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OPTIMAL AND SIMPLE ALGORITHMS TO SOLVE INTEGRATED
PROCUREMENT-PRODUCTION-INVENTORY PROBLEM

WITHOUT/WITH SHORTAGE

Amir Hossein Nobil1, Leopoldo Eduardo Cárdenas–Barrón2,∗ and Erfan Nobil3

Abstract. This research work deals with an imperfect production system considering the purchasing
of raw materials in order to study the economic production quantity (EPQ). This manufacturing
system produces perfect and defective finished products; defectives are considered as scrap. A single
product is manufactured from multiple raw materials which are purchased from outside suppliers. In the
integrated procurement-production-inventory (IPPI) model, one of the principal decisions, in addition
to determining the optimal lot size to produce, is to define the number of optimal orders of each raw
material with respect to rate of consumption in the manufacturing of finished product. Two cases are
considered: without shortage (first model) and with shortage (backordering, second model). In the first
model, the purpose is to determine jointly the optimal lot size to manufacture and the optimal number
orders of each raw material in order to minimize the total cost. The second model obtains the optimal
number of orders of each raw material, the optimal lot size to manufacture and the optimal shortage
level with aim to minimize the total cost. This research also shows that both of the proposed inventory
models are a convex programming problem, so exact algorithms to solve these inventory problems are
proposed.
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1. Introduction

Harris [23] presented the first inventory model to determine the optimal lot to purchase. Other common name
of Harris [23]’s formula is economic order quantity (EOQ). As said by Cárdenas–Barrón et al. [11], Harris is
considered as the Founding Father of Inventory Theory. According to Andriolo et al. [1] the EOQ formula was
also developed individually by some researchers and it is also known by other names such as Wilson formula
and Camp formula. Taft [54] extended Harris’s formula including production rate, and this inventory model
is conventionally known as economic production quantity (EPQ) or economic manufacturing quantity (EMQ).
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Grubbström [20] and Cárdenas–Barrón [6] through an algebraic method derived the EOQ and EPQ inventory
models without/with shortages respectively. In these inventory models it is supposed that only one type of
product is considered. One of the first research for a manufacturing system taking into account a variety of
products was introduced by Eilon [13] and Rogers [48].

The EPQ inventory models assume that all the items are manufactured with high quality and defective items
are not produced. However, in fact, defective items appear in the most of manufacturing systems, in this sense,
researchers have been developing EPQ inventory models for defective production systems. In these production
systems, defective items are of two types: scrapped items and reworkable items. Salameh and Jaber [49] derived
an EPQ inventory model for defective items. In this inventory model, manufactured items are inspected with
100% screening process and defective items are separated from perfect items. All defective items are sold. Hayek
and Salameh [24] examined the effects of manufacturing defective items on an EPQ inventory model. They
supposed that defective items after finishing the normal production cycle, are reworked by constant rate. Jamal
et al. [26] proposed a production inventory model for an imperfect manufacturing system. They consider two
ways for reworking defective items: (1) the rework of defective items is within same production cycle in which the
products are manufactured, (2) accumulated defective items of Nproduction cycles are reworked in a separate
production cycle. Cárdenas–Barrón [8] revisited Jamal et al. [26]’s research and he corrected the numerical
examples. Then, Cárdenas–Barrón [9] offered a new simple solution to solve the inventory model in Jamal
et al. [26]’s study. Thereafter, Haji et al. [22] considered an imperfect production system for several items that
are manufactured by single machine. The defective items are reworked after the end of the regular production
cycle. They consider setup times for regular process and rework process. Later, Pasandideh et al. [40] studied a
manufacturing system in which defective items are reworked. At the same year, Mohammadi et al. [35] optimized
an integrated manufacturing with inspection policy for a deteriorating manufacturing system with imperfect
inspection. Afterwards, Nobil et al. [37] presented multi machines manufacturing system with defective items. At
the same year, Manna et al. [33] investigated a production–inventory model for an imperfect production system
with repairable items and promotional demand. Taleizadeh et al. [52] determined optimal price, replenishment
lot size and number of shipments for an EPQ model with rework and multiple shipments. They solved their
problem by using a hybrid genetic algorithm. Later, Manna et al. [34] introduced a lot–sizing problem for a
defective manufacturing system with advertisement dependent demand and manufacturing rate dependent of
defective rate. Recently, researcher and scholars have studied the inventory problems with different policies, like
Khara et al. [28], Bera and Jana [5], Mahata [32], Nobil et al. [38] and Benkherouf et al. [4]; just to name a few
recent works.

One of the reasons why the defective items are produced is that the machines do not work properly. There-
fore, the consideration of preventive maintenance (PM) policies in manufacturing systems is very important.
Nakagawa [36], Rosenblatt and Lee [47], Lee and Rosenblatt [30], Groenevelt et al. [19] and Rahim [43] did first
research on production–inventory problems with the consideration of PM policies. Ben–Daya and Makhdoum [2]
studied the effects of a wide variety of PM policies on the joint optimization of the EPQ inventory model and
the economic design of control chart. The purpose of this research is to determine the optimal production quan-
tity, the optimal PM level and the optimal design of the control chart. Similarly, Rahim and Ben–Daya [44]
developed an EPQ inventory model with respect to PM policy for simultaneously determining the optimal
production quantity, control chart design and inspection schedule with non–zero inspection time. Then, Ben–
Daya [3] considered a faulty production process having a deteriorating distribution with increasing hazard rate
and imperfect maintenance to determine EPQ and PM level. Liao and Sheu [31] examined the effect of periodic
PM policy on EPQ inventory model. Taleizadeh et al. [51] dealt with a problem of single machine production
system for defective, scrap and rework, with shortage and temporary break in production process due to PM
policy.

