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HYBRID DATA MINING HEURISTICS FOR THE HETEROGENEOUS
FLEET VEHICLE ROUTING PROBLEM
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and Puca Huachi Vaz Penna3

Abstract. The vehicle routing problem consists of determining a set of routes for a fleet of vehicles
to meet the demands of a given set of customers. The development and improvement of techniques
for finding better solutions to this optimization problem have attracted considerable interest since
such techniques can yield significant savings in transportation costs. The heterogeneous fleet vehicle
routing problem is distinguished by the consideration of a heterogeneous fleet of vehicles, which is a
very common scenario in real-world applications, rather than a homogeneous one. Hybrid versions of
metaheuristics that incorporate data mining techniques have been applied to solve various optimization
problems, with promising results. In this paper, we propose hybrid versions of a multi-start heuristic
for the heterogeneous fleet vehicle routing problem based on the Iterated Local Search metaheuristic
through the incorporation of data mining techniques. The results obtained in computational experi-
ments show that the proposed hybrid heuristics demonstrate superior performance compared with the
original heuristic, reaching better average solution costs with shorter run times.
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1. Introduction

The vehicle routing problem (VRP) is one of the most widely discussed problems in the fields of combinatorial
optimization and operations research. It consists of determining a set of routes for a fleet of vehicles to meet
the demands of a given set of customers. The development and improvement of techniques for finding better
solutions to this problem have attracted considerable interest since such techniques can yield significant savings
in transportation costs [45]. The heterogeneous fleet vehicle routing problem (HFVRP) is distinguished by the
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consideration of a heterogeneous fleet of vehicles, which is a very common scenario in real-world applications [20],
rather than a homogeneous one. Since this problem is NP-hard [24], the use of exact methods is infeasible for
non-trivial instances.

In recent decades, various metaheuristics have been proposed for and successfully applied to optimization
problems in various areas, allowing satisfactory solutions to be found within an acceptable computational
time frame. Techniques from other areas have been incorporated into traditional metaheuristics to obtain even
better results, giving rise to hybrid metaheuristics. One successful example of such hybridization is the Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic [11], into which data mining techniques have
been incorporated.

The first proposal for the hybridization of GRASP with data mining techniques resulted in a hybrid heuristic
called Data Mining GRASP (DM-GRASP) [37,38]. The basic idea of this hybrid heuristic is that patterns found
in good solutions can be used to guide the search, leading to more effective exploitation of the solution space.
In this hybrid version, after the execution of half of the GRASP iterations, a data mining procedure is applied
to extract patterns from an elite set composed of the best solutions found up to that point. These patterns
represent features found in the elite set of solutions and can be used to guide the search in the second half of
the iterations.

DM-GRASP has been successfully applied to the set packing [37, 38], maximum diversity [41], server repli-
cation for reliable multicasting [40], p-median [34, 35], 2-path network design [4] and one-commodity pickup-
and-delivery traveling salesman [17, 18] problems. A survey of this approach has been presented by Santos
et al. [39].

Subsequently, a new version of the DM-GRASP heuristic, called Multi Data Mining GRASP (MDM-
GRASP) [33], was proposed. The main idea underlying this version of the heuristic is to run the data mining
procedure multiple times in an adaptive mode. The procedure is executed the first time the elite set becomes
stable – as characterized by the absence of changes in the elite set over a given number of iterations – and,
subsequently, each time the elite set changes and then becomes stable again.

MDM-GRASP has also been applied to the p-median [34, 35], 2-path network design [4], server replication
for reliable multicasting [33] and one-commodity pickup-and-delivery traveling salesman [18] problems, and it
has achieved better results than those obtained by DM-GRASP, not only in terms of solution quality but also
in relation to computational time.

The promising results achieved in the various applications of DM-GRASP have inspired the similar incor-
poration of data mining techniques into a hybrid multi-start heuristic that combines elements from several
traditional metaheuristics for application to the p-median problem [30], also with good results.

In this paper, we incorporate the data mining techniques used in DM-GRASP and MDM-GRASP into a
multi-start ILS (MS-ILS) heuristic proposed by Penna et al. [31] for application to the HFVRP. Our goal is to
study the impact of these data mining techniques on a state-of-the-art algorithm for solving the HFVRP.

The main contribution of this work is the proposal of highly competitive hybrid heuristics for solving the
HFVRP, based on the incorporation of data mining techniques. The effectiveness of the proposed heuristics is
demonstrated by the results of computational experiments conducted on a large number of HFVRP instances
from widely used collections. The hybrid heuristics exhibit superior performance compared with the original
version, achieving better average solution costs with shorter run times. Furthermore, new best solutions for six
instances are found.

The remainder of this paper is organized as follows. Section 2 outlines the HFVRP and presents a review of
major studies that have addressed this problem. Section 3 describes the process of incorporating data mining
into the original heuristic and presents the resulting hybrid heuristics (DM-MS-ILS and MDM-MS-ILS). In
Section 4, the computational results obtained in experiments using the proposed hybrid heuristics, DM-MS-
ILS and MDM-MS-ILS, are analyzed and compared with those obtained using the original heuristic. Finally,
Section 5 presents conclusions and prospects for future work.
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2. The heterogeneous fleet vehicle routing problem

The VRP – which belongs to the NP-hard class of problems – consists of determining a set of routes for a fleet
of vehicles to meet the demands of a given set of customers. Its formulation originates from real applications in
the fields of logistics and transportation.

Efficient transportation has become increasingly important to society. Transportation costs represent a sig-
nificant part of the total cost of a product. In addition, competition among transportation service providers and
between entities of the industry and trade sectors leads to greater demands for rapid delivery to customers and
cost savings. Recently, concerns about climate change and other environmental issues have become an additional
factor motivating the search for more efficient transportation [20].

The heterogeneous fleet vehicle routing problem (HFVRP) is a generalization of the VRP in which customers
are served by a heterogeneous fleet of vehicles, with different capacities and costs, instead of a homogeneous
fleet. This situation is closer to those found in real-world applications, and thus, the HFVRP is a better model
of such applications.

The HFVRP is defined as follows. Let G = (V,A) be a directed graph, where V = {0, 1, . . . , n} is a set
composed of n + 1 vertices and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. Vertex 0 is the depot, where the
vehicle fleet is located, whereas the set V ′ = V \{0} contains the remaining vertices representing the n customers.
Each customer i ∈ V ′ is associated with a non-negative demand qi. The fleet consists of m different vehicle
types, which compose a set M = {1, . . . ,m}. For each vehicle type u ∈M , there are mu vehicles available, each
with a capacity Qu and a fixed cost fu. Finally, for each combination of an arc (i, j) ∈ A and a vehicle type
u ∈M , there is an associated cost cuij = dijru, where dij is the distance between vertices i and j and ru is the
dependent (variable) cost per unit distance associated with vehicle type u.

A route is defined by a pair (R, u), where R = (i1, i2, . . . , i|R|), i1 = i|R| = 0, and {i2, . . . , i|R|−1} ⊆ V ′; that
is, each route is a circuit in G that begins and ends at the depot and is assigned to a vehicle of type u ∈M . A
route (R, u) is feasible if the sum of the demands of all customers on R does not exceed the capacity Qu of the
vehicle assigned to it. The cost of a route is the sum of the fixed cost of the assigned vehicle and the dependent
costs associated with each of the traversed arcs in combination with the vehicle type. Thus, the goal of the
HFVRP is to find feasible routes such that each customer is visited exactly once, the total number of routes
assigned to vehicles of each type u ∈M does not exceed mu, and the sum of all route costs is minimized.

Figure 1a shows an example of an HFVRP instance, and Figure 1b presents a feasible solution for this
instance. The instance is represented by a table describing the properties of the available fleet of vehicles and
by a graph G = (V,A). The fleet is composed of one vehicle of each of three types, u1, u2 and u3. In the graph,
the depot is represented by a square vertex, labeled D, and the customers are represented by circular vertices
(V ′ = {a, b, c, d, e, f}). The demand of each customer is presented inside the corresponding vertex. In this
example, the distances are symmetric – that is, dij = dji,∀i, j ∈ V – and therefore, each pair of symmetric arcs
incident on a pair of vertices i and j is represented by one edge, which is labeled with a value corresponding to
the distance dij . The solution presented consists of three routes: (R1, u1), (R2, u2) and (R3, u3), where R1 = (D,
f, a, b, D), R2 = (D, c, D) and R3 = (D, d, e, D).

HFVRP instances are usually classified with respect to certain criteria. Two major classes are related to the
limitations on the fleet. The problem that characterizes the first class, known as the Fleet Size and Mix (FSM)
problem [15], can be regarded as a special case of the above definition in which mu = ∞,∀u ∈ M . Therefore,
this problem consists of determining the best composition of the fleet as well as its best routing scheme. For
the class of instances in which the fleet is limited, the corresponding problem is called the Heterogeneous Fixed
Fleet VRP (HFFVRP) [43] and consists of optimizing the routing for an available fixed fleet.

The FSM and HFFVRP classes may be further subdivided with respect to the types of vehicle costs con-
sidered. The possibilities are as follows: both fixed and dependent costs (the general case), fixed costs only (a
special case in which ru = 1,∀u ∈ M), or dependent costs only (a special case in which fu = 0,∀u ∈ M). Five
subclasses of FSM and HFFVRP instances with respect to this criterion are differentiated in the literature:
(1) the FSM problem with both fixed and dependent costs, denoted by FSM-FD [12]; (2) the FSM problem
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Figure 1. An example of an HFVRP instance and a feasible solution.

with fixed costs only, denoted by FSM-F [15]; (3) the FSM problem with dependent costs only, denoted by
FSM-D [43]; (4) the HFFVRP with both fixed and dependent costs, denoted by HFFVRP-FD [25]; and (5) the
HFFVRP with dependent costs only, denoted by HFFVRP-D [43]. To the best of our knowledge, the HFFVRP
with fixed costs only has never been addressed.

Because of the practical importance of the HFVRP, it has been intensively studied in recent decades, and
several solution strategies have been proposed. Some strategies address both the FSM problem and the HFFVRP,
whereas others address only one of those classes. The main algorithms found in the literature are listed below.

For the FSM problem: a column generation algorithm based on a formulation of the HFVRP as a set covering
problem, proposed by Choi and Tcha [7]; a hybrid genetic algorithm in which a local search is performed as
a mutation operator, presented by Liu et al. [27]; a deterministic tabu search algorithm that uses different
procedures to generate initial solutions, described by Brandão [5]; a Variable Neighborhood Search (VNS)
heuristic that uses a procedure based on the sweep algorithm and Dijkstra’s algorithm to obtain an initial
solution and several neighboring structures in the local search phase, introduced by Imran et al. [21]; a memetic
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algorithm, presented by Prins [36]; an algorithm based on the Iterated Local Search (ILS) [28] metaheuristic
that uses an RVND procedure in the local search phase, proposed by Penna et al. [31]; a hybrid version of the
algorithm of Penna et al. [31] that includes a procedure based on a formulation of the set partitioning problem,
proposed by Subramanian et al. [42]; and a genetic algorithm for several variants of the VRP based on unified
genetic operators, diversification methods and local search, reported by Vidal et al. [46].

