk, x

k) + ηk} and
∞∑

k=0

√
ηk < +∞,

that if the optimal solutions set of (P ) is nonempty, then the sequence {λk} con-
verges to λ̄ and {xk} converges towards a solution of (P ). When the function
J(λ̄, .) is strongly convex, it is also shown that the rate of convergence is linear.

Next, we will consider Algorithm 2.1 with a regularizing parameter αk at each
iteration k, and with the following choices of ψ:

(i) ψ(λk, x
k, ηk) = min{0, Gk(λk, x

k) + ηk};
(ii) ψ(λk, x

k, ηk) = Gk(λk, x
k) + ηk;

where Gk denotes Gαk
, so that xk+1 ∈ X satisfies

ψ(λk, x
k, ηk) ≥ J(λk, x

k+1) + αk‖xk+1 − xk‖2. (1)

Notice that only the choice (i) with αk = α, which corresponds to the algorithm
DTR1 is considered in [1], and that in (ii), xk+1 is an ηk-minimizer of J(λk, .)
+αk‖.− xk‖2.

In what follows we will show that the sequence {λk} converges towards λ̄ even if
the optimal solutions set of (P ) is empty. The convergence is established, with (i)
or (ii), under the usual assumption,

∑∞
k=0 1/αk = +∞, made for the proximal

algorithm (see for example [8]). Then we will show that the rate of convergence is
linear for other classes of functions which include the strongly convex case (studied
in [1]) and the polyhedral case. Similar results as for the proximal point algorithm
are given in Proposition 2.2 and Proposition 2.3.
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Now let us consider the following interesting lemma that refine Lemma 3.5 given
in [1]. This lemma may be used in different situations and under different forms
in this paper, in particular with µk = 0.

Lemma 2.1. Let {µk} and {βk} be sequences of nonnegative reals such that

∑
k≥0

µk < +∞,
∑
k≥0

βk < +∞,

and let {uk} be a sequence of reals such that

uk+1 ≤ (1 + µk)uk + βk.

Then the sequence {uk} converges to some u ∈ R ∪ {−∞}.

Proof. For all k ∈ N and p = k + 2, k + 3, . . . , we can show that

up ≤
p−1∏
i=k

(1 + µi)uk +
p−2∑
i=k

p−1∏
j=i+1

(1 + µj)βi + βp−1.

Since 1 + µj ≥ 1, for all j ∈ N, then
∏p−1

j=i+1(1 + µj) ≤
∏p−1

j=k(1 + µj) for all
i = k, k + 1, . . . , and thus we get

up ≤
p−1∏
i=k

(1 + µi)uk +
p−1∏
j=k

(1 + µj)
p−1∑
i=k

βi.

It follows that

lim sup
p→∞

up ≤
∞∏

i=k

(1 + µi)uk +
∞∏

j=k

(1 + µj)
∞∑

i=k

βi.

Since
∑

k≥0 βk < ∞ and
∑

k≥0 µk < ∞, then we have
∏∞

j=k(1 + µj) → 1 and∑∞
i=k βi → 0 as k →∞, which implies that

lim sup
p→∞

up ≤ lim inf
k→∞

uk,

and that the sequence {uk} converges to some u ∈ R ∪ {−∞}. �
Lemma 2.2 is derived from Lemma 2.1; and Lemmas 2.3, 2.4 are based on results

in [1], but we reformulate here some proofs since the parameter α is variable in
our case. However, these proofs remain close to the ones given in [1]. To facilitate
reading of the two papers, we will often use notations used in [1].

In what follows we will denote for λ ∈ R and x ∈ X ,

I(λ, x) = {i ∈ I | λ = fi(x)/gi(x)}
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and

K(λ, x) = {i ∈ I | J(λ, x) = fi(x)− λgi(x)}·

Next we will set

λ̄ = inf
x∈X

f(x), X∗ = argmin
x∈X

f(x), ν = inf
x∈X

min
i∈I

gi(x) and τ = inf
x∈X∗

min
i∈I

gi(x)

2.1. Convergence of algorithm DTR1

For the proof of the main results, we will use Lemmas 2.2–2.5 below.

Lemma 2.2. (a) The sequence {λk} converges to some λ̂ ∈ R ∪ {−∞} if one
of the two following cases is realized:
(i) ψ(λk, x

k, ηk) = min{0, Gk(λk, x
k) + ηk};

(ii) ψ(λk, x
k, ηk) = Gk(λk, x

k) + ηk,
∑

k≥0 ηk < +∞ and ν > 0.
(b) If λ̄ > −∞, then J(λk, x

k+1)→ 0 and αk‖xk+1 − xk‖ → 0 as k →∞.

Proof. (a) From (1) we have

ψ(λk, x
k, ηk) ≥ J(λk, x

k+1) + αk‖xk+1 − xk‖2 ≥ J(λk, x
k+1).

On the other hand,

J(λk, x
k+1) ≥ fi(xk+1)− λkgi(xk+1)

for all i ∈ I. For i ∈ I(λk+1, x
k+1), we have fi(xk+1) = λk+1gi(xk+1) and then

ψ(λk, x
k, ηk) ≥ J(λk, x

k+1) ≥ gi(xk+1)(λk+1 − λk). (2)

In the case (i) we have ψ(λk, x
k, ηk) ≤ 0, which implies that λk+1 ≤ λk for all

k ∈ N, and the conclusion follows.
Now with (ii) we have ψ(λk, x

k, ηk) ≤ ηk since Gk(λk, x
k) ≤ 0. On the other

hand let sg(λ) = 1 if λ > 0 and sg(λ) = −1 if λ ≤ 0 and let

δk = max{ν sg(λk+1 − λk),−γ sg(λk+1 − λk)}·

Notice that if λk+1 − λk ≤ 0, then δk = γ, and δk = ν if λk+1 − λk > 0, implying
that

ηk ≥ J(λk, x
k+1) ≥ δk(λk+1 − λk). (3)

Then it follows that

ηk/δk + λk ≥ λk+1. (4)



78 A. ROUBI

Remarking that δk ≥ ν, the result follows by using Lemma 2.1 with uk = λk,
µk = 0 and βk = ηk/δk.