One of the important consideration in inventory problems is the inclusion of shortage. This means that
the production system faces shortage which is backordered or lost sale. Hadley and Whitin [21], Johnson and
Montgomery [27] and Elsayed and Teresi [14] addressed inventory problems with shortage. Cárdenas–Barrón [7]
proposed a one algebraic solution procedure without derivatives to find the optimal solution to EPQ inventory
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model with shortage. Cárdenas–Barrón [10] presented a complete review over several optimizing methods in
inventory theory. In this research, he also found the optimal solution to inventory problem with two types of
backorder costs, linear and fixed, by geometry and algebraic method. Pentico et al. [42] introduced an EPQ
inventory model with partial backordering. Then, Taleizadeh et al. [53] developed a single machine system
for multi items considering defectives and partial backordering. Then, Taleizadeh [50] developed a constrained
integrated imperfect manufacturing–inventory system with preventive maintenance and partial–backordering.

In real business conditions, a manufacturing company depends on suppliers of raw materials and consumers
of its production. One of the first integrated model in inventory problems is Goyal [16]’s inventory model. He
built an integrated inventory model for a single vendor–single buyer EPQ inventory model. Park [39] proposed
an integrated procurement–production–inventory (IPPI) model for a perfect production system with a finished
product and deteriorating raw materials which are purchased from outside suppliers. They assumed that raw
materials are able to decay and finished product cannot decay. In this integrated procurement–production–
inventory (IPPI) model shortages are not permitted for raw materials and finished product; all raw materials
must be received in the preliminary process of production. Then, with respect to Park’s [39] model, Raafat [45]
developed his IPPI model with consideration that finished product can decay. Then, Goyal and Gunasekaran [18]
presented an integrated procurement–production–inventory (IPPI) model for a perishable product considering
pricing and advertising policies. They assumed that the producing system involves a finished product and
deteriorating raw materials. They determined the optimal production lot for final item and the optimal order
size for raw materials in a multi–stage production system. Kim and Chandra [29] proposed a heuristic procedure
that obtains the optimal integrated manufacturing–inventory policies for a single product and raw materials
without shortages. Then, Hong and Hayya [25] built an exact algorithm to solve the inventory problem in Kim
and Chandra [29]. At the same time, Goyal and Deshmukh [17] presented a review of the literature on integrated
procurement–production systems. Roan et al. [46] addressed the joint optimization of process mean, production
run size and material order quantity for a container–filling process.

Pasandideh and Niaki [41] derived a multi–products EPQ inventory model with discrete delivery orders and
constrained space. They optimized their inventory model with a genetic algorithm. Widyadana and Wee [55]
revisited Pasandideh and Niaki [41]’s research and extended it to a multi–product EPQ inventory model taking
into consideration the well–known just–in–time strategy. They considered a production system that fabricates
multi products which are sent to a buyer by batches. They solved the inventory model by Lagrange solution
approach and Branch and Bound. Due to complicated calculation of solution to this method and limited time,
Cárdenas–Barrón [12] presented a new heuristic algorithm that has precise and optimal solution within of short
time and low calculations.

From aforementioned literature, most studies focus on determining the optimal value for production and/or
order. Also, some studies focus on integrating procurement system and production system. Therefore, crucial
point of organizations is to determine the optimal production lot size of finished item and optimal order size of
its raw materials.

This paper presents an integrated procurement–production–inventory (IPPI) model for a finished product
and its raw materials. It is supposed that raw materials are turned to finished product by a manufacturing
process. In this manufacturing system, it is considered that at the first of process beginning all raw materials
are available in producer’s stock. Therefore, the producer needs to define the order strategy of raw materials
to purcahse from outside suppliers in addition to determine the lot size of fabrication of the product. Likewise,
producer have to consider simultaneously the determination of the optmial value of lot size of fabrication for
finished product and the optimal value of order size for raw materials for both without and with shortage
cases. This paper considers two cases: first one is the consideration of IPPI model without shortage and second
one is the consideration of IPPI model with backordering. In the first model, the purpose is to determine
simultaneously the EPQ for finished product and the EOQ for each raw material. In the second model, the aim
is to determine simultaneously the EPQ and the optimal level of shortage for finished product, and the EOQ
for each raw material. In each IPPI model, the objective is to minimize total cost.
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The rest of paper continues as follow. Section 2 presents the definition of problem, assumptions and notation.
Section 3 formulates the IPPI model without shortage and proposes an exact solution procedure. Section 4
develops the IPPI model with shortage and provides an exact solution procedure. Section 5 solves a numerical
example and presents a sensitivity analysis. Finally, Section 7 gives some conclusions and suggestions for future
research.

2. Problem definition

This paper derives an integrated procurement–production–inventory (IPPI) system for a single product and
its raw materials without/with shortage. The IPPI system considers that the manufacturing process fabricates
both perfect and defective finished products. The defective products are considered as scrapped items. The
products are fabricated at P rate where β% of these are not useful, so non–defective items are produced with
(1 − β)P rate. In fact, the inventory level of finished product increases with (1− β)P − D rate, where D is
demand rate of items. The finished product needs n type of raw materials to produce it, these are provided
from outside suppliers. Thus, producer has to consider cost of ordering and purchasing raw materials in the
inventory system costs in addition to cost of producing the item. Here, producer defines the quantity of raw
material jthat needs to be ordered for some producing periods (Mj) and store in his/her stock for beginning
of production. The IPPI model is developed without/with shortage for final finished product. For the shortage
case is supposed that items in each cycle can have shortage up to Kunits In addition,the following assumptions
and notation are considered.