For the HFFVRP: a column generation algorithm based on an adaptive memory procedure that uses an
embedded tabu search approach, presented by Taillard [43]; an algorithm based on the threshold accepting
algorithm, a deterministic variant of the simulated annealing metaheuristic, described by Tarantilis et al. [44];
an algorithm based on the principle of first clustering customers and then determining routes, which also
considers the possibility of renting vehicles when the fleet size is insufficient, introduced by Gencer et al. [13]; an
algorithm based on another deterministic variant of simulated annealing called record-to-record travel, reported
by Li et al. [25]; a memetic algorithm, described by Prins [36]; a population heuristic based on a genetic
algorithm, presented by Liu [26]; an algorithm based on the ILS metaheuristic that uses an RVND procedure in
the local search phase, proposed by Penna et al. [31]; and a hybrid version of the algorithm of Penna et al. [31]
that includes a procedure based on a formulation of the set partitioning problem, proposed by Subramanian
et al. [42].

An overview of the approaches presented in the literature for solving the HFVRP can be found in a survey by
Baldacci et al. [2]. A literature survey of this problem that focuses on industrial aspects of the FSM problem has
been presented by Hoff et al. [20]. A more recent literature survey on the HFVRP has been presented by Koç
et al. [22]. The latter presents a computational comparison among state-of-the-art algorithms. It shows that the
best performances for the FSM problem are achieved by the algorithms proposed by Choi and Tcha [7], Penna
et al. [31] and Vidal et al. [46], whereas the best performances for the HFFVRP are achieved by the algorithms
proposed by Li et al. [25], Liu [26], Penna et al. [31] and Subramanian et al. [42].

3. Incorporating data mining techniques into an MS-ILS Heuristic
for the HFVRP

In this paper, we propose hybrid heuristics for solving the HFVRP by incorporating data mining techniques
into the algorithm proposed by Penna et al. [31]. This algorithm is based on the ILS metaheuristic and uses a
Random Variable Neighborhood Descent (RVND) procedure in the local search phase.

The algorithm by Penna et al. [31] was chosen as the basis for the proposed hybrid heuristics because it
produces state-of-the-art results for both the FSM problem and the HFFVRP [22]. In addition, since it is
a multi-start heuristic, it is well suited to the approaches previously applied for incorporating data mining
into GRASP – which is also a multi-start method – to yield its hybrid versions DM-GRASP [39] and MDM-
GRASP [33].

In a multi-start strategy, the search is restarted multiple times from new initial solutions. Multi-start heuris-
tics [29] are iterative methods in which each iteration has two phases: generation and local search. In the
generation phase, an initial solution is generated, whereas in the local search phase, the solution is typically
(but not necessarily) improved. Each iteration produces a solution (usually a local optimum), and the best
overall solution is output by the algorithm.

In the strategies that incorporate data mining techniques into GRASP – which can be generalized to the
class of multi-start heuristics – an elite set is built that is composed of the best solutions found in all previous
iterations. Once an interruption criterion (a number of iterations in DM-GRASP or the stabilization of the
elite set in MDM-GRASP) has been satisfied, a data mining procedure is executed. It identifies patterns in the
solutions of the elite set, which are then used in the generation phases of subsequent iterations to guide the
local searches to start from more promising solutions, with the intent of obtaining even better solutions within
a shorter convergence time.

The data mining procedure used in this approach is based on the formulation of the frequent itemset mining
problem, which is one step of the association rule mining process [19]. This problem can be defined as follows.
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Let C = {c1, c2, . . . , cη} be the set of all items in the application domain. A transaction t is a subset of C, and
a database D is a set of transactions. A frequent itemset F of D with support sup is a subset of C that occurs
in at least sup% of the transactions in D. The frequent itemset mining problem consists of extracting from D
all itemsets with support greater than or equal to some minimum support, which is specified as a parameter.
In this context, the elite set is the database and each solution is a transaction.

More specifically, the adopted strategy is based on the mining of maximal frequent itemsets. A frequent
itemset is called maximal if none of its immediate supersets is frequent. The FPmax* algorithm4 [16] is used
for mining maximal frequent itemsets in this approach.

The MS-ILS heuristic for the HFVRP proposed by Penna et al. [31] is described in Section 3.1. The hybrid
heuristics that are proposed in this paper, DM-MS-ILS and MDM-MS-ILS, are presented in Sections 3.2 and 3.3,
respectively.

3.1. MS-ILS Heuristic for the HFVRP

The steps of the MS-ILS5 (Multi-Start Iterated Local Search) heuristic proposed by Penna et al. [31] for
solving the HFVRP are presented in Algorithm 1.

Algorithm 1. MS-ILS(MaxIter, β)
1: Initialize fleet
2: n← total number of customers
3: v ← total number of vehicles
4: f(s∗)←∞
5: for i← 1 to MaxIter do
6: s← Generate Initial Solution(v)
7: MaxIterILS ← n+ β|s|
8: s′ ← ILS(s,MaxIterILS)
9: if f(s′) < f(s∗) then

10: s∗ ← s′

11: end if
12: end for
13: return s∗

For the HFFVRP, the fleet is initialized with the available vehicles defined according to the problem instance
being processed, whereas for the FSM problem, the fleet is initialized with one vehicle of each type (line 1).
The number of customers is assigned as the value of n (line 2), and the number of vehicles is assigned to v
(line 3). The multi-start heuristic is run for MaxIter iterations (lines 5–12). In each iteration, an initial solution
is generated via a constructive procedure (line 6). MaxIterILS is the maximum allowed number of consecutive
perturbations without improvements in the ILS heuristic. This value is computed (line 7) based on the number
of customers (n), the number of routes (|s|) and a parameter β that defines the level of influence of the number
of routes in this calculation (MaxIterILS = n + β|s|). In the local search phase, the ILS heuristic is used to
improve the generated initial solution (line 8). This heuristic performs a local search from the initial solution and
applies this search repeatedly to a set of solutions obtained by perturbing the locally optimal solutions found. If
the solution s′ returned by the ILS heuristic represents an improvement in cost, as given by the function f , then
the best overall solution s∗ is updated (lines 9-11). After the execution of the MaxIter multi-start iterations,
the best solution found is returned (line 13).

The pseudocode of the constructive procedure for generating the initial solutions is presented in Algorithm 2.
Initially, the candidate list (CL) is filled with all customers (line 1), and the solution (s) is initialized with one

4Implementation available at http://fimi.cs.helsinki.fi
5The authors call this heuristic ILS-RVND in [31].

http://fimi.cs.helsinki.fi
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empty route associated with each vehicle in the fleet (line 2). Each route is filled with a customer k that is
selected at random from CL (lines 3–6). An insertion criterion is randomly selected (line 7) from between the
two available, namely, the Modified Cheapest Feasible Insertion Criterion (MCFIC) and the Nearest Feasible
Insertion Criterion (NFIC). The first is a modification of the well-known cheapest insertion criterion in which
only feasible insertions are allowed and an incentive is provided for serving customers located far from the
depot. The second is an adaptation of the classical nearest insertion criterion in which only feasible insertions
are allowed. Then, the parallel insertion strategy is used to complete the construction of the initial solution s
(line 8). In this strategy, as long as CL is not empty, a customer from CL is selected to be inserted into a
route using the insertion criterion chosen in the previous step, and all routes are considered to find the best
insertion. If the solution s that is generated in this way is not feasible, then the construction procedure is
restarted (lines 9–11). If the fleet is unlimited (FSM problem), then an empty route for each type of vehicle is
added to solution s (lines 12–14). These empty routes are necessary to allow for a possible resizing of the fleet
during the local search phase. Finally, the generated solution is returned (line 15).

Algorithm 2. Generate Initial Solution(v)
1: Initialize CL
2: Let s = {s1, . . . , sv} be a set composed of v empty routes
3: for v′ ← 1 to v do
4: sv′

← k ∈ CL selected at random
5: CL← CL\{k}
6: end for
7: Insertion Criterion ← c ∈ {MCFIC, NFIC} selected at random
8: s← Parallel Insertion(v, CL,Insertion Criterion)
9: if ¬feasible(s) then

10: Go to line 1
11: end if
12: if unlimited fleet then
13: Add to s an empty route for each type of vehicle
14: end if
15: return s

3.2. DM-MS-ILS Hybrid Heuristic

The first of the hybrid heuristics proposed in this paper, called Data Mining MS-ILS (DM-MS-ILS), has a
structure similar to that used in the DM-GRASP [39] proposal. As explained previously in this section, the
strategy used in this approach requires solutions to be represented as sets of items to allow the data mining
procedure to identify patterns (maximal frequent itemsets) common to the best solutions. Several optimization
problems have solutions that can be naturally represented as sets of items, and the approach used in this work
has been applied mostly to such problems. However, for routing problems – such as the VRP and its variants –
solutions are composed of sequences of items in which the order is important.

An application of DM-GRASP to the one-commodity pickup-and-delivery traveling salesman problem was
proposed by Guerine et al. [17, 18]. Since this problem is a generalization of the traveling salesman problem,
a solution consists of a route that serves all customers, respecting customer demand and vehicle capacity
constraints. Naturally, the order is important to the route quality and even to its feasibility. A solution to this
problem is typically represented as a list of customers, ordered according to the visitation sequence defined for
the route.

In that work, the authors proposed an alternative representation to allow the use of the techniques employed
in DM-GRASP. Each pair of consecutive customers ir and ir+1, r = 1, 2, . . . , |R|−1, on a route R is represented
by an arc (ir, ir+1). Thus, the solution may be represented as a set of arcs while still preserving the order
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of the customers on the route. Consequently, each pattern found by the data mining procedure consists of
a set of frequent arcs in the elite set of solutions. A pattern may contain pairs of adjacent arcs (ir, ir+1) and
(ir+1, ir+2), which are connected, forming longer route segments. Therefore, a pattern can be seen as a (possibly
disconnected) subgraph of the graph G formed of the depot and customers, where the connected components of
this subgraph represent route segments in the pattern. Thus, each pattern is a nonempty set of route segments.

A solution to the HFVRP consists of a set of routes. However, using such a set representation of a solution
as a basis for a frequent itemset mining problem formulation would not be appropriate, as it would result in
each item being an entire route. Therefore, a decomposition of the solution with a finer granularity is needed.