(b) If λ̄ > −∞, then the sequence {λk} converges to some λ̂ ≥ λ̄. Following (3),
J(λk, x

k+1)→ 0 as k →∞, and since

ηk ≥ J(λk, x
k+1) + αk‖xk+1 − xk‖2 ≥ δk(λk+1 − λk), (5)

then αk‖xk+1 − xk‖ → 0 as k →∞. �

Lemma 2.3. For all k ∈ N, let x̄k+1 = argminx∈X{J(λk, x) + αk‖x− xk‖2} and
xk+1 be defined by (1). Then we have

ηk/αk ≥ ‖x̄k+1 − xk+1‖2.

Proof. From the definition of x̄k+1 we have

J(λk, x) ≥ J(λk, x̄
k+1) + 2αk

〈
xk − x̄k+1, x− x̄k+1

〉
,

for all x ∈ X (see for example [11], Prop. 2.2, p. 37). Using the equality

2
〈
xk − x̄k+1, x− x̄k+1

〉
= ‖x̄k+1 − xk‖2 + ‖x− x̄k+1‖2 − ‖x− xk‖2,

we obtain

J(λk, x) ≥ J(λk, x̄
k+1) + αk

(
‖x̄k+1 − xk‖2 + ‖x− x̄k+1‖2 − ‖x− xk‖2

)
. (6)

On the other hand, relation (1) implies that

J(λk, x) + αk‖x− xk‖2 + ηk ≥ J(λk, x
k+1) + αk‖xk+1 − xk‖2,

for all x ∈ X . For x = x̄k+1, we get

J(λk, x̄
k+1) ≥ J(λk, x

k+1) + αk‖xk+1 − xk‖2 − αk‖x̄k+1 − xk‖2 − ηk.

Considering relation (6) we obtain

J(λk, x) ≥ J(λk, x
k+1) + αk

(
‖xk+1 − xk‖2 + ‖x− x̄k+1‖2 − ‖x− xk‖2

)
− ηk,

(7)

for all x ∈ X . Thus, remplacing x by xk+1 in the last inequality we obtain

ηk/αk ≥ ‖xk+1 − x̄k+1‖2.

�
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Lemma 2.4. For all k = 1, 2, . . . , and for all x ∈ R
n, we have

‖x− xk‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1.

Proof. For every k = 1, 2, . . . , and for every x ∈ R
n we have

‖x− xk‖2 = ‖x− x̄k‖2 + ‖x̄k − xk‖2 + 2
〈
x− x̄k, x̄k − xk

〉 ·
Since

〈
x− x̄k, x̄k − xk

〉 ≤ ‖x− x̄k‖‖x̄k − xk‖ and ‖x̄k − xk‖ ≤ √
ηk−1/αk−1

(from Lem. 2.3), then we obtain

‖x− xk‖2 ≤ ‖x− x̄k‖2 + 2
√
ηk−1/αk−1‖x− x̄k‖+ ηk−1/αk−1.

Remarking that ‖x− x̄k‖ ≤ 1 + ‖x− x̄k‖2 we deduce the result. �

Lemma 2.5. If λ ≥ λ̄ is such that J(λ, x) ≥ 0 for all x ∈ X, then λ = λ̄.

Proof. For x ∈ X , we have J(λ, x) ≥ 0, if and only if, there exists i ∈ I such that
fi(x) − λgi(x) ≥ 0. It follows that fi(x)/gi(x) ≥ λ. But f(x) ≥ fi(x)/gi(x) and
thus, f(x) ≥ λ. This is true for all x ∈ X and so, λ̄ ≥ λ. Therefore, equality
holds. �

Theorem 2.1. Suppose that

∑
k≥0

1/αk = +∞ and that
∑
k≥0

√
ηk/αk < +∞,

and consider Algorithm 2.1 with one of the two following choices:
(i) ψ(λk, x

k, ηk) = min{0, Gk(λk, x
k) + ηk};

(ii) ψ(λk, x
k, ηk) = Gk(λk, x

k) + ηk,
∑

k≥0 ηk < +∞ and ν > 0.

Then the sequence {λk} converges to the optimal value λ̄ of (P ).

Proof. Following Lemma 2.2(a), the sequence {λk} converges to λ̂ ∈ R ∪ {−∞}.
Then, λk ≥ λ̂ ≥ λ̄ since xk ∈ X . If λ̂ = −∞, then λ̂ = λ̄. So, suppose that
λ̂ > −∞. From (7), for all k ∈ N, and for all x ∈ X we have

J(λk, x)− J(λk, x
k+1) + αk‖x− xk‖2 + ηk ≥ αk‖x− x̄k+1‖2.