2.1. Assumptions

• There are multiple raw materials and a single finished product in the manufacturing system.
• Shortage is not allowed for all the raw materials.
• Lead time for all the raw materials is zero.
• αj amount of raw material j required to produce one unit of finished product.
• Finished product and raw materials are imperishable.
• Time horizon is infinite.
• There is not any limitation for ordering.
• Parameters are deterministic and known.

The following notation for the raw material j = 1, 2, . . . , n and the finished product is used in this paper:

2.2. Notation

n Number of raw materials
P Production rate for finished product (units/time unit)
D Demand rate for finished product (units/ time unit)
β Proportion of produced scrapped items; 0 < β < 1
αj Amount of raw material j required to produce one finished product (amount of raw material j/unit of

finished product)
I Maximum on–hand inventory of finished product (units)
A Machine setup cost of producing finished product ($/setup)
C Production cost of finished product per unit ($/unit)
d Disposal cost of defective items per unit ($/unit)
Oj Ordering cost of raw material j per order ($/order)
Rj Purchasing cost of raw material j per unit ($/unit)
H Holding cost of finished product per item per unit time ($/unit/time unit)
hj Holding cost of raw material j per item per unit time ($/unit/time unit)
π Backorder cost per item per unit time ($/unit/time unit)
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Figure 1. The on–hand inventory graph for the IPPI problem without shortage.

Dependent variables:

T Cycle length of the finished product
Tj Cycle length of the raw material j

Decision variables:

Q Production lot size of finished product in a cycle (a decision variable)
K Shortage quantity of finished product in a cycle (a decision variable)
Mj Number of cycles for raw material j (decision variables)

3. The integrated procurement–production–inventory (IPPI) model
without shortage

This section describes the IPPI model without shortage and its solution method.

3.1. Mathematical modelling

In this model, it is supposed that shortage is not allowed for finished product and raw materials The on–hand
inventory graph of the raw material j and the finished product for the IPPI problem without shortage are shown
in Figure 1.
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From Figure 1, the following equations are expressed:

tp =
Q

P
(3.1)

I = [(1− β)P −D]
Q

P
(3.2)

td =
I

D
=
(

(1− β)P −D
DP

)
(Q) (3.3)

T = tp + td =
Q

P
+
(

(1− β)P −D
DP

)
(Q) =

(1− β)Q
D

(3.4)

then,

Tj = MjT =
(1− β)MjQ

D
(3.5)

The total cost consists of the following costs: production cost, the disposal cost of scrapped items, the setup
cost for manufacturing the finished product, holding cost of finished product, the ordering cost of raw materials,
the purchasing cost of raw materials and the holding cost for raw materials. Thus, these costs are obtained as
follows:

The production cost per cycle and the number of cycles per unit time are equal to CQ and 1/T respectively.
Therefore, the production cost per unit time is calculated by:

Production cost =
CQ

T
(3.6)

Using equation (3.4) in equation (3.6), hence:

Production cost =
DCQ

Q (1− β)
=

DC

(1− β)
(3.7)

The disposal cost per cycle is equal to dβQ, which β is the proportion of scrapped items, and the number of
cycles per unit time is 1/T . Therefore, the disposal cost per unit time is computed by:

Disposal cost =
dβQ

T
=

DdβQ

Q (1− β)
=

Ddβ

(1− β)
(3.8)

The machine setup cost per cycle is equal to A. Therefore, the setup cost per unit time is determined by:

Setup cost =
A

T
=

DA

Q (1− β)
=

DA

(1− β)

(
1
Q

)
(3.9)

Based in Figure 1, the holding cost per unit of finished product, thus:

Holding cost for finished product =
H

2T
(I × T ) (3.10)

Substituting I and T from equations (3.2) and (3.4) into equation (3.10), hence:

Holding cost for finished product =
H

2T

[
((1− β)P −D)

(
Q

P

)
×
(

(1− β)Q
D

)]
(3.11)

Thus, using equation(3.4) in above relation, thus:

Holding cost for finished product =
H [(1− β)P −D]

2P
Q =

H

2

(
1− β − D

P

)
Q (3.12)
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The ordering cost of the raw material j for Mj cycles and the number of cycles per unit time are equal to Oj
and 1/Tj respectively. Thus, total ordering cost per unit time is obtained by:

Ordering cost
n∑
j=1

Oj
Tj

=
n∑
j=1

DOj
(1− β)

(
1

MjQ

)
(3.13)

The purchasing cost of the raw material j for Mj cycles is equal to MjRjαjQ that αj is proportion of per unit
of finished product. Thus, total purchasing cost per unit time is computed by:

Purchasing cost
n∑
j=1

MjRjαjQ

Tj
=

n∑
j=1

DRjαj
(1− β)

(3.14)

From Figure 1, the area of the raw material in this figure is equal to:{
αjQtp

2
+

3αjQtp
2

+
5αjQtp

2
+ · · ·+ (2Mj − 3)αjQtp

2
+

(2Mj − 1)αjQtp
2

}
+ {αjQtd + 2αjQtd + 3αjQtd + . . .+ (Mj − 2)αjQtd + (Mj − 1)αjQtd} (3.15)

Based in Appendix A, the area of the raw material j can easily be determined as follows:

Area of raw material j =
[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
Q2M2

j −
αj
2

(
(1− β)P −D

DP

)
MjQ

2 (3.16)

Thus, total holding cost per unit time for all the raw materials is obtained as follows:

Holding cost for raw materials =
n∑
j=1

{
hj
Tj

([
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
Q2M2

j

−αj
2

(
(1− β)P −D

DP

)
MjQ

2

)}
=

n∑
j=1

{
Dhj

(1− β)

[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
(QMj)

− Dhjαj
2 (1− β)

(
(1− β)P −D

DP

)
Q

}
(3.17)

Now, based in equations (3.7)–(3.9), (3.12)–(3.14) and (3.17), the total cost for the IPPI model without shortage,
denoted by TC, is written as follows:

TC =
n∑
j=1

{
D (Rjαj + dβ + C)

(1− β)
+

DA

(1− β)

(
1
Q

)
+

DOj
(1− β)

(
1

MjQ

)

+
[
Dhj

(1− β)

[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]]
(QMj)

+
[
H

2

(
1− β − D

P

)
− Dhjαj

2 (1− β)

(
(1− β)P −D

DP

)]
(Q)

}
(3.18)

Therefore, the optimization problem is formulated as follows:

TC =
n∑
j=1

∆j
1 +∆2

(
1
Q

)
+

n∑
j=1

∆j
3

(
1

MjQ

)
+

n∑
j=1

∆j
4 (QMj) +

n∑
j=1

∆j
5 (Q)

s.t. Q > 0
Mj ≥ 1 & integer; j = 1, 2, . . . , n (3.19)
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where

∆j
1 =

D (Rjαj + dβ + C)
(1− β)

> 0; j = 1, 2, . . . , n (3.20)

∆2 =
DA

(1− β)
> 0 (3.21)

∆j
3 =

DOj
(1− β)

> 0; j = 1, 2, . . . , n (3.22)

∆j
4 =

Dhj
(1− β)

[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
> 0; j = 1, 2, . . . , n (3.23)

∆j
5 =

H

2

(
1− β − D

P

)
− Dhjαj

2 (1− β)

(
(1− β)P −D

DP

)
; j = 1, 2, . . . , n (3.24)

3.2. Solution procedure

It can be shown that the nonlinear objective function in (3.19) is a convex function (see Appendix B). Thus,
to determine the optimal values of Mj , the first derivative of equation (3.19) is taken with respect to Mjas
follows:

∂TC

∂Mj
= ∆j

4Q−
∆j

3

QM2
j

= 0 (3.25)

So,

Mj =

√
∆j

3

∆j
4Q

2
(3.26)

Also, to determine the optimal values of Q, denoted by Q∗, the first derivative of equation (3.19) are taken with
respect to Q , equating it to zero and solving, it follows that:

Q∗ =

√√√√√√√√
n∑
j

(
∆j3
Mj

)
+∆2

n∑
j=1

(
∆j

5 +∆j
4Mj

) (3.27)

Substituting Mj from equation (3.26), thus:

Q∗ =

√√√√√ ∆2
n∑
j=1

∆j
5

(3.28)

Now, based on the optimal value of Q∗, the optimal value of each Mj , denoted by M∗
j , is obtained as follows:

M∗
j =

√
∆j

3

∆j
4 (Q∗)2

(3.29)

where the value of M∗
j must be an integer number. Therefore, the objective function in (3.19) is expressed as

follows:

TC = ∆2

(
1
Q

)
+

n∑
j=1

(
∆j

1 +∆j
5 (Q) + Lj

)
(3.30)
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where

Lj = ∆j
4Q (Mj) +

∆j
3

Q

(
1
Mj

)
(3.31)

Garćıa–Laguna et al. [15] proved that the integer solution to the following mathematical problem:
Min w1U + U/w2; where both w1 and w2 are positive, U > 1 and integer it follows that:

U =
⌈
−0.5 +

√
0.25 +

w2

w1

⌉
or U =

⌊
0.5 +

√
0.25 +

w2

w1

⌋
(3.32)

in which, dye is the smallest integer greater than or equal to y and dye is the largest integer less than or equal
to y.

Then based in equation (3.32), the integer solution for each Mj is determined as follows:

Mj =

⌈
−0.5 +

√
0.25 +

∆j
3

∆j
4 (Q∗)2

⌉
or Mj =

⌊
0.5 +

√
0.25 +

∆j
3

∆j
4 (Q∗)2

⌋
(3.33)

Finally, the following solution procedure is proposed for solving the IPPI model without shortage.

S1. Calculate the coefficients of the objective function, ∆j
1, ∆2, ∆j

3∆
j
4 and ∆j

5 by using equations (3.20)–(3.24)
and go to S2,

S2. If
n∑
j=1

∆j
5 > 0, then go to S3. Otherwise, there is no feasible solution and go to S8,

S3. Compute Q by using equation (3.28),

S4. Given the value of Q, determine yj for j = 1, 2, . . . , n by using yj = (−0.5 +
√

0.25 + ∆j3
∆j4(Q)2

) and go to S5,

S5. If each yj is not an integer number, then M∗
j = dyje is a unique optimal solution for each Mj . Otherwise,

both M∗
j = dyje and M∗

j = dyje + 1 are the optimal value of each Mj . Then go to S6,

S6. Given the value of each M∗
j , recalculate Q∗ by using equation (3.27) and go to S7,

S7. Determine TC∗ by using equation (3.19) and report the solution.

S8 . Stop.

4. The integrated procurement–production–inventory (IPPI) model
with shortage

This section derives the IPPI model with shortage and its solution method is proposed.