In this work, a representation similar to that used by Guerine et al. [17, 18] is employed. As described in
Section 2, each route in the HFVRP is represented by a pair (R, u), where R = (i1, i2, . . . , i|R|) is a list of
vertices, ordered according to the defined visitation sequence, and u is the type of vehicle assigned to the route.
In the adopted alternative representation, for each route (R, u), the list R is decomposed into a set of arcs
{(i1, i2), (i2, i3), . . . , (i|R|−1, i|R|)}, as in the work carried by Guerine et al. [17, 18]. Then, the vehicle type u is
assigned to each arc in the set, resulting in a set in which each element is a pair composed of an arc (ir, ir+1),
r = 1, 2 . . . , |R| − 1, in R and the vehicle type u, with the form {((i1, i2), u), ((i2, i3), u), . . . , ((i|R|−1, i|R|), u)}.
To belong to a pattern, an arc must be present and associated with the same vehicle type in a minimum number
of solutions in the elite set. Consequently, in this case, the patterns mined are also formed of route segments,
but each route segment has a vehicle type assigned to it.

Algorithm 3 presents the pseudocode of the hybrid heuristic DM-MS-ILS. The main difference between it
and Algorithm 1 is that the multi-start iterations are divided into two blocks, each representing half of the total
number of iterations. The first block (lines 6–14) corresponds to the elite set generation phase. The iterations
in this phase are identical to those of the original heuristic, except for the updating of the elite set E, which
stores the d best distinct solutions found (line 10), where d is a parameter of the algorithm. After the first
block of multi-start iterations, data mining is performed on the elite set, returning a set P composed of the
MaxP largest patterns found with the minimal support MinSup (line 15), where the size of a pattern is defined
as the number of arcs it contains. The patterns in set P are arranged in decreasing order by size, forming a
circular list. Then, the second phase, also called the hybrid phase (lines 16–24), begins. In each iteration in this
phase, a pattern p ∈ P is selected following the sequence of the circular list (line 17) and is used to generate an
initial solution by means of an adapted constructive procedure (line 18). After generating the initial solution,
the algorithm continues in the same way as the original heuristic.

The pseudocode of the constructive procedure used in the hybrid phase, which uses one of the mined patterns
to generate an initial solution, is presented in Algorithm 4.

Again, the candidate list (CL) is filled with all customers (line 1), and the solution (s) is initialized with an
empty route associated with each vehicle in the fleet (line 2). In fact, the only difference between this constructive
procedure and the original one (Algorithm 2) is that it initializes the generated solution s by inserting route
segments from pattern p, which is done in lines 3–16. In general terms, a complete route corresponding to each
route segment r′ ∈ P is added to s. There are three possible forms of route segments: (1) a complete route,
i.e., a circuit in G that starts and ends at the depot; (2) a path in G that starts at the depot and ends at a
customer vertex; and (3) a path in G that starts at a customer vertex and ends at the depot. A complete route
corresponding to a route segment r′ is obtained by calling the auxiliary function Complete(r′), which simply
returns a clone of r′, if r′ is itself a complete route, or the route resulting from the insertion into r′ of the single
arc necessary to make it a complete route. The pattern insertion process is performed in slightly different ways
for the FSM problem and the HFFVRP, as explained below.

For the FSM problem, since the fleet is unlimited, we can add any number of routes for each vehicle type
to the solution without making it infeasible. In such a case, all customers in pattern p are removed from CL
(line 4) and a complete route corresponding to each route segment r′ ∈ p is inserted into s as a new route
(lines 5–7).

For the HFFVRP, since the fleet is fixed, if we add to the solution more routes associated with a particular
vehicle type than the number of vehicles of that type that are available in the fleet, then the solution becomes
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Algorithm 3. DM-MS-ILS(MaxIter, β, d,MaxP,MinSup)
1: Initialize fleet
2: n← total number of customers
3: v ← total number of vehicles
4: f(s∗)←∞
5: E ← Ø
6: for i← 1 to MaxIter/2 do
7: s← Generate Initial Solution (v)
8: MaxIterILS ← n+ β|s|
9: s′ ← ILS(s,MaxIterILS)

10: Update EliteSet (E, s′, d)
11: if f(s′) < f(s∗) then
12: s∗ ← s′

13: end if
14: end for
15: P ← Mine (E,MaxP,MinSup)
16: for i←MaxIter/2 + 1 to MaxIter do
17: p← Select Pattern(P )
18: s← Hybrid Generation(v, p)
19: MaxIterILS ← n+ β|s|
20: s′ ← ILS(s,MaxIterILS)
21: if f(s′) < f(s∗) then
22: s∗ ← s′

23: end if
24: end for
25: return s∗

infeasible. However, the number of route segments associated with a particular vehicle type in a pattern may
exceed the specified limit on vehicles of that type. Therefore, pattern insertion is performed in the following way.
For each route segment r′ ∈ P , the algorithm searches for an empty route s associated with the same vehicle
type as r′ (line 10). The call to the auxiliary function Vehicle(r′) returns the vehicle type associated with r′,
whereas the call to the auxiliary function Find Empty Route (s, Vehicle(r′)) returns the index of an empty
route in s associated with the same vehicle type as r′, if any exists, or zero otherwise. If there is such a route,
then it is replaced with a complete route corresponding to r′ (line 12), and all customers in r′ are removed from
CL (line 13). Otherwise, r′ is not inserted into the solution, but its customers remain in CL so that they will
be inserted into the solution later (through the original strategy).

Figure 2 illustrates an example of the use of a mined pattern to generate an initial solution for the HFVRP
instance presented in Figure 1(a) as described in Algorithm 4. Figure 2(a) presents the mined pattern used,
which is composed of two route segments: (R′1, u1) and (R′2, u2), where R′1 = (f, a, b, D) and R′2 = (D, c).

Initially, a complete route corresponding to each route segment in the pattern is inserted into the solution. To
complete the route segments, we must add the necessary arcs to close the circuits such that they start and end
at the depot. In this example, the arc (D, f) is added to the path associated with vehicle type u1 and the arc (c,
D) is added to the path associated with vehicle type u2. The state of the initial solution after the introduction
of the pattern is shown in Figure 2b.

After this step, the candidate list contains the customers that have not yet been added to the solution. Those
customers are added to the solution following the strategy of the original heuristic. A customer (e) is randomly
selected to be added to the route associated with vehicle type u3, which was previously empty, bringing the
solution into the state shown in Figure 2c. Finally, the only remaining customer in the candidate list (d) is
added to the route associated with u2, completing the construction of the initial solution. Figure 2d presents
the generated initial solution.
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Algorithm 4. Hybrid Generation(v, p)
1: Initialize CL
2: Let s = {s1, . . . , sv} be a set composed of v empty routes
3: if unlimited fleet then
4: Remove all customers in p from CL
5: for all r′ ∈ p do
6: s← s ∪ {Complete(r′)}
7: end for
8: else
9: for all r′ ∈ p do

10: v′ ← Find Empty Route(s, Vehicle(r′))
11: if v′ 6= 0 then

12: sv′
← Complete(r′)

13: Remove all customers in r′ from CL
14: end if
15: end for
16: end if
17: for v′ ← 1 to v do
18: sv′

← k ∈ CL selected at random
19: CL← CL\{k}
20: end for
21: Insertion Criterion ← c ∈ {MCFIC, NFIC} selected at random
22: s← Parallel Insertion(v, CL,Insertion Criterion)
23: if ¬feasible(s) then
24: Go to line 1
25: end if
26: if unlimited fleet then
27: Add to s an empty route for each type of vehicle
28: end if
29: return s

3.3. MDM-MS-ILS hybrid heuristic

The second hybrid heuristic proposed in this paper is called Multi Data Mining MS-ILS (MDM-MS-ILS).
Its pseudocode is presented in Algorithm 5. This heuristic has a structure similar to that used in the MDM-
GRASP [33] proposal.

In this case, whenever the elite set E becomes stable – that is, when it remains unmodified over φ iterations
– data mining is performed, which updates the pattern set P (lines 8-10). In the early iterations, when data
mining has not yet been performed and the pattern set P is consequently still empty, the initial solutions are
generated by Algorithm 2 (line 12). Once data mining has been performed, the initial solutions start being
generated by Algorithm 4 using a pattern p selected from the current pattern set P (lines 14–15). After the
local search phase (line 18), the elite set is updated (line 19), as is the best solution in the case of improvement
(lines 20–22).

4. Computational experiments

In this section, we describe the computational experiments performed in this work. Since our goal is to study
the impact of data mining techniques on a state-of-the-art algorithm for solving the HFVRP, we evaluate the
hybrid heuristics DM-MS-ILS and MDM-MS-ILS (presented in Sect. 3) and compare them with the MS-ILS
heuristic proposed by Penna et al. [31], on which they are based. Additionally, our results are compared with
the best known solutions reported in the literature.
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(b) Partial solution after insertion of the pattern
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(c) Partial solution at an intermediate stage
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(d) Initial solution generated

Figure 2. An example of initial solution generation using a mined pattern.

The hybrid heuristics proposed in this work were implemented based on the original source code for the
MS-ILS heuristic, which was provided by the authors. The code was written in C++ and compiled with the
GCC C++ compiler (g++) version 4.8.2 in the Cygwin environment. The experiments were run on a computer
equipped with an Intel R© CoreTM i5 3.20 GHz CPU and 1.56 GB of RAM running 32–bit Windows 7 Pro SP1.

Experiments were performed for both classes of HFVRP: the FSM problem and the HFFVRP. Each heuristic
was run ten times, with ten different random number seeds, for each instance. In each case, the following values
obtained over the ten runs are reported: best solution cost, average solution cost, standard deviation of the
costs, average computational time (in seconds), and standard deviation of the computational times.

The parameters were defined as follows. The number of iterations MaxIter of the multi-start heuristic
was set to 100. For the parameter β, which controls the level of influence of the number of vehicles v in the
calculation of MaxIterILS (MaxIterILS = n+βv), we adopted a value of 1 (the default value in the MS-ILS
implementation). For the parameters associated with the data mining procedure, we adopted values used in
other applications of this approach [17, 18, 30, 34, 37, 39, 40]: the maximum size of the elite set, the minimum
support, and the number of patterns used were set to 10, 20% and 10, respectively. Finally, the number of
iterations without changes to the elite set required to consider it stable was set to 5% of MaxIter.