Using Lemma 2.4 in this inequality we obtain

‖x− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk +
(
J(λk, x)− J(λk, x

k+1)
)
/αk. (8)
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Let us show that for all x ∈ X ,

lim
k→∞

(
J(λk, x)− J(λk, x

k+1)
)
≥ 0. (9)

For this, assume the contrary. So, there exists ε > 0, x̃ ∈ X and l such that

J(λk, x)− J(λk, x
k+1) < −ε

for all k ≥ l. Thus, substituting x̃ to x in (8) yields

‖x̃− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̃− x̄k‖2 + 2

√
ηk−1/αk−1

+ηk−1/αk−1 + ηk/αk − ε/αk. (10)

From the assumptions of the theorem,

∑
k≥1

√
ηk−1/αk−1 < +∞ and

∑
k≥1

(√
ηk−1/αk−1 + ηk−1/αk−1 + ηk/αk

)
< +∞,

(11)

and thus Lemma 2.1 implies that the sequence {x̄k} converges. Consequently,

∑
k≥1

√
ηk−1/αk−1‖x̃− x̄k‖2 < +∞. (12)

Summing in (10) over k = l, . . . , n, we obtain

‖x̃− x̄n+1‖2 − ‖x̃− xl‖2 ≤ 2
n∑

k=l

√
ηk−1/αk−1‖x̃− x̄k‖2 + 2

n∑
k=l

√
ηk−1/αk−1

+
n∑

k=l

(
ηk−1/αk−1 + ηk/αk

)
− ε

n∑
k=l

1/αk. (13)

But since
∑n

k=l 1/αk → +∞ as n → ∞, the inequality (13) cannot hold. It
follows that (9) must hold. Consequently, J(λ̂, x) ≥ 0 for all x ∈ X . Since λ̂ ≥ λ̄,
Lemma 2.5 implies that λ̂ = λ̄. �
Proposition 2.1. Assume that the sequence {αk} is such that αk ≥ ᾱ > 0 for
all k ∈ N, that the assumptions of Theorem 2.1 are fulfilled, and that the optimal
solutions set of (P ) is nonempty. If Algorithm 2.1 is considered in one of the
following situations:

(i) ψ(λk, x
k, ηk) = min{0, Gk(λk, x

k) + ηk};
(ii) ψ(λk, x

k, ηk) = Gk(λk, x
k) + ηk,

∑
k≥0 ηk < +∞, ν > 0, γ ≤ ν + τ , and

αk+1 ≥ αk for all k ∈ N,
then the sequence {xk} converges to some solution of (P ). �
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Proof. Observe that under these assumptions the sequence {λk} converges to λ̄.
Assume that (i) occurs. For x̄ ∈ X∗, J(λk, x̄) ≤ 0. On the other hand, since
ψ(λk, x

k, ηk) ≤ 0 then from (2), λk+1 − λk ≤ 0 and thus from (3) we have
J(λk, x

k+1) ≥ γ(λk+1 − λk). Using this and (8) with x = x̄, we obtain

‖x̄− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + (λk − λk+1)γ/ᾱ.

Following Lemma 2.1, the sequence {x̄k} converges. Let x̃ ∈ X be its limit. Since f
is continuous, then λ̂ = f(x̃) and from Theorem 2.1, x̃ is a solution of (P ). From
Lemma 2.3 and the fact that ηk/αk → 0 as k → ∞, we deduce that {xk} also
converges to x̃.

Suppose now that (ii) occurs. For x̄ ∈ X∗ we have J(λk, x̄) ≤ τ(λ̄ − λk), and
on the other hand

J(λk, x
k+1) ≥ δk(λk+1 − λk) ≥ ν(λk+1 − λ̄) + γ(λ̄− λk).

Considering (8) with these inequalities we get

‖x̄− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + (γ − τ)(λk − λ̄)/αk − ν(λk+1 − λ̄)/αk

≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + ν(λk − λ̄)/αk − ν(λk+1 − λ̄)/αk+1

+ν(1/αk+1 − 1/αk)(λk+1 − λ̄).

Notice that we used in the last inequality the assumption γ ≤ ν + τ . Then from
the assumption that αk+1 ≥ αk, it follows that

‖x̄− x̄k+1‖2 + ν(λk+1 − λ̄)/αk+1 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2

+2
√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + ν(λk − λ̄)/αk

≤
(
1 + 2

√
ηk−1/αk−1

)(‖x̄− x̄k‖2 + ν(λk − λ̄)
)

+2
√
ηk−1/αk−1 + ηk−1/αk−1 + ηk/αk.

Applying Lemma 2.1 with uk = ‖x̄− x̄k‖2 + ν(λk − λ̄), µk = 2
√
ηk−1/αk−1 and

βk = 2
√
ηk−1/αk−1 + ηk−1/αk−1 + ηk/αk, we deduce that the sequence {x̄k}

converges. The rest is as in the previous case. �
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2.2. Rate of convergence of algorithm DTR1

The rate of convergence of DTR1 was analyzed in [1] when the function J(λ̄, .)
is strongly convex. Next, we will see that the results about the rate of convergence
remain still valid for other classes of functions which include the strongly convex
case and the polyhedral case.

Next, we will denote by (H) the following assumption:

(H) ∃δ > 0, ∃κ > 0 such that J(λ̄, x) ≥ κd(x,X∗)2 for all x ∈ B(X∗, δ) ∩X,

where B(X∗, δ) =
⋃

x̄∈X∗ B(x̄, δ), B(x, δ) = {z ∈ R
n | ‖z − x‖ < δ} and d(x,X∗)

= inf x̄∈X∗ ‖x− x̄‖.
Remark 2.1. 1) Assumption (H) is satisfied when the function J(λ̄, .) is polyhe-
dral (for example when the functions fi are polyhedral and the functions gi are
affine) and X is polyhedral. Indeed, following ([12], Th. 3.5 and Cor. 3.6), J(λ̄, .)
satisfies the property

(H ′) ∃κ > 0, such that J(λ̄, x) ≥ κd(x,X∗), for all x ∈ X,

since X∗ = argminx∈X J(λ̄, x) and J(λ̄, x̄) = 0 (see also [13] and some references
therein for some characterizations of such functions). Therefore, for 0 < δ ≤ 1,
and x ∈ B(X∗, δ) ∩ X , we have d(x,X∗) ≤ 1 and thus d(x,X∗) ≥ d(x,X∗)2. It
follows that J(λ̄, x) ≥ κd(x,X∗)2 for all x ∈ B(X∗, δ) ∩ X and the assumption
(H) is satisfied.