4.1. Mathematical modelling

In this model, it is supposed that shortage is allowable for finished product and it is fully backordering. The
on–hand inventory graph for the raw material j and the finished product for the IPPI model with shortage are
shown in Figure 2.
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Tj = (M j T  ) 

T
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Figure 2. The on-hand inventory graph for the IPPI problem with shortage.

From Figure 2, the following equations are deduced.

t1 =
K

(1− β)P −D
(4.1)

I [(1− β)P −D]
(
Q

P

)
−K (4.2)

t2 =
I

(1− β)P −D
=
Q

P
− K

(1− β)P −D
(4.3)

tp = t1 + t2 =
Q

P
(4.4)

t3 =
I

D
=
(

(1− β)P −D
DP

)
Q− K

D
(4.5)

t4 =
K

D
(4.6)

td = t3 + t4 =
(

(1− β)P −D
DP

)
(Q) (4.7)

T = tp + td =
Q

P
+
(

(1− β)P −D
DP

)
(Q) =

(1− β)Q
D

(4.8)
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So,

Tj = MjT =
(1− β)MjQ

D
(4.9)

The total cost is comprised of the following costs: production cost, the disposal cost of scrapped items, the setup
cost for producing the finishedo product, the holding cost for finished product, the backorder cost, the ordering
cost of raw materials, the purchasing cost of raw materials, and holding cost raw materials. Thus, these costs
are obtained as follows:

The production cost per time unit for the finished product is calculated by:

Production cost =
CQ

T
=

DCQ

Q (1− β)
=

DC

(1− β)
(4.10)

The disposal cost per time unit for the scrapped items is determined by:

Disposal cost =
dβQ

T
=

DdβQ

Q (1− β)
=

Ddβ

(1− β)
(4.11)

The setup cost per time unit is obtained with:

Setup cost =
A

T
=

DA

Q (1− β)
=

DA

(1− β)

(
1
Q

)
(4.12)

Based in Figure 2, the holding cost per unit of finished product is given by

Holding cost for finished product =
H

2T
(I × (t2 + t3)) (4.13)

Substituting I, t2, t3 and T from equations (4.2), (4.3), (4.5) and (4.8) respectively, thus (see Appendix C, for
detail calculations)

Holding cost for finished product =
H ((1− β)P −D)

2P
Q+

HP

2 ((1− β)P −D)

(
K2

Q

)
−HK (4.14)

Based in Figure 2, the backorder cost per unit of finished product is computed by:

Bakorder cost =
π

2T
(K × (t1 + t4)) (4.15)

Substituting t1 and t4 from equations (4.1) and (4.6) respectively, hence

Bakorder cost =
π

2T

(
K ×

(
K

(1− β)P −D
+
K

D

))
(4.16)

From equation (4.8),

Bakorder cost =
Dπ

2 (1− β)Q

(
K ×

(
K

(1− β)P −D
+
K

D

))
=

πP

2 ((1− β)P −D)

(
K2

Q

)
(4.17)

The total ordering cost per for time unit is determined by:

Ordering cost =
n∑
j=1

Oj
Tj

=
n∑
j=1

DOj
(1− β)

(
1

MjQ

)
(4.18)

The total purchasing cost per time unit is calculated by:

Purchasing cost =
n∑
j=1

MjRjαjQ

Tj
=

n∑
j=1

DRjαj
(1− β)

(4.19)
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From Figure 2, the area of the raw material j in this figure is equal to:

{
αjQtp

2
+

3αjQtp
2

+
5αjQtp

2
+ . . .+

(2Mj − 3)αjQtp
2

+
(2Mj − 1)αjQtp

2

}
+ {αjQtd + 2αjQtd + 3αjQtd + . . .+ (Mj − 2)αjQtd + (Mj − 1)αjQtd} (4.20)

Because the uptime period and downtime period, denoted by tp and td, are same as the IPPI model without

shortage, in other words, tp = Q
P and td =

(
(1−β)P−D

DP

)
(Q). Therefore, the area of the raw material j in Figure 2

is obtained as follows:

Area of Raw material j =
[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
Q2M2

j −
αj
2

(
(1− β)P −D

DP

)
MjQ

2 (4.21)

Thus, the total holding cost per time unit is computed as follows:

Holding cost for raw materials =
n∑
j=1

{
Dhj

(1− β)

[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
(QMj)−

Dhjαj
2 (1− β)

(
(1− β)P −D

DP

)
Q

}
(4.22)

Now, based in equations (4.10)–(4.12), (4.14), (4.17)–(4.19) and (4.22), the total cost for the IPPI model with
shortage is given by:

TC =
n∑
j=1

{
D (Rjαj + dβ + C)

(1− β)
+

DA

(1− β)

(
1
Q

)
+

DOj
(1− β)

(
1

MjQ

)

+
[
Dhj

(1− β)

[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]]
(QMj)

+
[
H

2

(
1− β − D

P

)
− Dhjαj

2 (1− β)

(
(1− β)P −D

DP

)]
(Q)−HK

+
[

(H + π)P
2 ((1− β)P −D)

](
K2

Q

)}
(4.23)

Thus, the optimization problem is stated as follows:

TC =
n∑
j=1

{
∆j

1 +∆2

(
1
Q

)
+∆j

3

(
1

MjQ

)
+∆j

4 (QMj) +∆j
5 (Q)−HK +∆6

(
K2

Q

)}
s.t. QK > 0

Mj ≥ 1&integer; j = 1, 2, . . . , n (4.24)
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where