The results for the FSM problem are presented in Section 4.1, whereas Section 4.2 presents the results for the
HFFVRP. Two tables are presented for each set of instances. The first one shows a cost comparison and includes,
for each instance, the best known solution (BKS) cost reported in the literature and the results obtained using
the compared heuristics. The other one shows a computational time comparison among the heuristics. Each
table contains two additional rows at the bottom: one presenting the global average – i.e., the mean of the
average costs or times reported in the table – for each method and another showing the average percentage
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Algorithm 5. MDM-MS-ILS(MaxIter, β, d,MaxP,MinSup, φ)
1: Initialize fleet
2: n← total number of customers
3: v ← total number of vehicles
4: f(s∗)←∞
5: E ← Ø
6: P ← Ø
7: for i← 1 to MaxIter do
8: if Stable(E, φ) then
9: P ← Mine(E,MaxP,MinSup)

10: end if
11: if P = Ø then
12: s← Generate Initial Solution(v)
13: else
14: p← Select Pattern(P )
15: s← Hybrid Generation(v, p)
16: end if
17: MaxIterILS ← n+ β|s|
18: s′ ← ILS(s,MaxIterILS)
19: Update EliteSet(E, s′, d)
20: if f(s′) < f(s∗) then
21: s∗ ← s′

22: end if
23: end for
24: return s∗

difference achieved by the new heuristics – i.e., the mean of the percentage differences in average cost or time
for each of the new heuristics with respect to the MS-ILS heuristic.

In the comparisons, the best values among all three heuristics are shown in boldface. Furthermore, when
a new best solution is found (i.e., a solution with a cost lower than the previous best known solution cost),
it is underlined. At the end of each of the following sections, we present an analysis assessing the statistical
significance of the differences in the average costs achieved by the compared heuristics. For this analysis, we
have used a one-tailed paired Student’s t test per instance for each pair of heuristics, with a significance level
of 5%.

Finally, we report the results of experiments performed to further investigate the behavior of the compared
heuristics in Section 4.3.

4.1. FSM problem

In the experiments addressing the FSM problem, we used the same instances considered in the experiments
performed by Penna et al. [31], which were described by Taillard [43], and an additional set of instances described
by Brandão [6]. Taillard’s set contains 12 instances in which the number of customers ranges from 20 to 100,
whereas Brandão’s contains five instances, each with between 100 and 199 customers. In these experiments,
only dependent costs were considered; i.e., all instances were regarded as FSM-D instances.

Tables 1 and 2 present the comparisons of the results for Taillard’s set of instances [43]. We observe that
the MDM-MS-ILS heuristic outperformed the others, achieving the best average solution costs for nine of the
12 instances, whereas DM-MS-ILS achieved the best average costs for four instances, and MS-ILS, for three.
MDM-MS-ILS and DM-MS-ILS found optimal solutions for ten instances, and MS-ILS, for nine6. MDM-MS-ILS
had the best average times for seven instances, DM-MS-ILS had the best average times for five instances (with

6All best known solutions for these instances have been proven to be optimal by Baldacci and Mingozzi [3].



HYBRID DATA MINING HEURISTICS FOR THE HFVRP 673

Table 1. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Taillard’s in-
stances [43] (FSM-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.
3 623.22a 623.22 624.04 1.73 623.22 624.09 1.83 623.22 623.66 1.39
4 387.18a 387.18 387.80 0.81 387.18 388.12 0.81 387.18 388.12 0.81
5 742.87a 742.87 743.32 1.42 742.87 743.32 1.42 742.87 742.87 0.00
6 415.03a 415.03 415.03 0.00 415.03 415.03 0.00 415.03 415.03 0.00
13 1491.86b 1495.43 1500.94 4.79 1491.86 1500.28 5.05 1491.86 1496.25 2.64
14 603.21c 603.21 603.21 0.00 603.21 603.21 0.00 603.21 603.21 0.00
15 999.82b 999.82 1003.25 2.43 999.82 1001.95 2.82 999.82 1001.42 2.66
16 1131.00d 1131.00 1135.91 2.33 1131.00 1134.10 2.98 1131.00 1132.66 2.91
17 1038.60a 1038.60 1043.18 3.78 1038.60 1042.96 4.83 1038.60 1040.81 3.31
18 1800.80e 1803.32 1814.31 7.71 1801.40 1812.01 7.98 1803.32 1816.55 8.38
19 1105.44b 1105.44 1112.25 4.74 1105.44 1110.99 4.16 1105.44 1109.38 4.88
20 1530.43a 1543.09 1549.20 4.31 1542.70 1547.86 3.29 1541.46 1548.52 4.63

Global Avg. 994.37 993.66 993.21
Avg. P.D. –0.05% –0.10%

aBKS first reported by Choi and Tcha [7], bBKS first reported by Gendreau et al. [14],
cBKS first reported by Taillard [43], dBKS first reported by Wassan and Osman [47],
eBKS first reported by Baldacci and Mingozzi [3].

Table 2. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Taillard’s in-
stances [43] (FSM-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
3 2.50 0.09 2.43 0.13 2.40 0.10
4 2.50 0.09 2.44 0.10 2.47 0.13
5 3.06 0.14 2.97 0.09 2.97 0.08
6 2.91 0.15 2.86 0.12 2.89 0.09
13 20.81 1.13 19.59 0.82 19.71 1.23
14 22.89 0.76 20.74 0.89 19.45 1.14
15 19.67 1.21 17.08 0.56 16.87 0.70
16 17.66 0.96 17.19 0.68 16.98 0.93
17 73.49 2.83 69.07 2.19 74.24 5.01
18 80.78 3.90 80.90 4.77 83.46 6.01
19 165.65 7.04 161.26 10.70 154.97 5.07
20 151.08 5.57 142.22 6.86 131.51 8.67

Global Avg. 46.92 44.89 43.99
Avg. P.D. –4.79% –5.49%

a tie between MDM-MS-ILS and DM-MS-ILS for one instance), and MS-ILS had the best average time for only
one instance.

Tables 3 and 4 present the comparisons of the results for Brandão’s instances [6]. Again, the superior perfor-
mance of the MDM-MS-ILS heuristic compared with the others is evident. It achieved the best average costs
for all instances in this set. Furthermore, MDM-MS-ILS obtained the best average times for three instances,
whereas DM-MS-ILS had the best average times for the remaining two instances.

Below, we present the results of the statistical significance analysis for the FSM experiments.
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Table 3. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Brandão’s instances [6]
(FSM-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.
N1 2212.77a 2236.86 2253.57 7.93 2243.76 2252.87 5.27 2245.38 2252.25 6.87
N2 2823.75a 2850.07 2871.72 12.03 2838.35 2853.09 8.93 2839.96 2852.90 9.05
N3 2234.57b 2269.96 2316.61 30.13 2236.09 2282.18 32.99 2238.25 2272.86 29.68
N4 1822.78b 1822.78 1834.27 6.14 1823.04 1831.13 6.09 1825.82 1828.05 2.84
N5 2016.79b 2030.03 2043.79 10.53 2030.03 2041.84 10.71 2031.41 2040.23 6.79

Global Avg. 2263.99 2252.22 2249.26
Avg. P.D. -0.49% –0.63%

aBKS first reported by Subramanian et al. [42], bBKS first reported by Brandão [6].

Table 4. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Brandão’s in-
stances [6] (FSM-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
N1 465.23 21.16 464.37 20.24 462.37 32.71
N2 1016.68 41.90 1008.30 41.13 1029.91 49.60
N3 366.85 14.76 362.39 23.95 365.76 17.43
N4 146.25 8.01 142.57 7.46 141.76 8.79
N5 626.54 27.51 577.19 28.23 560.57 27.14

Global Avg. 524.31 510.96 512.07
Avg. P.D. –2.60% –2.77%

Between MS-ILS and DM-MS-ILS, the differences in the average costs are statistically significant for three
of Brandão’s instances (N2, N3 and N4), all with 100 customers or more. DM-MS-ILS has the advantage for all
three of these instances.

Between MS-ILS and MDM-MS-ILS, the differences are statistically significant for the same three of Brandão’s
instances (N2, N3 and N4) and for two of Taillard’s instances (13 and 16), both with fewer than 100 customers.
MDM-MS-ILS has the advantage for all five of these instances.

Finally, between DM-MS-ILS and MDM-MS-ILS, there is a statistically significant difference only for instance
13 from Taillard’s set, in favor of MDM-MS-ILS.

4.2. HFFVRP

In the experiments addressing the HFFVRP, we used the instances described by Brandão [6] (the same used
in the FSM experiments, but with limited fleets), the instances described by Li et al. [25] and the instances
described by Duhamel et al. [9]. The set from Li et al. contains five instances with 200 to 360 customers. The
96 instances described by Duhamel et al. are divided into four sets: Set 1, which contains 15 instances, each
with fewer than 100 customers; Set 2, which contains 38 instances, each with between 100 and 150 customers;
Set 3, which contains 31 instances, each with between 151 and 200 customers; and Set 4, which contains 12
instances, each with more than 200 customers. In the experiments using the instances from Brandão and Li
et al., only dependent costs were considered; i.e., these instances were regarded as HFFVRP-D instances. In
the experiments using the instances from Duhamel et al., both fixed and dependent costs were considered; i.e.,
these instances were regarded as HFFVRP-FD instances.
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Table 5. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Brandão’s instances [6]
(HFFVRP-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.
N1 2235.87a 2246.39 2261.41 8.01 2246.39 2258.65 7.64 2246.39 2258.65 7.01
N2 2864.83a 2898.17 2911.52 6.81 2897.41 2910.72 7.61 2891.17 2902.85 9.32
N3 2378.99a 2378.99 2383.85 3.97 2378.99 2384.26 3.84 2378.99 2383.10 4.10
N4 1839.22b 1839.22 1839.23 0.03 1839.22 1839.22 0.00 1839.22 1839.42 0.63
N5 2047.81a 2047.81 2047.81 0.00 2047.81 2047.81 0.00 2047.81 2047.81 0.00

Global Avg. 2288.77 2288.13 2286.36
Avg. P.D. –0.03% –0.09%
aBKS first reported by Subramanian et al. [42], bBKS first reported by Brandão [6]

Table 6. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Brandão’s in-
stances [6] (HFFVRP-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
N1 633.57 31.87 620.09 17.87 605.16 26.05
N2 1382.33 80.83 1370.50 75.25 1327.38 79.02
N3 439.14 21.75 405.40 19.76 405.42 26.87
N4 197.03 8.76 176.89 8.87 168.55 9.60
N5 744.32 52.15 647.88 24.58 621.34 39.13

Global Avg. 679.28 644.15 625.57
Avg. P.D. –7.12% –10.04%

Tables 5 and 6 present the comparisons of the results for Brandão’s instances [6]. The MDM-MS-ILS heuristic
outperformed the others, achieving the best average costs for four of the five instances, whereas DM-MS-ILS
achieved the best average costs for three instances, and MS-ILS, for only one instance. Furthermore, MDM-MS-
ILS obtained the best average times for four instances, whereas DM-MS-ILS had the best average time for the
remaining instance. All heuristics found the best known solutions for three instances (N3, N4 and N5).

Tables 7 and 8 present the comparisons of the results for the instances from Li et al. [25]. Again, the MDM-
MS-ILS heuristic outperformed the others, achieving the best average costs for four of the five instances, whereas
MS-ILS achieved the best average cost for the remaining instance. MDM-MS-ILS had the best average times
for two instances, and DM-MS-ILS had the best average times for the other three instances.