2) If the function J(λ̄, .) is strongly convex, the assumption (H) is also satisfied.
Indeed, the strong convexity assumption implies that there exists κ > 0 such that

J(λ̄, x) ≥ J(λ̄, x̄) + 〈x̄∗, x− x̄〉+ κ‖x− x̄‖2,

for all x, x̄ ∈ X and x̄∗ ∈ ∂J(λ̄, x̄) where ∂J(λ̄, x̄) is the subdifferential of J(λ̄, .)
at x̄. For x̄ ∈ X∗ = {x̄}, we have 0 ∈ ∂J(λ̄, x̄) and J(λ̄, x̄) = 0. It follows that

J(λ̄, x) ≥ κd(x,X∗)2 = κ‖x− x̄‖2

for all x ∈ X , and the assumption (H) is fulfilled.

Theorem 2.2. Suppose that the optimal solutions set X∗ of (P ) is nonempty and
that the function J(λ̄, .) satisfies the assumption (H) above. Assume on the other
hand, that ηk/(λk − λ̄) → 0 as k → ∞, that τ > 0 (this condition is fulfilled for
example when X∗ is compact), and that the sequence {xk} converges to a minimizer
of (P ) (this is the case for example when the conditions of Prop. 2.1 are fulfilled).
If Algorithm 2.1 is considered in one of the two following situations:

(i) ψ(λk, x
k, ηk) = min{0, Gk(λk, x

k) + ηk};
(ii) ψ(λk, x

k, ηk) = Gk(λk, x
k) + ηk; ν > 0 and γ < ν + τ ;

then for αk sufficiently small, the sequence {λk} converges linearly to λ̄.
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Proof. From the definition of xk+1 we have for all x ∈ X ,

J(λk, x) + αk‖x− xk‖2 + ηk ≥ J(λk, x
k+1). (14)

Since {xk} converges to a solution of (P ), then xk ∈ B(X∗, δ) ∩ X for k large
enough. Let x̃k ∈ X∗ be such that ‖xk − x̃k‖ = d(xk, X∗). Then we have

J(λ̄, xk) ≥ κ‖xk − x̃k‖2.
For i ∈ K(λ̄, xk) we have J(λ̄, xk) = fi(xk)− λ̄gi(xk), and then

J(λ̄, xk) ≤ gi(xk)(λk − λ̄) ≤ γ(λk − λ̄).

For i ∈ K(λk, x̃
k) we get J(λk, x̃

k) = fi(x̃k)− λkgi(x̃k), and thus

J(λk, x̃
k) ≤ gi(x̃k)(λ̄ − λk) ≤ τ(λ̄ − λk).

On the other hand, J(λk, x
k+1) ≥ δk(λk+1 − λk). Then, with x = x̃k in (14) we

obtain

τ(λ̄ − λk) + γ(λk − λ̄)αk/κ+ ηk ≥ δk(λk+1 − λk). (15)

With the choice (i) in Algorithm 2.1 we have λk+1−λk ≤ 0 and δk = γ. It follows
that

(1− τ/γ + αk/κ)(λk − λ̄) + ηk/γ ≥ λk+1 − λ̄.
So, if lim supk→∞ αk < κτ/γ, then lim supk→∞(λk+1 − λ̄)/(λk − λ̄) < 1.

Now with the choice (ii) we have ν > 0. By writing

δk(λk+1 − λk) = δk(λk+1 − λ̄) + δk(λ̄− λk) ≥ ν(λk+1 − λ̄) + γ(λ̄− λk)

and considering (15) we get

[γ/ν − τ/ν + αkγ/(κν)](λk − λ̄) + ηk/ν ≥ λk+1 − λ̄.
Thus, if lim supk→∞ αk < κ(ν + τ − γ)/γ, then lim supk→∞(λk+1 − λ̄)/(λk −
λ̄) < 1. �
Proposition 2.2. For all n ∈ N, let σn =

∑n
k=0 1/αk. If the optimal solutions

set X∗ of (P ) is nonempty and ψ(λk, x
k, ηk) = min{0, Gk(λk, x

k) + ηk}, then for
all x̄ ∈ X∗ we have the following estimate

τ(λn+1 − λ̄) ≤ σ−1
n

[ n∑
k=1

(
ηk−1/αk−1 + ηk/αk + 2(1 + ‖x̄− x̄k‖2)

√
ηk−1/αk−1

)

+‖x̄− x̄1‖2 + τ(λ0 − λ̄)/α0 + (γ − τ)
n∑

k=1

(λk − λk+1)/αk

]
.
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Proof. With x = x̄ ∈ X∗ in (8), we have

‖x̄− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk +
(
J(λk, x̄)− J(λk, x

k+1)
)
/αk.

By summing in this inequality over k = 1, 2, . . . , n, we get

‖x̄− x̄n+1‖2 − ‖x̄− x̄1‖2 ≤ 2
n∑

k=1

√
ηk−1/αk−1‖x̄− x̄k‖2 + 2

n∑
k=1

√
ηk−1/αk−1

+
n∑

k=1

ηk−1/αk−1 +
n∑

k=1

ηk/αk

+
n∑

k=1

[J(λk, x̄)− J(λk, x
k+1)]/αk. (16)

By considering the inequalities J(λk, x̄) ≤ τ(λ̄ − λk) and J(λk, x
k+1) ≥ γ(λk+1

−λk) we get

(γ − τ)(λk − λ̄)− γ(λk+1 − λ̄) ≥ J(λk, x̄)− J(λk, x
k+1),

and thus by setting uk = λk − λ̄, we obtain

‖x̄− x̄n+1‖2 − ‖x̄− x̄1‖2 ≤ 2
n∑

k=1

√
ηk−1/αk−1‖x̄− x̄k‖2 + 2

n∑
k=1

√
ηk−1/αk−1

+
n∑

k=1

ηk−1/αk−1 +
n∑

k=1

ηk/αk

+(γ − τ)
n∑

k=1

uk/αk − γ
n∑

k=1

uk+1/αk. (17)

On the other hand, we have λk+1 − λk ≤ 0, that is uk − uk+1 ≥ 0, and thus by
writing σk−1 = σk − 1/αk, we get

0 ≤ σk−1uk − σkuk+1 + uk+1/αk.