∆j
1 =

D (Rjαj + dβ + C)
(1− β)

> 0

∆2 =
DA

(1− β)
> 0

∆j
3 =

DOj
(1− β)

> 0

∆j
4 =

Dhj
(1− β)

[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
> 0

∆j
5 =

H

2

(
1− β − D

P

)
− Dhjαj

2 (1− β)

(
(1− β)P −D

DP

)
∆6 =

(H + π)P
2 ((1− β)P −D)

> 0 (4.25)

4.2. Solution procedure

It can be shown that the nonlinear objective function in (4.24) is a convex function (see Appendix D). Thus,
to determine the optimal values of each Mj and K, the partial derivatives of equation (4.24) are taken with
respect to Mj and K as follows:

Mj =

√
∆j

3

∆j
4Q

2

K =
HQ

2∆6
(4.26)

Also, to determine the optimal values of Q, denoted by Q∗, the first derivative of equation (4.24) is taken with
respect to Q as follows:

Q =

√√√√√√√√
n∑
j

(
∆j3
Mj

)
+∆2 +∆6K2

n∑
j

(
∆j

5 +∆j
4M j

) (4.27)

Substituting K from equation (4.26), thus:

Q =

√√√√√√√√
n∑
j

(
∆j3
Mj

)
+∆2

n∑
j

(
∆j

5 +∆j
4M j

)
− H2

4∆6

(4.28)

Then, substituting Mj from equation (4.26):

Q∗ =

√√√√√ ∆2
n∑
j

(
∆j

5

)
− H2

4∆6

(4.29)

Now, given the optimal value of Q∗, the optimal values of each Mj and K, denoted by M∗
j and K∗, are obtained

by using equation (4.26). But, the value of each M∗
j must be an integer number. So, based on Garćıa–Laguna

et al. [15] ’s study, the following solution procedure for the IPPI model with shortage is proposed.
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Table 1. Data for raw materials.

Raw material αj hj ($/unit/year) Rj ($/unit) Oj ($/ordering)

1 0.5 2 50 400

2 0.2 3 40 500

3 0.4 4 30 300

Table 2. Values of the coefficient of the objective function for the IPPI model without shortage.

Raw material ∆j
1 ∆2 ∆j

3 ∆j
4 ∆j

5

1 46 122.4489795918

204081.632653061

408 163.265306123 0.5 2.54755102040816

2 28 775.5102040816 510 204.081632653 0.5 2.69653061224490

3 32857.1428571429 306 122.448979592 0.8 2.32408163265306

S1. Calculate the coefficients of the objective function, ∆j
1, ∆2, ∆j

3, ∆j
4, ∆

j
5 and ∆6, by using equation (4.25)

and go to S2,

S2. If
n∑
j

(
∆j

5

)
− H2

4∆6
> 0, then go to S3. Otherwise, there is no feasible solution and go to S9,

S3. Compute Q by using equation (4.29) and go to S4,

S4. Given the value of Q, determine yj for j = 1, 2, . . . , n by using yj = (−0.5 +
√

0.25 + ∆j3
∆j4(Q)2

) and go to S5,

S5. If each yj is not an integer number, then M∗
j = dyje is a unique optimal solution for Mj . Otherwise, both

M∗
j = dyje and M∗

j = dyje + 1 are the optimal value of M . Then go to S6,

S6. Given the value of each M∗
j , recalculate Q∗ by using equation (4.28) and go to S7,

S7. Given the value of Q∗, recalculate K∗ by using equation (4.26) and go to S8,

S8. Determine TC∗ by using equation (4.24) and report the solution.

S9. Stop.

5. Example and sensitivity analysis

In order to illustrate the applicability of the IPPI models without/with shortages a numerical example is
solved. This numerical example consists a production system with a product and three raw materials. The
following parameters for both models are: P = 4000 units/year, D = 1000 units/year, β = 0.02, C = $20 per
unit of finished product, d = $10 per defective unit of finished product, A = $200/setup, H = $ 8/unit/year
and π = $8/unit/year. Thus, P (1− β) − D = 2920. The rest of data which correspond to raw materials are
given in Table 1.

5.1. The IPPI model without shortage

The proposed solution procedure for solving the IPPI model without shortage is exposed below:

S1. Calculated the coefficients of the objective function by using equations (3.20)–(3.24). The coefficients values
are shown in Table 2. Then go to S2,

S2. Since

(
n∑
j

(
∆j

5

)
= 7.568

)
> 0, then go to S3.
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Table 3. Values of the coefficients of the objective function for the IPPI model with shortage.

Raw material ∆j
1 ∆2 ∆j

3 ∆j
4 ∆j

5 ∆6

1 46 122.44897959

20 4081.632653

408 163.2653061 0.5 2.547551020408

10.95890410952 28 775.51020408 510 204.0816326 0.3 2.696530612244

3 32 857.14285714 30 6122.4489795 0.8 2.324081632653

S3. Compute Q by using equation (3.28), thus Q =
√

∆2
n∑
j

(∆j5)
= 164.212689388708, then go to S4.

S4. Given the value of Q, determine yj :

y1 =

(
−0.5 +

√
0.25 +

∆1
3

∆1
4 (Q)2

)
= 5.50205898380093;

y2 =

(
−0.5 +

√
0.25 +

∆2
3

∆2
4 (Q)2

)
= 7.94153808848666;

y3 =
(
−0.5 +

√
0.25 + ∆3

3
∆3

4(Q)2

)
= 3.76700227268965, then go to S5.