Tables 9 and 10 present the comparisons of the results for the instances from Set 1 of Duhamel et al. [9].
MDM-MS-ILS achieved the best average costs for eight instances; DM-MS-ILS, for four instances; and MS-ILS,
for eight instances. DM-ILS-MS and MS-ILS found the best known solutions for six instances (10, 55, 75, 92,
93 and 94), and MDM-MS-ILS, for nine (08, 10, 43, 55, 75, 82, 92, 93 and 94). Regarding the average times,
MDM-MS-ILS obtained the best values for all instances.

Tables 11 and 12 present the comparisons of the results for the instances from Set 2 of Duhamel et al. [9]. The
MDM-MS-ILS heuristic outperformed the others, achieving the best average costs for 27 of the 38 instances,
whereas DM-MS-ILS achieved the best average costs for 10 instances, and MS-ILS, for only one instance. Two
new best solutions were found by MDM-MS-ILS (for instances 41 and 48), and another one was found by DM-
MS-ILS (for instance 89). Furthermore, MDM-MS-ILS found the best known solutions for five other instances
(12, 16, 2A, 53 and 87), whereas DM-MS-ILS found the best known solutions for four instances (12, 16, 2A
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Table 7. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – instances from Li
et al. [25] (HFFVRP-D).

MS-ILS DM-MS-ILS MDM-MS-ILS

Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.

H1 12 050.08a 12 050.39 12 073.99 18.68 12 050.39 12 062.22 7.19 12 050.39 12 058.78 5.83

H2 10 208.32a 10 364.71 10 410.56 31.94 10 342.83 10 384.47 27.30 10 351.15 10 378.21 20.25

H3 16 223.39a 16 270.47 16 358.84 67.02 16 270.47 16 305.38 25.67 16 239.48 16 280.42 32.87

H4 17 458.65a 17 681.84 17 882.54 93.29 17 720.66 17 901.57 76.72 17 828.15 17 921.21 77.25

H5 23 166.56a 23 770.01 24 010.71 155.92 23 651.90 23 960.35 165.91 23 640.07 23 897.62 137.02

Global Avg. 16 147.33 16 122.80 16 107.25

Avg. P.D. –0.16% –0.23%
aBKS first reported by Brandão [6].

Table 8. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – instances from Li
et al. [25] (HFFVRP-D).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
H1 2330.32 137.24 2034.71 89.02 1953.79 95.15
H2 4074.28 256.40 4015.73 224.74 4141.99 191.95
H3 7659.96 234.09 7046.92 303.14 6815.66 435.75
H4 13 343.36 546.35 13 058.05 576.18 13 063.40 569.61
H5 24 568.82 1113.21 24 269.38 1333.37 24 656.98 1803.24

Global Avg. 10395.35 10 084.96 10 126.37
Avg. P.D. –5.34% –5.87%

and 87), as did MS-ILS (12, 16, 53 and 87). MDM-MS-ILS had the best average times for 33 instances, and
DM-MS-ILS had the best average times for the remaining five instances.

Tables 13 and 14 present the comparisons of the results for the instances from Set 3 of Duhamel et al. [9]. The
MDM-MS-ILS heuristic outperformed the others, achieving the best average costs for 18 of the 31 instances,
whereas DM-MS-ILS achieved the best average costs for 10 instances, and MS-ILS, for the three remaining
instances. A new best solution for instance 67 was found by all heuristics, a new best solution for instance 04
was found by MDM-MS-ILS, and a new best solution for instance 02 was found by DM-MS-ILS. MDM-MS-ILS
had the best average times for 25 instances, and DM-MS-ILS had the best average times for the remaining six
instances.

Tables 15 and 16 present the comparisons of the results for the instances from Set 4 of Duhamel et al. [9]. The
MDM-MS-ILS heuristic outperformed the others, achieving the best average costs for six of the 12 instances,
whereas DM-MS-ILS obtained the best average costs for five instances, and MS-ILS, for one instance. MDM-MS-
ILS has the best average times for five instances, and DM-MS-ILS had the best average times for the remaining
seven instances.

Below, we present the results of the statistical significance analysis for the HFFVRP experiments.
Between MS-ILS and DM-MS-ILS, the differences in the average costs are statistically significant for three

of the instances from Li et al. (H1, H2 and H3) and for 26 of the instances from Duhamel et al. – four from Set
1 (08, 10, 11 and 94), 14 from Set 2 (05, 07, 26, 30, 31, 40, 48, 73, 74, 79, 81, 84, 88 and 89), six from Set 3
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Table 9. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 1 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS

Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.

01 9180.45a 9210.14 9213.14 2.84 9210.14 9213.88 2.62 9210.14 9213.26 3.50

08 4591.75b 4594.07 4598.79 2.82 4596.52 4596.98 0.97 4591.75 4595.76 2.20

10 2107.55c 2107.55 2107.93 0.68 2107.55 2107.61 0.17 2107.55 2107.61 0.17

11 3367.41b 3372.16 3376.80 3.33 3368.50 3374.19 3.20 3370.52 3375.04 2.75

36 5684.61b 5707.98 5721.72 9.04 5685.17 5723.33 20.81 5688.63 5720.36 17.63

39 2921.36d 2932.57 2934.47 0.81 2933.88 2934.57 0.37 2934.55 2935.11 1.01

43 8737.02b 8747.16 8767.78 16.57 8747.16 8761.64 11.21 8737.02 8751.83 13.19

52 4027.27b 4029.42 4029.42 0.00 4029.42 4030.04 1.95 4029.42 4030.04 1.95

55 10 244.34c 10 244.34 10 253.64 8.97 10 244.34 10255.36 9.00 10244.34 10254.56 8.80

70 6684.56d 6692.91 6705.39 8.56 6685.24 6701.09 11.91 6685.24 6695.96 11.61

75 452.85c 452.85 452.85 0.00 452.85 452.85 0.00 452.85 452.85 0.00

82 4766.74b 4768.21 4773.28 1.97 4772.94 4773.82 0.87 4766.74 4771.77 2.74

92 564.39c 564.39 564.39 0.00 564.39 564.39 0.00 564.39 564.39 0.00

93 1036.99e 1036.99 1037.92 1.39 1036.99 1038.04 1.35 1036.99 1038.34 1.42

94 1378.25c 1378.25 1378.37 0.26 1378.25 1378.52 0.30 1378.25 1378.40 0.25

Global Avg. 4394.39 4393.75 4392.35

Avg. P.D. –0.01% –0.03%

aBKS first reported by Kochetov and Khmelev [23], bBKS first reported by Duhamel et al. [8],
cBKS first reported by Duhamel et al. [9], dBKS first reported by Penna et al. [32],
eBKS first reported by Duhamel et al. [10].

Table 10. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 1 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
01 290.77 14.43 256.70 19.58 238.45 21.29
08 92.92 2.52 86.33 4.01 81.85 3.30
10 170.43 6.21 151.82 8.80 145.13 3.44
11 258.90 11.83 237.65 10.34 236.76 6.58
36 322.18 11.99 322.54 13.26 312.95 12.81
39 258.12 7.03 248.03 9.48 241.77 9.49
43 213.85 8.50 198.99 8.33 190.33 7.82
52 92.61 6.27 74.53 2.94 69.21 4.04
55 43.95 1.65 37.41 1.05 37.28 1.47
70 137.00 3.41 126.53 10.03 119.16 3.48
75 4.30 0.17 3.76 0.15 3.49 0.09
82 111.60 3.83 103.77 3.14 100.93 4.65
92 33.31 1.27 30.65 0.96 30.23 1.25
93 25.53 0.81 22.05 1.26 19.66 1.03
94 56.21 2.26 52.52 1.44 51.47 2.30

Global Avg. 140.78 130.22 125.24
Avg. P.D. –9.80% –14.22%
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Table 11. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 2 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS

Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.

03 10 727.36a 10 791.91 10 826.46 20.30 107 67.72 10 811.24 23.35 10 754.86 10 807.45 35.45

05 10 896.33b 10 931.20 11 003.17 37.71 10 912.38 10 953.91 33.58 10 903.63 10 965.80 51.61

06 11 692.85c 11 791.83 11 852.25 39.20 11 784.11 11 841.67 36.86 11 753.01 11 816.43 36.32

07 8074.64a 81 42.96 8199.10 28.83 8136.26 8177.43 35.18 8121.77 8161.76 25.72

12 3543.99d 3543.99 3547.78 3.73 3543.99 3547.61 4.11 3543.99 3545.32 1.41

13 6696.43c 6716.37 6725.96 6.99 6714.52 6723.22 12.01 6710.07 6717.21 5.66

16 4156.97c 4156.97 4166.56 7.37 4156.97 4163.25 4.02 4156.97 4162.80 4.52

17 5362.83c 5368.67 5397.62 15.71 5368.67 5395.98 16.11 5368.38 5390.25 20.21

2A 7793.16c 7797.32 7829.59 17.98 7793.16 7817.67 18.83 7793.16 7820.47 16.09

2B 8464.69c 8481.56 8531.41 31.36 8487.25 8522.33 27.19 8498.61 8518.70 16.57

21 5139.84b 5144.08 5168.12 20.41 5145.44 5161.73 16.22 5145.44 5159.28 13.95

25 7206.64c 7250.72 7270.95 17.45 7209.29 7255.38 20.95 7209.29 7248.31 18.75

26 6393.47a 6455.28 6462.94 5.83 6456.29 6464.81 5.52 6456.29 6463.28 5.54

28 5531.06c 5537.23 5546.90 5.27 5535.08 5545.51 4.58 5533.47 5543.17 6.85

30 6313.39c 6321.69 6350.53 12.89 6321.69 6344.74 11.42 6321.69 6344.92 11.91

31 4091.52c 4113.70 4132.58 13.12 4101.03 4124.52 16.28 4121.04 4132.83 8.71

34 5758.09c 5789.29 5831.22 32.62 5801.82 5823.31 15.00 5780.07 5816.02 19.37

40 11 122.32b 11 172.52 11 192.74 13.75 11 127.02 11 165.79 24.95 11 132.57 11 157.41 17.17

41 7572.07c 7682.04 7746.73 41.01 7667.53 7728.94 46.17 7571.44 7699.18 62.17

47 16 175.22b 16 238.39 16 303.32 36.89 16 249.94 16 302.89 30.68 16 224.78 16296.63 42.16

48 21 316.55a 21 384.37 21 473.01 75.02 21 314.81 21 411.13 51.37 21 287.90 21 401.80 71.36

51 7721.47c 7780.04 7798.71 18.02 7780.04 7804.28 18.42 7783.38 7790.61 10.54

53 6434.83c 6434.83 6454.04 18.41 6435.24 6453.01 12.35 6434.83 6448.14 14.26

60 17 037.23b 17 065.77 17 100.66 29.85 17 075.68 17 105.74 18.53 17 060.89 17 092.11 19.49