By summing over k = 1, 2, . . . , n, we get

0 ≤
n∑

k=1

uk+1/αk + σ0u1 − σnun+1,
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where σ0 = 1/α0. Now multiplying this inequality by τ and summing together
with (17) yields

‖x̄− xn+1‖2 − ‖x̄− x̄1‖2 ≤ 2
n∑

k=1

√
ηk−1/αk−1‖x̄− x̄k‖2 + 2

n∑
k=1

√
ηk−1/αk−1

+
n∑

k=1

ηk−1/αk−1 +
n∑

k=1

ηk/αk

+(γ − τ)
n∑

k=1

(uk − uk+1)/αk + τu1/α0 − τσnun+1,

which gives the desired result. �
Proposition 2.3. For all n ∈ N, let σn =

∑n
k=0 1/αk. If the optimal solutions

set X∗ of (P ) is nonempty and ψ(λk, x
k, ηk) = Gk(λk, x

k)+ηk, then for all x̄ ∈ X∗

we have the following estimate

ν(λn+1 − λ̄) ≤ σ−1
n

[ n∑
k=1

(
ηk−1/αk−1 + ηk/αk + 2(1 + ‖x̄− x̄k‖2)

×
√
ηk−1/αk−1 + σk−1ηk

)
+ ‖x̄− x̄1‖2 + ν(λ0 − λ̄)/α0

+(γ − τ)
n∑

k=1

(λk − λ̄)/αk

]
.

Proof. Since ψ(λk, x
k, ηk) = Gk(λk, x

k) + ηk then we have J(λk, x
k+1) ≥ δk(λk+1

−λk) ≥ ν(λk+1−λ̄)−γ(λk−λ̄). By considering this inequality and the inequalities
J(λk, x̄) ≤ τ(λ̄ − λk) we get

(γ − τ)(λk − λ̄)− ν(λk+1 − λ̄) ≥ J(λk, x̄)− J(λk, x
k+1),

and thus by setting uk = λk − λ̄ and considering the last inequality in (16), we
obtain

‖x̄− x̄n+1‖2 − ‖x̄− x̄1‖2 ≤ 2
n∑

k=1

√
ηk−1/αk−1‖x̄− x̄k‖2 + 2

n∑
k=1

√
ηk−1/αk−1

+
n∑

k=1

ηk−1/αk−1 +
n∑

k=1

ηk/αk

+(γ − τ)
n∑

k=1

uk/αk − ν
n∑

k=1

uk+1/αk. (18)

Remember that since ψ(λk, x
k, ηk) = Gk(λk, x

k)+ ηk we have ηk ≥ δk(λk+1−λk),
and ηk ≥ ν(λk+1−λk) since ηk ≥ 0 and δk ≥ ν. It follows that νuk−νuk+1+ηk ≥ 0,
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and thus by writing σk−1 = σk − 1/αk, we get

0 ≤ νσk−1uk − νσkuk+1 + νuk+1/αk + σk−1ηk.

By summing over k = 1, 2, . . . , n, we get

0 ≤ νσ0u1 − νσnun+1 + ν
n∑

k=1

uk+1/αk +
n∑

k=1

σk−1ηk.

By adding this inequality to (18) we obtain

‖x̄− xn+1‖2 − ‖x̄− x̄1‖2 ≤ 2
n∑

k=1

√
ηk−1/αk−1‖x̄− x̄k‖2 + 2

n∑
k=1

√
ηk−1/αk−1

+
n∑

k=1

ηk−1/αk−1 +
n∑

k=1

ηk/αk +
n∑

k=1

σk−1ηk

+(γ − τ)
n∑

k=1

uk/αk + νu1/α0 − νσnun+1,

which gives the desired result. �

Remark 2.2. When m = 1 and g1 = 1, that is when f is convex, then γ =
τ = ν = 1 and DTR1 coincides with the proximal point algorithm. For this last
algorithm, with the conditions of Proposition 2.2, we obtain

λn+1 − λ̄ ≤ σ−1
n

[ n∑
k=1

(
ηk−1/αk−1 + ηk/αk + 2(1 + ‖x̄− x̄k‖2)

√
ηk−1/αk−1

)
+‖x̄− x̄1‖2 + (λ0 − λ̄)/α0

]
,

and with the conditions of Proposition 2.3 we have

λn+1 − λ̄ ≤ σ−1
n

[ n∑
k=1

(
ηk−1/αk−1 + ηk/αk + 2(1 + ‖x̄− x̄k‖2)

√
ηk−1/αk−1

+σk−1ηk

)
+ ‖x̄− x̄1‖2 + (λ0 − λ̄)/α0

]
.

In particular, when ηk = 0 we find the estimate

λn+1 − λ̄ ≤ σ−1
n

[‖x̄− x̄1‖2 + (λ0 − λ̄)/α0

]·
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3. Convergence and rate of convergence

of algorithm DTR2

The algorithm DTR2 is based on the algorithm DT2 introduced in [3]. In the
algorithm DTR2, the function J(., .) is replaced by the function

J(λ, x, y) = max
i∈I
{(fi(x)− λgi(x))/gi(y)},

and G(., .) is replaced by

G(λ, x) = inf
y∈X
{J(λ, y, x) + α‖y − x‖2},

where α is a given positive real.