S5. Since y1, y2 and y3 are not the integer numbers, so M∗
1 = d5.502e = 6, M∗

2 = d7.941e = 8 and M∗
3 =

d3.767e = 4. Then go to S6.

S6. Given the value of each M∗
j , recalculate Q∗ by using equation (3.27).

Q∗ =

√√√√√ n∑
j

(
∆
j
3

Mj

)
+∆2

n∑
j

(∆j5+∆j4Mj)
= 159.711748914276 and go to S7,

S7. Determine TC∗ by using equation (3.19) and report solution. The total cost TC∗ is equal to
$ 112 919.593304484, Q∗ = 159.711748914276, M∗

1 = 6, M∗
2 = 8 and M∗

3 = 4.

S8. Stop.

5.2. The IPPI model with shortage

The proposed solution procedure for solving the IPPI model with shortage is as follows:

S1. Calculate the coefficients of the objective function, ∆j
1, ∆2, ∆j

3, ∆j
4, ∆

j
5 and ∆6, by using equation (4.25).

The values of coefficients are given in Table 2. Then go to S2,

S2. Since
n∑
j

(
∆j

5

)
− H2

4∆6
= 6.10816326530612 > 0, then go to S3.

S3. Compute Q by using equation (4.29). Thus, Q =
√

∆2
n∑
j

(∆j5)− H2
4∆6

= 182.787562533778, then go to S4.

S4. Given the value of Q, determine yj :

y1 =

(
−0.5 +

√
0.25 +

∆1
3

∆1
4 (Q)2

)
= 4.94293971855054;
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Table 4. Sensitivity analysis of P , D, β and α parameters.

Parameter % Changes
% Changes

M∗
1 M∗

2 M∗
3 K∗ Q∗ TC∗

P

–25 0 0 0 –8.961064351 2.77075725307 –0.11759921654

+25 0 0 0 5.183944610 –1.55861594150 0.06906164345

+50 0 14.2 33.3 0.479604982 –9.81543651168 0.11122391838

D

–25 0 0 33.3 –12.91235753 –19.7804681350 –24.4191785123

+25 0 0 0 4.333603204 14.1026671752 24.3261069465

+50 –20.0 –14.2 0 13.30926803 36.7202738323 48.5809456921

β

–25 0 0 0 0.245960654 –0.43598465637 –0.62377067369

+25 0 0 0 –0.248153023 0.43979074909 0.63016958197

+50 0 0 0 –0.498527635 0.88343725888 1.26683704121

αj

–25 20.0 14.2 33.3 –4.456390154 –4.45639015461 –10.4632334833

+25 –20.0 –14.2 0 1.734126510 1.73412651047 10.4173895742

+50 –20.0 –14.2 0 –2.660450592 –2.66045059208 20.8133577158

y2 =

(
−0.5 +

√
0.25 +

∆2
3

∆2
4 (Q)2

)
= 7.13451894273312;

y3 = (−0.5 +
√

0.25 + ∆3
3

∆3
4(Q)2

) = 3.38419948029796, then go to S5.

S5. Since y1, y2 and y3are not the integer numbers, so M∗
1 = d4.942e = 5, M∗

2 = d7.134e = 8 and M∗
3 =

d3.384e = 4. Then go to S6.

S6. Given the value of each M∗
j , recalculate Q∗ by using equation (4.28). Thus, Q∗ =

√√√√√ n∑
j

(
∆
j
3

Mj

)
+∆2

n∑
j

(∆j5+∆j4Mj)− H2
4∆6

=

187.460841606887 and go to S7,

S7. Given the value of Q∗, recalculate K∗ by using equation (4.26). Thus, K∗ = HQ∗

2∆6
= 68.4232071865137 and

go to S8.

S8. Determine TC∗ by using equation (4.24) and report solution. The total cost TC∗ is equal to
$ 112 669.636676086, Q∗ = 187.460841606887, K∗ = 68.4232071865137, M∗

1 = 5, M∗
2 = 8 and M∗

3 = 4.

S9. Stop.

5.3. Sensitivity analysis

This subsection presents a sensitivity analysis on problem’s parameters. Notice that the total cost for the
IPPI model with shortage is less than or equal to the total cost for the IPPI model without shortage. In the
IPPI model with shortage, if it considered the value of shortage Kis zero then the IPPI model without shortage
is obtained. Because of that in this subsection, it is considered IPPI model with shortage for the sensitivity
analysis. So in order to analyze the sensitivity of parameters, it takes into consideration the numerical example
given in the Section 5. The sensitivity analysis results are shown in the Tables 4 and 5.

Finally, from results of Tables 4 and 5 the following observations are made:

• The optimal value of each Mj is insensitive to changes in the value of production cost, disposal cost,
purchasing cost, shortage cost and proportion of produced scrapped items.
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Table 5. Sensitivity analysis of cost parameters.