61 7292.03b 7294.77 7304.77 7.57 7296.72 7304.63 7.06 7296.72 7306.39 8.54

66 12 790.56a 12829.08 12 895.66 45.42 12 829.08 128 82.07 37.55 12 829.08 12 890.90 34.19

68 8935.89b 8984.15 9089.52 67.97 8984.15 9082.97 64.22 8982.72 9063.66 73.32

73 10 195.13a 10 208.72 10 221.27 7.57 10 208.72 10 213.99 2.70 10 208.72 10 218.65 5.48

74 11 586.87c 11 602.43 11 628.75 16.21 11 600.15 11 618.14 10.53 11 608.06 11 621.81 12.69

79 7259.54c 7277.79 7321.96 21.82 7277.79 7307.41 19.61 7265.58 7303.76 21.80

81 10 675.92a 10 697.08 10 713.49 9.11 10 694.37 10 705.97 8.08 10 691.45 10 707.37 14.75

83 10 019.15c 10 053.78 10 065.58 11.85 10 049.81 10 059.47 7.22 10 039.66 10 052.49 6.02

84 7227.88c 7240.82 7271.50 12.90 7237.41 7260.49 13.14 7239.22 7258.67 16.00

85 8779.76c 8825.78 8873.34 26.45 8820.46 8859.99 28.51 8845.37 8879.04 15.50

87 3753.87d 3753.87 3758.01 7.62 3753.87 3761.85 12.84 3753.87 3754.31 1.39

88 12 402.85c 12 501.24 12 555.96 63.88 12 417.00 12 507.39 48.14 12 454.45 12 492.58 19.32

89 7099.68a 7110.97 7146.11 15.85 7098.18 7129.06 21.31 7108.28 7124.87 13.94

90 2346.13c 2349.24 2359.46 4.10 2354.95 2358.71 1.80 2347.16 2357.12 4.44

Global Avg. 8634.68 8623.64 8619.25

Avg. P.D. –0.11% –0.17%
aBKS first reported by Kochetov and Khmelev [23], bBKS first reported by Penna et al. [32],
cBKS first reported by Duhamel et al. [8], dBKS first reported by Duhamel et al. [9].
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Table 12. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 2 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
03 636.38 25.25 612.57 33.11 595.05 22.97
05 226.37 6.42 220.07 7.64 207.62 11.22
06 341.35 12.67 328.95 7.71 324.08 9.25
07 234.19 10.47 226.05 7.97 219.76 10.03
12 520.95 25.60 497.63 17.20 475.18 14.38
13 550.66 16.92 534.87 21.92 528.91 22.44
16 799.13 18.53 758.76 21.81 756.53 23.49
17 237.64 10.33 230.54 5.63 224.24 11.19
2A 441.91 10.41 426.46 17.03 418.39 11.72
2B 572.26 21.51 560.60 19.45 548.65 18.39
21 676.47 27.37 658.29 32.16 638.00 15.83
25 1253.55 48.65 1221.47 60.45 1187.99 33.52
26 1292.52 46.24 1294.54 63.74 1242.66 56.65
28 644.69 27.32 629.75 23.29 628.04 19.25
30 719.16 27.93 684.94 20.39 670.42 31.57
31 1114.05 54.31 1071.48 50.36 1090.02 42.92
34 753.37 24.06 734.24 24.57 741.77 30.31
40 645.40 26.79 613.73 23.28 618.21 50.92
41 782.60 48.07 767.90 44.21 769.72 31.41
47 398.20 27.08 376.94 25.27 373.04 22.96
48 509.18 17.77 476.10 22.74 452.95 32.38
51 828.77 29.38 791.39 40.46 786.62 25.52
53 527.24 13.59 508.86 28.03 490.91 14.54
60 611.45 25.57 577.73 31.03 565.97 27.01
61 779.92 33.27 752.36 39.15 717.30 58.97
66 1465.33 51.75 1417.25 63.31 1429.20 55.40
68 671.87 33.08 649.68 24.60 638.34 29.88
73 464.41 18.00 428.60 15.22 413.73 20.10
74 440.63 18.93 419.77 19.55 411.45 16.81
79 1450.56 52.76 1423.95 83.46 1386.96 69.78
81 395.20 6.77 380.45 10.08 378.09 14.36
83 514.12 14.96 484.04 23.87 470.33 25.19
84 285.05 16.13 269.45 15.56 261.06 17.98
85 655.82 31.67 640.44 44.54 616.50 30.89
87 405.91 11.49 372.38 12.56 366.48 21.64
88 315.21 7.18 300.19 13.37 291.20 10.86
89 600.53 16.14 585.23 19.79 584.20 22.22
90 333.68 10.10 309.86 12.88 301.13 19.03

Global Avg. 634.10 611.51 600.54
Avg. P.D. –4.03% –6.11%

(14, 15, 35, 45, 54 and 76) and two from Set 4 (32 and 65). DM-MS-ILS has the advantage for 28 of these
instances, whereas MS-ILS is favored for only one.

Between MS-ILS and MDM-MS-ILS, the differences are statistically significant for two of Brandão’s instances
(N1 and N2), four of the instances from Li et al. (H1, H2, H3 and H5) and 38 of the instances from Duhamel
et al. – four from Set 1 (08, 11, 43 and 70), 15 from Set 2 (05, 06, 07, 12, 13, 25, 30, 40, 41, 48, 79, 83, 84, 88
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Table 13. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 3 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS

Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.

02 11 718.86a 117 33.14 11 775.17 39.05 11 703.66 11 752.48 32.62 11 713.88 11 753.96 37.76

04 10 787.03a 10 828.33 10 847.27 14.33 10 797.99 10 855.80 28.67 10 784.61 10 823.68 17.73

09 7619.19b 7636.84 7675.45 17.23 7636.84 7669.14 24.98 7636.84 7672.33 20.06

14 5644.92b 5701.91 5718.68 12.19 5668.07 5701.21 19.37 5671.37 5699.90 18.08

15 8236.40b 8293.26 8318.48 15.78 8273.45 8305.74 16.64 8264.03 8302.24 20.86

24 9101.47b 9173.59 9242.72 33.40 9173.59 9240.60 33.88 9173.59 9247.17 35.63

29 9142.86a 9144.78 9167.39 13.55 9144.78 9168.07 10.24 9144.78 9169.33 12.17

33 9419.00c 9493.56 9521.65 17.26 9473.57 9512.85 31.54 9441.81 9502.70 28.07

35 9574.71b 9633.65 9665.27 23.85 9615.85 9649.87 20.86 9604.04 9636.32 20.98

37 6858.23b 6886.29 6903.65 10.72 6886.29 6900.98 9.92 6878.59 6895.29 10.18

42 10 855.73a 11 008.86 11 094.78 40.20 10 955.01 11 058.33 57.37 10 981.64 11 059.00 67.17

44 12 197.46b 12 274.61 12 346.08 55.02 12 241.70 12 327.10 53.88 12 261.45 12 358.11 52.22

45 10 484.23b 10 561.05 10 660.83 57.14 10 520.84 10 606.11 53.87 10 550.31 10 608.36 39.97

50 12 374.04b 12 409.45 12 476.66 39.84 12 409.55 12 480.50 33.06 12 395.11 12 472.87 45.36

54 10 370.09a 10 401.18 10 480.14 41.02 10 401.18 10 465.53 33.72 10 387.47 10 453.46 42.87

56 31 090.53a 31 263.88 31 337.08 59.93 31 195.39 31 311.72 59.02 31 129.72 31 256.17 72.49

57 44 818.18b 45 012.74 45 087.62 56.56 44 963.29 45 059.01 71.75 44 898.59 45 052.81 82.22

59 14 282.59b 14 371.32 14 413.20 31.13 14 352.60 14 393.36 40.52 14 328.25 14 376.27 29.78

63 19 951.76b 19 974.11 20 333.24 152.36 20 173.19 20 287.24 80.12 20 173.19 20 261.42 57.05

64 17 135.16a 17 155.00 17 175.62 16.73 17 154.96 17 175.20 15.50 17 136.39 17 164.60 14.91

67 10 915.60a 10 850.16 10 979.48 54.17 10 850.16 10 965.14 43.78 10 850.16 10 980.20 58.93

69 9162.78b 9212.99 9264.78 28.33 9195.71 9261.74 35.97 9206.22 9236.71 20.17

71 9870.22b 9947.38 9984.87 34.78 9918.92 9978.84 44.78 9912.60 9963.08 26.44

72 5883.33a 5957.32 5981.85 12.81 5957.32 5975.75 12.63 5939.91 5967.48 12.33

76 12 007.57c 12 073.74 12 124.36 31.71 12 040.13 12 093.53 34.56 12 055.19 12 101.97 22.16

77 6929.67a 6957.61 7013.94 31.86 6984.57 7011.54 22.04 6962.09 6997.63 24.99

78 7035.01b 7135.30 7149.32 9.98 7138.00 7150.64 8.63 7137.86 7149.40 9.78

80 6816.89b 6834.69 6849.51 8.31 6826.81 6849.03 10.49 6837.84 6849.47 8.35

86 9030.68b 9058.78 9075.67 10.58 9059.59 9073.55 11.37 9061.45 9074.48 10.70

91 6374.01c 6380.87 6420.53 16.05 6402.86 6422.71 12.76 6396.21 6418.84 11.26

95 6175.62a 6236.95 6243.86 5.02 6237.53 6243.88 4.92 6237.31 6244.21 5.09

Global Avg. 11 784.81 11 772.49 11 766.11

Avg. P.D. –0.10% –0.15%

aBKS first reported by Penna et al. [32], bBKS first reported by Duhamel et al. [8],
cBKS first reported by Kochetov and Khmelev [23].
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Table 14. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 3 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
02 1440.85 54.36 1363.59 36.85 1344.83 87.21
04 1385.93 81.61 1351.59 78.52 1358.64 101.29
09 843.19 47.66 818.16 39.82 799.24 46.46
14 2122.12 118.51 2033.79 149.85 2034.79 125.47
15 1416.58 46.22 1398.99 46.05 1347.05 70.71
24 1616.92 69.40 1568.10 69.82 1553.03 66.34
29 1909.24 57.90 1864.62 51.57 1830.00 78.31
33 1939.18 84.98 1875.66 73.17 1868.95 78.25
35 836.18 24.47 804.86 23.77 786.79 27.86
37 1243.23 70.83 1249.63 82.92 1230.06 50.15
42 3741.81 145.83 3710.33 145.16 3552.28 137.10
44 3321.39 135.24 3277.85 203.43 3220.46 120.86
45 2162.92 86.33 2075.02 108.65 2006.37 93.85
50 5417.19 321.70 5305.08 269.49 5291.74 197.25
54 2789.87 131.03 2696.98 131.08 2655.06 107.30
56 1092.90 70.12 1090.92 58.49 1075.61 50.12
57 1288.42 71.03 1238.64 65.05 1224.30 52.49
59 3943.32 118.75 3813.79 117.36 3641.57 172.77
63 1599.57 43.32 1604.42 79.62 1557.71 44.82
64 2063.66 94.10 1919.59 87.86 1822.52 74.64
67 2179.39 93.05 2121.16 114.25 2093.24 167.30
69 873.47 22.74 845.72 27.39 858.37 32.71
71 1246.78 42.62 1224.96 70.41 1230.48 49.59
72 2194.97 70.30 2187.25 59.92 2215.37 77.44
76 863.27 14.98 822.05 26.32 792.30 26.12
77 3947.87 154.86 3878.65 170.08 3946.85 104.34
78 3387.32 67.47 3562.57 75.90 3379.75 57.10
80 1929.63 77.73 1950.01 75.99 1876.03 54.27
86 1022.39 27.25 976.17 34.55 959.10 40.76
91 1875.25 77.28 1804.52 60.16 1801.47 110.03
95 1396.00 164.16 1353.51 74.08 1328.73 51.85

Global Avg. 2035.19 1993.17 1957.50
Avg. P.D. –2.42% –4.15%

and 89), 15 from Set 3 (04, 14, 15, 33, 35, 37, 45, 54, 56, 59, 64, 69, 72, 76 and 77) and four from Set 4 (32, 38,
58 and 65). MDM-MS-ILS has the advantage for all of these 44 instances.