Algorithm 3.1. Let {ηk} be a given sequence of positive reals.
0. Choose x0 ∈ X and set λ0 = f(x0);
1. At Step k we have xk and λk. Then, find xk+1 satisfying

ϕ(λk, x
k, ηk) ≥ J(λk, x

k+1, xk) + α‖xk+1 − xk‖2,
set λk+1 = f(xk+1), k ← k + 1 and go back to 1.

The algorithm DTR2 considered in [1] corresponds to the case

ϕ(λk, x
k, ηk) = min{0, G(λk, x

k) + ηk}, with
∞∑

k=0

√
ηk < +∞.

With this choice and when the regularizing parameter is constant, convergence of
the sequence {λk} may be established under the following weaker choice of ϕ:

ϕ(λk, x
k, ηk) = G(λk, x

k) + ηk.

As was done for Algorithm 2.1, we will consider that the regularizing parameter α
is variable with respect to the iterations since the objective function in DT2 is also
variable with respect to the iterations; and we will study Algorithm 3.1 under two
choices of ϕ(λk, x

k, ηk). We will establish in particular, that the algorithm DTR2
converges without assuming that the optimal solutions s of (P ) is nonempty. Also
we will establish convergence under other conditions on the approximate solutions
of the auxiliary problems. Later, we will show that the rate of convergence is
linear when the assumption (H), introduced in Section 2.2, is satisfied. Under
some additional conditions we establish superlinear convergence.

For given {αk} and {ηk} as for Algorithm 2.1, we define the point xk+1 as a
point in X satisfying

ϕ(λk, x
k, ηk) ≥ J(λk, x

k+1, xk) + αk‖xk+1 − xk‖2,
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and consider Algorithm 3.1 with this definition in the two following cases:
(i) ϕ(λk, x

k, ηk) = min{0, Gk(λk, x
k) + ηk};

(ii) ϕ(λk, x
k, ηk) = Gk(λk, x

k) + ηk,
where

Gk(λk, x
k) = inf

x∈X
{J(λk, x, x

k) + αk‖x− xk‖2}·

Notice that only case (i) is studied in [1] and that with ϕ(λk, x
k, ηk) as in (ii),

xk+1 is an ηk-minimizer of J(λk, ., x
k) + αk‖.− xk‖.

3.1. Convergence of algorithm DTR2

In the rest of the paper, we assume that our basic assumptions given in Section 2
are fulfilled. In the proofs of convergence of Algorithm 3.1, we will often use the
previous results. Also we use the same notations

λ̄ = inf
x∈X

f(x), X∗ = argmin
x∈X

f(x), ν = inf
x∈X

min
i∈I

gi(x) and τ = inf
x∈X∗

min
i∈I

gi(x),

and we will assume in all what follows that ν > 0. Next, we will use the notations

I(λ, x) = {i ∈ I | λ = fi(x)/gi(x)}

and

K(λ, x, y) = {i ∈ I | J(λ, x, y) = (fi(x) − λgi(x))/gi(y)}·

Lemma 3.1. If one of the two following cases is realized in Algorithm 3.1
(i) ϕ(λk, x

k, ηk) = min{0, Gk(λk, x
k) + ηk};

(ii) ϕ(λk, x
k, ηk) = Gk(λk, x

k) + ηk,
∑

k≥0 ηk < +∞;

then the sequence {λk} converges to some λ̂ ∈ R ∪ {−∞}.
Proof. For all i ∈ I we get

ϕ(λk, x
k, νk) ≥ Jk(λk, x

k+1) ≥ (fi(xk+1)− λkgi(xk+1))/gi(xk).

For i ∈ I(λk+1, x
k+1) we have λk+1 = fi(xk+1)/gi(xk+1) and thus,

ϕ(λk, x
k, νk) ≥ Jk(λk, x

k+1) ≥ (λk+1 − λk)gi(xk+1)/gi(xk). (19)

Let sg(λ) = 1 if λ > 0 and sg(λ) = −1 if λ ≤ 0 and let

δ′k = max{−γ/ν sg(λk+1 − λk), ν/γ sg(λk+1 − λk)}·

Then δ′k = γ/ν if λk+1−λk ≤ 0 and δ′k = ν/γ if λk+1−λk > 0, which implies that

ϕ(λk, x
k, νk) ≥ J(λk, x

k+1) ≥ δ′k(λk+1 − λk). (20)
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With (i) we have ϕ(λk, x
k, νk) ≤ 0 and it follows that λk+1 ≤ λk for all k ∈ N,

and {λk} converges to λ̂ ∈ R ∪ {−∞}.
With (ii) we have ϕ(λk, x

k, νk) ≤ ηk since Gk(λk, x
k) ≤ 0 and (20) implies that

ηk/δ
′
k + λk ≥ λk+1. (21)

Notice that 0 < ν ≤ δ′k and thus the result follows by using Lemma 2.1 with
uk = λk, µk = 0 and βk = ηk/δ

′
k.

Theorem 3.1. Suppose that∑
k≥0

1/αk = +∞ and that
∑
k≥0

√
ηk/αk < +∞.

If one of the two following conditions is satisfied
(i) ϕ(λk, x

k, ηk) = min{0, Gk(λk, x
k) + ηk};

(ii) ϕ(λk, x
k, ηk) = Gk(λk, x

k) + ηk,
∑

k≥0 ηk < +∞;

then the sequence {λk} converges to the optimal value λ̄ of (P ).