Finally, between DM-MS-ILS and MDM-MS-ILS, there are statistically significant differences for instance
N2 from Brandão’s set, for instance H3 from Li et al. and for 12 of the instances from Duhamel et al. – three
from Set 1 (39, 43 and 82), seven from Set 2 (06, 12, 51, 73, 83, 85 and 87) and two from Set 3 (04 and 56).
MDM-MS-ILS has the advantage for 11 of these instances, whereas DM-MS-ILS is favored for the other three.

4.3. Behavior analysis

To further investigate the behavior of the heuristics, additional experiments were performed using FSM-D
instance N4 from Brandão’s set and HFFVRP-FD instance 02 from Set 3 of Duhamel et al.

In the first of these experiments, the heuristics were run with 1000 iterations. Figures 3 and 4 present an
analysis of the solution costs obtained during the experiment for instance N4 from Brandão and instance 02
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Table 15. Cost comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 4 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS

Inst. BKS Best Avg. Std. Best Avg. Std. Best Avg. Std.

Cost Cost Dev. Cost Cost Dev. Cost Cost Dev.

18 9668.17a 9669.61 9713.14 20.32 9669.27 9705.47 17.29 9677.03 9706.76 22.65

19 11 702.77b 11 783.19 11 808.25 18.71 11 774.79 11 797.94 17.03 11 782.19 11 807.30 15.04

22 13 068.03b 13 128.84 13 164.07 27.20 13 137.59 13 182.04 29.31 13 132.48 13 171.46 28.99

23 7750.27b 7810.31 7832.72 13.66 7805.56 7826.80 16.96 7789.30 7824.32 22.40

27 8417.62c 8454.54 8471.00 10.33 8433.37 8465.91 16.53 8454.54 8472.42 10.18

32 9378.30c 9497.46 9527.22 22.56 9413.12 9500.37 38.91 9465.39 9508.99 22.60

38 11 217.53a 11 282.72 11 311.42 23.47 11 257.82 11 297.80 19.74 11 241.61 11 283.28 24.85

46 24 428.54a 24 612.01 24 756.86 80.17 24 612.01 24 722.43 74.30 24 593.25 24 713.63 76.04

49 16 219.41a 16 340.16 16 423.62 57.93 16 296.28 16 386.15 51.77 16 260.83 16 401.84 59.06

58 23 397.76b 23 687.00 23 794.68 99.94 23 596.00 23 756.18 92.20 23 661.47 23 702.72 25.24

62 22 952.06a 23 037.04 23 243.62 130.86 23 120.23 23 216.92 82.49 23 042.89 23 177.49 87.28

65 13 013.89a 13 064.86 13 085.03 17.23 13 057.42 13 076.46 13.87 13 026.62 13 063.28 16.73

Global Avg. 14 427.64 14 411.20 14 402.79

Avg. P.D. –0.11% –0.14%
aBKS first reported by Penna et al. [32], bBKS first reported by Duhamel et al. [8],
cBKS first reported by Kochetov and Khmelev [23].

Table 16. Time comparison of MS-ILS, DM-MS-ILS and MDM-MS-ILS – Set 4 of Duhamel
et al. [9] (HFFVRP-FD).

MS-ILS DM-MS-ILS MDM-MS-ILS
Inst. Avg. Std. Avg. Std. Avg. Std.

Time (s) Dev. Time (s) Dev. Time (s) Dev.
18 4823.40 198.59 4749.34 318.76 4670.61 116.16
19 3127.09 124.53 3070.05 121.88 3091.52 120.75
22 3046.88 138.35 2922.02 125.46 2940.41 132.36
23 2235.00 112.76 2163.28 98.49 2182.00 61.51
27 3162.39 238.48 3048.85 222.60 3024.37 134.47
32 4215.96 204.05 4069.08 219.29 4009.94 192.26
38 2491.13 129.90 2389.68 59.35 2427.41 142.54
46 7493.94 406.03 7321.39 299.55 7363.81 295.16
49 8106.02 474.86 7882.29 402.17 7894.89 475.40
58 3029.16 50.02 2940.62 94.09 2946.24 167.81
62 4019.55 186.59 3968.45 180.80 3895.87 159.51
65 5434.10 216.84 5251.93 160.65 5234.71 252.90

Global Avg. 4265.38 4148.08 4140.15
Avg. P.D. –2.91% –3.03%

from Duhamel et al., respectively. In each figure, the three charts in the first row show, for each heuristic, the
solution costs obtained per iteration in the generation and local search phases, whereas the second row presents
enlarged views focusing on the local search phase costs. In the charts for the hybrid heuristics, the label DM is
used to denote the iterations preceding a data mining procedure run.

There is a consistent pattern in the behavior exhibited by the heuristics for both instances. The charts show
that all heuristics exhibit the same behavior until the first run of the data mining procedure. In DM-MS-ILS,
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Figure 3. Cost vs. iteration charts illustrating the behavior of MS-ILS, DM-MS-ILS and
MDM-MS-ILS for FSM-D instance N4 from Brandão’s set over 1000 iterations.
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Figure 4. Cost vs. iteration charts illustrating the behavior of MS-ILS, DM-MS-ILS and
MDM-MS-ILS for HFFVRP-FD instance 02 from Set 3 of Duhamel et al. over 1000 iterations.
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Figure 5. TTT plots comparing MS-ILS, DM-MS-ILS and MDM-MS-ILS for FSM-D instance
N4 from Brandão’s set [6].

data mining occurs only once, after iteration 500, whereas in MDM-MS-ILS, it is conducted several times in
an adaptive manner (triggered by elite set stabilization). In both Figures 3 and 4, the charts in the first row
reveal a noticeable reduction in the costs of the solutions generated by the hybrid heuristics after data mining,
and the zoomed views in the second row show that there is also a related reduction in the costs of the solutions
found in the local search phase. In MS-ILS, the generated solutions and those found in the local search phase
remain at the same cost levels throughout the execution of the algorithm.

The charts show that this approach may lead to initial solutions very close to those found in the local search
phase. In Figure 3 in particular, some of the initial solutions generated after data mining even appear in the
zoomed views.

These results illustrate the behavior of the hybrid heuristics. After data mining, the patterns found are used
in the generation phase, resulting in better-quality initial solutions (closer to local optima). Consequently, the
local search benefits from better starting points to reach better solutions. The effects of data mining are observed
with greater intensity in Figure 4, which is explained by the fact that instance 02 of Duhamel et al. is much
larger (it includes 181 customers, whereas instance N4 from Brandão’s set has 100).

In this experiment, a new best solution for instance 02 of Duhamel et al., with a cost of 11683.24, was found
by MDM-MS-ILS.

The second experiment focused on the generation and analysis of time-to-target (TTT) plots [1]. A TTT plot
displays, on the ordinate axis, the probability that an algorithm will find a solution at least as good as a given
target value within a given running time, which is shown on the abscissa axis. Such plots are used as a way to
characterize the computational times of stochastic algorithms for optimization problems. In this experiment,
each heuristic was run 100 times, with 100 different random seeds, targeting solutions with costs lower than or
equal to the average costs obtained by the MS-ILS heuristic in the experiments presented in Sections 4.1 and
4.2 (1834 for instance N4 from Brandão’s set and 11775 for instance 02 of Duhamel et al.). The TTT plots
obtained are shown in Figures 5 and 6.

Again, the heuristics exhibit similar behaviors for both instances. The TTT plots show that the probabilities
are equal for the lower time values. This is because the initial iterations of the hybrid heuristics are identical to
those of the original heuristic. Therefore, if the target is achieved within these iterations by one of the heuristics,
it is achieved by all of them. However, as the time values increase, the hybrid heuristics begin to outperform
the original heuristic. For example, the probability that the target for instance N4 from Brandão’s set (Fig. 5)
will be reached within 225 seconds by MDM-MS-ILS is almost 100%, and the corresponding probability for
DM-MS-ILS is approximately 92%, whereas that for MS-ILS is approximately 77%. Similarly, the probability
that the target for instance 02 of Duhamel et al. (Fig. 6) will be reached within 2000 seconds by MDM-MS-ILS
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Figure 6. TTT plots comparing MS-ILS, DM-MS-ILS and MDM-MS-ILS for HFFVRP-FD
instance 02 from Set 3 of Duhamel et al. [9].

is almost 100%, and the corresponding probability for DM-MS-ILS is approximately 90%, whereas that for
MS-ILS is approximately 62%.

5. Conclusions and directions for future research

In this study, two hybrid heuristics were proposed and implemented based on the incorporation of data
mining techniques into the state-of-the-art MS-ILS heuristic for solving the heterogeneous fleet vehicle routing
problem proposed by Penna et al. [31]. These hybrid heuristics, named DM-MS-ILS and MDM-MS-ILS, were
designed using the approaches applied in the DM-GRASP [39] and MDM-GRASP [33] hybrid metaheuristics,
respectively.

We conducted computational experiments for the two major HFVRP classes. For the FSM problem, we
considered 17 instances with the number of customers ranging from 20 to 199. For the HFFVRP, we used 106
instances with the number of customers ranging from 19 to 360. The results obtained confirm the effectiveness
of the hybridization of heuristics with data mining, as the proposed hybrid heuristics achieved better solution
costs and better computational times for most instances. Furthermore, new best solutions were found for six
instances.