Proof. For all k ∈ N we set J(., ., xk) = Jk(., .). As in the proof of Theorem 2.1,
we will have with the function Jk,

‖x− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk +
(
Jk(λk, x)− Jk(λk, x

k+1)
)
/αk, (22)

where x̄k+1 = argminx∈X{Jk(λk, x) + αk‖x− xk‖2}. Notice that under the as-
sumptions of the theorem, Lemma 3.1 implies that the sequence {λk} converges
to some λ̂. It remains to show that λ̂ = λ̄. If λ̂ = −∞, then λ̂ = λ̄. So, we
will assume that λ̂ > −∞. On the other hand, for i ∈ K(λk, x, x

k) we have
Jk(λk, x) = (fi(x)− λkgi(x))/gi(xk), and then

Jk(λk, x) ≤ (f(x) − λk)gi(x)/gi(xk).

Then, it follows that

Jk(λk, x) ≤ (f(x)− λk)γ/ν if f(x) − λk ≥ 0, (23)

and

Jk(λk, x) ≤ (f(x)− λk)ν/γ if f(x)− λk ≤ 0. (24)

We will show that for all x ∈ X we have

lim sup
k→∞

(
Jk(λk, x) − Jk(λk, x

k+1)
)
≥ 0. (25)
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Suppose, for contradiction, that there exists ε > 0, x̃ ∈ X and l such that
Jk(λk, x̃) − Jk(λk, x

k+1) < −ε for all k ≥ l. As in the proof of Theorem 2.1
we show, using (22) with x = x̃, that this is impossible and that (25) is true.

For x ∈ X , if there is an infinite set of indices k such that f(x) ≥ λk, then
f(x) ≥ λ̂. Else, there exists k̄ such that f(x) < λk for all k = k̄, k̄ + 1, . . . But
from (24) we have

(f(x)− λk)ν/γ − Jk(λk, x
k+1) ≥ Jk(λk, x)− Jk(λk, x

k+1),

for all k = k̄, k̄+1, . . . ., and then because of (25) and the fact that Jk(λk, x
k+1)→ 0

as k → ∞, f(x) ≥ λ̂. So, f(x) = λ̂. In both cases, f(x) ≥ λ̂ for all x ∈ X which
implies that λ̂ = λ̄. �

Proposition 3.1. Assume that the sequence {αk} is such that αk ≥ ᾱ for all
k ∈ N, that the assumptions of Theorem 3.1 are fulfilled, and that the optimal
solutions set of (P ) is nonempty. If Algorithm 3.1 is considered in one of the
following situations:

(i) ϕ(λk, x
k, ηk) = min{0, Gk(λk, x

k) + ηk};
(ii) ϕ(λk, x

k, ηk) = Gk(λk, x
k) + ηk,

∑
k≥0 ηk < +∞, γ2 ≤ ν(ν + τ) and αk+1

≥ αk for all k ∈ N;

then the sequence {xk} converges to a solution of (P ).

Proof. Consider first the case (i). Then ϕ(λk, x
k, ηk) ≤ 0 and thus, following (20)

we obtain

0 ≥ Jk(λk, x
k+1) ≥ (λk+1 − λk)γ/ν.

On the other hand, for x̄ ∈ X∗, we have Jk(λk, x̄) ≤ 0. With x = x̄ in (22) we
then obtain

‖x̄− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + (γ/ν)(λk − λk+1)/ᾱ. (26)

The rest is as in the proof of Proposition 2.1 by using Lemma 2.1.
Suppose now that (ii) occurs. For x̄ ∈ X∗ we have Jk(λk, x̄) ≤ (λ̄ − λk)τ/γ,

and on the other hand

J(λk, x
k+1) ≥ δk(λk+1 − λk) ≥ (λk+1 − λ̄)ν/γ + (λ̄− λk)γ/ν.
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Considering (22) with these inequalities we get

‖x̄− x̄k+1‖2 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + (γ/ν − τ/γ)(λk − λ̄)/αk − (ν/γ)(λk+1 − λ̄)/αk

≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2 + 2

√
ηk−1/αk−1 + ηk−1/αk−1

+ηk/αk + (ν/γ)(λk − λ̄)− (ν/γ)(λk+1 − λ̄)/αk+1

+(ν/γ)(1/αk+1 − 1/αk)(λk+1 − λ̄),

where we used the assumption γ2 ≤ ν(ν+τ) in the last inequality. Since αk+1 ≥ αk

we have

‖x̄− x̄k+1‖2 + (ν/γ)(λk+1 − λ̄)/αk+1 ≤
(
1 + 2

√
ηk−1/αk−1

)
‖x̄− x̄k‖2

+2
√
ηk−1/αk−1 + ηk−1/αk−1 + ηk/αk

+(ν/γ)(λk − λ̄)
≤

(
1 + 2

√
ηk−1/αk−1

)(‖x̄− x̄k‖2

+(ν/γ)(λk − λ̄)
)

+ 2
√
ηk−1/αk−1

+ηk−1/αk−1 + ηk/αk.

By invoking Lemma 2.1 with uk = ‖x̄− x̄k‖2 +(ν/γ)(λk− λ̄), µk = 2
√
ηk−1/αk−1

and βk = 2
√
ηk−1/αk−1 + ηk−1/αk−1 + ηk/αk, we deduce that the sequence {x̄k}

converges. The rest is as in the previous case. �

3.2. Rate of convergence of algorithm DTR2

Following [1], the algorithm DTR2 is generally much faster than DTR1. This
is quite natural since DT2 is generally faster than DT1 [3, 5]. In this section we
show that Algorithm 3.1 converges linearly when the assumption (H) is fulfilled
and superlinearly under additional assumptions.

Theorem 3.2. Suppose that the optimal solutions set X∗ of (P ) is nonempty and
that the function J(λ̄, .) satisfies the condition (H) in Section 2.2. Also suppose
that ηk/(λk− λ̄)→ 0 as k →∞ and that the sequence {xk} converges to a solution
of (P ) (see Prop. 3.1). If Algorithm 3.1 is considered in one of the two following
situations:

(i) ϕ(λk, x
k, ηk) = min{0, Gk(λk, x

k) + ηk};
(ii) ϕ(λk, x

k, ηk) = Gk(λk, x
k) + ηk, and γ2 < ν(ν + τ);

then for αk small enough, the sequence {λk} converges linearly to λ̄.