Both hybrid heuristics obtained better results than the original heuristic. The MDM-MS-ILS heuristic, the
best of them, achieved better average costs for 78% of the instances (40% with statistical significance) compared
with the original heuristic. When only instances with more than 100 customers are considered, the MDM-MS-
ILS heuristic achieved better average costs for 86% (45% with statistical significance) compared with the original
heuristic.

As demonstrated by the results obtained in this work and in the applications of DM-GRASP and MDM-
GRASP reported in the literature, the data-mining-hybridized versions of the explored heuristics are able to
generate initial solutions of higher quality, and consequently, the quality of the solutions found during the local
search phase is also improved. In addition, the convergence time of the local search phase is systematically
reduced. Considering that the improvement of the initial solution generation is the source of the advantages of
the data mining hybridization approach, we intend to explore it more deeply in future research.

Appendix A. new best solutions

In this appendix, we present the new best solutions found in the experiments performed. For each solution,
we identify the problem instance and indicate which heuristic found it, the number of routes used and its total
cost. The solution itself is represented as a set of routes. For each route, we indicate the corresponding vehicle
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type and present the list of customers in visitation order.

Instance 41 (HFFVRP-FD, Duhamel et al. [9]): found by MDM-MS-ILS, 16 routes, cost 7571.44
(vehicle type): list of vertices
(A): 0 16 79 0
(B): 0 101 33 0
(C): 0 129 95 131 3 56 34 108 65 13 0
(C): 0 69 15 115 92 0
(C): 0 12 44 60 121 42 58 53 83 118 49 68 0
(E): 0 51 133 94 70 96 57 40 67 27 23 0
(E): 0 38 17 122 110 120 86 78 134 48 19 77 29 0
(E): 0 104 39 22 98 0
(E): 0 82 11 99 7 24 87 0
(E): 0 113 64 91 0
(E): 0 10 18 127 72 8 0
(E): 0 123 119 75 54 109 45 116 61 102 130 50 90 0
(E): 0 88 25 36 35 0
(F): 0 55 28 63 117 5 20 107 124 0
(F): 0 111 14 43 0
(G): 0 80 81 93 1 89 105 71 52 125 132 76 128 106 97 85 47 30 4 59
114 112 26 66 32 100 37 73 6 84 41 2 62 74 103 46 31 9 126 21 0

Instance 48 (HFFVRP-FD, Duhamel et al. [9]): found by MDM-MS-ILS, 12 routes, cost 21287.90
(vehicle type): list of vertices
(C): 0 59 1 15 98 75 0
(D): 0 77 61 41 31 107 0
(D): 0 63 104 43 56 35 64 108 54 103 65 89 87 94 95 49 99 13 10 79 0
(D): 0 93 51 50 82 30 80 42 0
(D): 0 84 48 91 4 11 97 67 0
(D): 0 28 40 100 92 69 12 106 0
(D): 0 85 78 37 6 57 0
(E): 0 96 101 17 46 7 68 44 81 22 21 5 27 0
(E): 0 105 2 9 25 3 110 71 73 19 38 60 72 33 0
(E): 0 47 55 109 32 16 0
(E): 0 70 8 45 86 58 24 14 29 76 36 83 20 0
(E): 0 102 62 66 34 26 18 39 88 52 90 53 23 74 0

Instance 89 (HFFVRP-FD, Duhamel et al. [9]): found by DM-MS-ILS, 21 routes, cost 7098.18
(vehicle type): list of vertices
(A): 0 98 8 93 0
(A): 0 103 117 105 116 0
(A): 0 87 23 63 0
(A): 0 14 58 59 0
(A): 0 80 75 10 128 20 0
(A): 0 100 2 74 53 0
(B): 0 41 104 27 18 133 34 36 48 0
(B): 0 95 79 57 64 91 47 0
(B): 0 26 6 107 66 0
(B): 0 1 92 62 89 0
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(B): 0 15 115 61 113 44 99 0
(D): 0 32 67 33 35 81 90 0
(D): 0 70 114 84 111 72 38 97 22 0
(D): 0 25 17 71 0
(D): 0 123 56 37 0
(D): 0 50 69 121 126 0
(E): 0 49 85 5 4 21 132 46 119 31 45 39 82 0
(E): 0 40 13 3 120 16 118 78 51 122 54 108 28 0
(E): 0 55 124 68 106 112 96 110 65 130 0
(E): 0 101 42 52 83 102 77 88 127 125 129 94 131 30 76 86 0
(E): 0 109 19 43 24 60 11 12 73 29 9 7 0

Instance 02 (HFFVRP-FD, Duhamel et al. [9]): found by MDM-MS-ILS, 45 routes, cost 11683.24
(vehicle type): list of vertices
(A): 0 156 68 88 50 0
(A): 0 90 85 28 47 129 0
(A): 0 148 58 81 0
(A): 0 104 0
(A): 0 46 87 0
(A): 0 158 8 6 121 45 0
(A): 0 117 92 83 0
(A): 0 54 53 0
(A): 0 71 40 0
(A): 0 9 136 0
(A): 0 99 74 0
(A): 0 153 66 150 0
(A): 0 57 14 119 174 62 37 120 152 0
(A): 0 10 20 162 0
(A): 0 39 56 133 0
(A): 0 113 98 48 176 0
(A): 0 5 1 106 130 0
(A): 0 51 110 13 16 0
(A): 0 32 127 146 94 109 73 0
(A): 0 89 180 165 0
(A): 0 84 33 0
(A): 0 160 0
(A): 0 179 23 25 36 0
(A): 0 103 111 27 137 12 118 171 0
(A): 0 95 15 0
(A): 0 105 167 64 0
(A): 0 21 0
(A): 0 61 145 0
(A): 0 96 76 128 0
(A): 0 166 163 0
(A): 0 43 11 0
(A): 0 140 91 177 132 3 0
(C): 0 34 59 0
(C): 0 7 142 29 134 0
(C): 0 102 60 22 67 0
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(C): 0 125 77 65 24 172 143 0
(C): 0 159 49 4 0
(C): 0 144 30 100 0
(C): 0 178 18 155 0
(C): 0 151 80 141 0
(C): 0 161 139 35 0
(C): 0 2 154 0
(D): 0 107 97 122 147 86 93 101 126 116 164 169 0
(D): 0 26 42 108 44 70 17 115 55 79 63 123 41 131 124 149 114 82 72
112 173 38 0
(D): 0 138 31 170 19 175 157 52 168 135 78 75 69 0

Instance 04 (HFFVRP-FD, Duhamel et al. [9]): found by MDM-MS-ILS, 31 routes, cost 10784.61
(vehicle type): list of vertices
(A): 0 131 166 178 36 3 0
(A): 0 90 142 179 124 103 26 111 133 0
(A): 0 48 5 79 93 167 0
(A): 0 44 64 119 0
(A): 0 154 95 57 0
(A): 0 116 17 75 134 12 0
(A): 0 34 39 176 60 0
(A): 0 152 69 38 0
(A): 0 51 50 122 138 99 149 0
(A): 0 31 22 25 153 132 19 0
(A): 0 16 2 0
(A): 0 4 42 161 136 0
(A): 0 23 67 129 20 0
(A): 0 168 14 33 58 0
(A): 0 165 76 68 0
(A): 0 110 73 59 9 123 83 29 0
(A): 0 61 108 180 37 150 182 0
(A): 0 128 173 112 27 0
(A): 0 146 45 62 72 143 0
(A): 0 181 162 47 0
(B): 0 74 81 15 43 0
(B): 0 155 13 32 46 0
(B): 0 87 120 77 49 135 21 78 0
(B): 0 97 89 0
(C): 0 106 177 169 70 144 114 63 24 0
(C): 0 66 71 163 35 0
(C): 0 101 30 88 104 157 53 127 117 86 55 115 0
(D): 0 28 7 113 160 98 164 94 65 158 175 174 151 0
(D): 0 18 172 109 147 40 126 105 159 171 148 6 125 85 54 0
(D): 0 11 8 100 80 84 170 10 52 145 156 92 0
(D): 0 96 137 121 107 130 1 140 56 91 118 102 141 41 139 82 0

Instance 67 (HFFVRP-FD, Duhamel et al. [9]): found by MS-ILS, DM-MS-ILS and MDM-MS-ILS, 16
routes, cost 10850.16
(vehicle type): list of vertices
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(A): 0 25 2 158 71 81 151 169 56 39 0
(A): 0 51 152 170 77 168 123 137 76 91 4 125 164 0
(A): 0 162 98 155 80 167 135 73 128 129 24 0
(A): 0 15 156 163 130 5 122 103 119 149 0
(B): 0 95 45 44 116 3 36 0
(B): 0 66 7 89 113 20 154 104 97 120 50 86 138 33 157 87 0
(B): 0 26 166 165 65 83 0
(B): 0 96 22 111 54 69 131 27 147 90 0
(B): 0 126 159 105 148 0
(D): 0 171 124 142 53 140 61 146 8 107 11 46 60 99 0
(D): 0 41 12 57 68 63 31 94 93 141 17 133 19 35 10 88 0
(D): 0 82 160 115 132 21 14 108 49 117 139 58 153 110 0
(D): 0 118 43 16 101 161 67 136 145 143 28 55 112 40 70 74 121 9 0
(E): 0 62 34 79 84 42 37 102 38 64 114 78 0
(E): 0 32 134 59 144 92 75 48 23 150 106 0
(E): 0 29 30 72 85 100 109 6 13 127 47 1 18 52 0
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[43] É.D. Taillard, A heuristic column generation method for the heterogeneous fleet VRP. RAIRO: OR 33 (1999) 1–14.

[44] C.D. Tarantilis, C.T. Kiranoudis and V.S. Vassiliadis, A threshold accepting metaheuristic for the heterogeneous fixed fleet
vehicle routing problem. Eur. J. Oper. Res. 152 (2004) 148–158.

[45] P. Toth and D. Vigo, An overview of vehicle routing problems, in The Vehicle Routing Problem, edited by P. Toth and D. Vigo.
SIAM, Philadelphia, PA, USA (2001) 1–26.

[46] T. Vidal, T.G. Crainic, M. Gendreau and C. Prins, A unified solution framework for multi-attribute vehicle routing problems.
Eur. J. Oper. Res. 234 (2014) 658–673.

[47] N.A. Wassan and I.H. Osman, Tabu search variants for the mix fleet vehicle routing problem. J. Oper. Res. Soc. 53 (2002)
768–782.


	Introduction
	The heterogeneous fleet vehicle routing problem
	Incorporating data mining techniques into an MS-ILS Heuristic  for the HFVRP
	MS-ILS Heuristic for the HFVRP
	DM-MS-ILS Hybrid Heuristic
	MDM-MS-ILS hybrid heuristic

	Computational experiments
	FSM problem
	HFFVRP
	Behavior analysis

	Conclusions and directions for future research
	Appendix A. new best solutions
	References