Proof. For all k ∈ N, let x̃k ∈ X∗ be such that d(xk, X∗) = ‖xk − x̃k‖. We have

Jk(λk, x̃
k) + αk‖x̃k − xk‖2 + ηk ≥ δ′k(λk+1 − λk) · (27)
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For k large enough, we have xk ∈ B(X∗, δ)∩X and thus J(λ̄, xk) ≥ κ‖xk − x̃k‖2.
So,

κ‖x̃k − xk‖2 ≤ J(λ̄, xk) ≤ (λk − λ̄)max
i∈I

gi(xk) (28)

≤ (λk − λ̄)γ. (29)

On the other hand,

Jk(λk, x̃
k) ≤ (λ̄ − λk)min

i∈I
gi(x̃k)/gi(xk) (30)

≤ (λ̄ − λk)τ/γ. (31)

Therefore by using (27–29) and (31), for k large enough, we obtain

(λ̄− λk)τ/γ + (λk − λ̄)αkγ/κ+ ηk ≥ δ′k(λk+1 − λk). (32)

With (i) we have λk+1 − λk ≤ 0 and δ′k = γ/ν and this yields

(1− ντ/γ2 + αkν/κ)(λk − λ̄) + νηk/γ ≥ λk+1 − λ̄.

So, if lim supk→∞ αk < κτ/γ2, then lim supk→∞(λk+1 − λ̄)/(λk − λ̄) < 1.
Assume now that (ii) is satisfied. Then from (32) we get

(λ̄− λk)τ/γ + (λk − λ̄)αkγ/κ+ ηk ≥ (λk+1 − λ̄)ν/γ + (λ̄− λk)γ/ν,

and this implies that

(γ/ν)(γ/ν − τ/γ + αkγ/κ)(λk − λ̄) + γηk/ν ≥ λk+1 − λ̄.

It follows that if lim supk→∞ αk < κ[ν(ν + τ)− γ2]/(γ2ν), then lim supk→∞(λk+1

−λ̄)/(λk − λ̄) < 1. �
Theorem 3.3. With the assumptions of Theorem 3.2, the sequence {λk} con-
verges superlinearly to λ̄ if αk → 0 as k →∞.

Proof. Since the sequence {xk} converges by assumption, then the sequence {x̃k}
defined in the beginning of the proof of Theorem 3.2 also converges to the same
limit because of the assumption (H). By using (19) we obtain

Jk(λk, x
k+1) ≥ (λk+1 − λ̄)min

i∈I
gi(xk+1)/gi(xk)− (λk − λ̄)max

i∈I
gi(xk+1)/gi(xk).

It follows that

Jk(λk, x̃
k) + αk‖x̃k − xk‖2 + ηk ≥ (λk+1 − λ̄)min

i∈I

gi(xk+1)
gi(xk)

−(λk − λ̄)max
i∈I

gi(xk+1)
gi(xk)

·
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Then, using this inequality and the inequalities (29) and (30), we obtain[
max
i∈I

gi(xk+1)
gi(xk)

−min
i∈I

gi(x̃k)
gi(xk)

+
γαk

κ

]
(λk − λ̄) + ηk ≥ (λk+1 − λ̄)min

i∈I

gi(xk+1)
gi(xk)

·

Since the sequences {xk} and {x̃k} converge to the same limit, then

max
i∈I

gi(xk+1)/gi(xk)→ 1, min
i∈I

gi(x̃k)/gi(xk)→ 1 and min
i∈I

gi(xk+1)/gi(xk)→ 1

as k →∞; and thus (λk+1 − λ̄)/(λk − λ̄)→ 0 as k →∞. �
Remark 3.1. If the hypothesis (H’) is satisfied and X∗ = {x̄}, then J(λ̄, xk) ≥
κ‖xk − x̄‖. So the sequence {xk} converges to x̄ since 0 ≤ J(λ̄, xk) ≤ γ(λk − λ̄)
and λk → λ̄ as k →∞.

With similar arguments as those used in the proofs of Proposition 2.2 and
Proposition 2.3, we obtain the following results.

Proposition 3.2. For all n ∈ N, let σn =
∑n

k=0 1/αk. If the optimal solutions
set X∗ of (P ) is nonempty and ψ(λk, x

k, ηk) = min{0, Gk(λk, x
k) + ηk}, then for

all x̄ ∈ X∗ we have the following estimate

τ(λn+1 − λ̄)/γ ≤ σ−1
n

[
n∑

k=1

(
ηk−1/αk−1 + ηk/αk

+2(1 + ‖x̄− x̄k‖2)
√
ηk−1/αk−1

)
+‖x̄− x̄1‖2 + (τ/γ)(λ0 − λ̄)/α0

+(γ/ν − τ/γ)
n∑

k=1

(λk − λk+1)/αk

]
.

Proposition 3.3. For all n ∈ N, let σn =
∑n

k=0 1/αk. If the optimal solutions
set X∗ of (P ) is nonempty and ψ(λk, x

k, ηk) = Gk(λk, x
k)+ηk, then for all x̄ ∈ X∗

we have the following estimate

ν(λn+1 − λ̄)/γ ≤ σ−1
n

[
n∑

k=1

(
ηk−1/αk−1 + ηk/αk + 2(1 + ‖x̄− x̄k‖2)

×
√
ηk−1/αk−1 + σk−1ηk

)
+ ‖x̄− x̄1‖2

+(ν/γ)(λ0 − λ̄)/α0 + (γ/ν − τ/γ)
n∑

k=1

(λk − λ̄)/αk

]
.
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