Parameter % Changes
% Changes

M∗
1 M∗

2 M∗
3 K∗ Q∗ TC∗

C

–25 0 0 0 0 0 –13.5849576696

+25 0 0 0 0 0 13.5849576696

+50 0 0 0 0 0 27.1699153392

d

–25 0 0 0 0 0 –0.13584957669

+25 0 0 0 0 0 0.13584957669

+50 0 0 0 0 0 0.27169915339

A

–25 20.0 14.2 33.3 –16.38176030 –16.3817603054 –0.26935617638

+25 –20.0 –14.2 0 12.170624929 12.1706249290 0.23226131648

+50 –20.0 –.2 0 17.310847536 17.3108475368 0.44278881980

H

–25 –20.0 –14.2 0 –1.555717044 14.8516634484 –0.29563072916

+25 20.0 14.2 33.3 –5.807587970 –15.2268291736 0.24478711993

+50 20.0 28.5 33.3 –4.523106082 –20.4359217350 0.46205384600

π

–25 0 0 0 15.205943122 0.80520023230 –0.03484146928

+25 0 0 0 –11.65608746 –0.61309840030 0.02690769755

+50 0 0 0 –20.87643200 –1.09554000338 0.04831565488

Oj

–25 –20.0 –14.2 0 –1.35121244 –1.351212445 –0.321551014

+25 20.0 14.2 33.3 –5.20132207 –5.201322077 0.2778499270

+50 20.0 28.5 33.3 –2.05540229 –2.055402292 0.5295979247

Rj

–25 0 0 0 0 0 –10.18871825

+25 0 0 0 0 0 10.18871825

+50 0 0 0 0 0 20.3774365044

hj

–25 20.0 14.2 33.3 –4.45639015 –4.456390154 –0.274515231

+25 –20.0 –14.2 0 1.734126510 1.7341265104 0.2286713219

+50 –20.0 –14.2 0 –2.66045059 –2.660450592 0.4359212114

• The optimal value of shortage quantity (K) and the optimal value of production quantity (Q) are insensitive
to changes in the value of production cost, disposal cost and purchasing cost.

• The optimal value of objective function is highly sensitive to changes in the value of production cost,
purchasing cost, demand rate and αj . It is slightly sensitive to changes in the value of shortage cost and
proportion of produced scrapped items. Also, it is moderately sensitive to changes in the value of rest of
parameters.

• The optimal value of production quantity (Q) is highly sensitive to changes in the value of holding cost for
finished product, setup cost and demand rate. It is slightly sensitive to changes in the value of shortage cost
and proportion of produced scrapped items. Also, it is moderately sensitive to changes in the value of rest
of parameters.

• The optimal value of shortage quantity (K) is highly sensitive to changes in the value of shortage cost, setup
cost and demand rate. It is slightly sensitive to changes in the value proportion of produced scrapped items.
Also, it is moderately sensitive to changes in the value of rest of parameters.

6. Conclusion

This paper presents IPPI models without/with shortage. In the IPPI models, one type of finished product
and several raw materials are considered Here, the raw materials after a manufacturing process are turned to
the finished product. Therefore, the producer faces to determine the order policy of raw materials from outside



772 A.H. NOBIL ET AL.

suppliers in addition to define the lot size of fabrication of the product. Consequently, producer must consider
simultaneously the determination of the economic production quantity for finished product and the economic
order quantity for raw materials for both without and with shortage cases. It was suggested two algorithms with
simple approach to solve IPPI models without/with shortage. A numerical example was solved in order to show
the solution approach of algorithms Also, a sensitivity analysis of parameters was done For future study, there
are some suggestions. For example, consider the case of multi–objective functions. Besides, the proposed IPPI
models without/with shortage can be developed taking into account that the product and/or raw materials
deteriorate over time. Furthermore, the IPPI models without/with shortage can be formulated for several
products. Additionally, the discount in purchasing price of raw materials can be included too. Finally, limited
warehouse space, investment and service level can be stated as constraints of the IPPI models without/with
shortage.

A. Determination of the area of the raw material j in Figure 1

From Figure 1,

Area of raw material j =
{
αjQtp

2
+

3αjQtp
2

+
5αjQtp

2
+ · · ·+ (2Mj − 3)αjQtp

2
+

(2Mj − 1)αjQtp
2

}
+ {αjQtd + 2αjQtd + 3αjQtd + . . .+ (Mj − 2)αjQtd + (Mj − 1)αjQtd} (A.1)

From equations (3.1) and (3.2), the area of the Figure 1 is calculated as follows:

Area of raw material j =
{
αjQ

2

2P
+

3αjQ2

2P
+

5αjQ2

2P
+ · · ·+ (2Mj − 3)αjQ2

2P
+

(2Mj − 1)αjQ2

2P

}
+
{
αj

(
(1− β)P −D

DP

)
Q2 + 2αj

(
(1− β)P −D

DP

)
Q2 + 3αj

(
(1− β)P −D

DP

)
Q2

+ . . .+ (Mj − 2)αj

(
(1− β)P −D

DP

)
Q2 + (Mj − 1)αj

(
(1− β)P −D

DP

)
Q2

}
(A.2)

So, it can be expressed as follows:

Area of raw material j =
αjQ

2

2P

Mj∑
i=1

(2i− 1) + αj

(
(1− β)P −D

DP

)
Q2

Mj−1∑
i=1

(i) (A.3)

Knowing that
Mj∑
i=1

(2i− 1) and
Mj−1∑
i=1

(i) are calculated as follows:

Mj∑
i=1

(2i− 1) = 1 + 3 + 5 + 7 + . . .+ (2Mj − 3) + (2Mj − 1) = M2
j (A.4)

Mj−1∑
i=1

(i) = 1 + 2 + 3 + 4 + . . .+ (Mj − 2) + (Mj − 1) =
(Mj − 1)Mj

2
(A.5)

Using (A.4) and (A.5) in (A.3), thus

Area of raw material j =
αjQ

2

2P
M2
j + αj

(
(1− β)P −D

DP

)
Q2

(
(Mj − 1)Mj

2

)
(A.6)

=
[
αj
2P

+
αj
2

(
(1− β)P −D

DP

)]
Q2M2

j −
αj
2

(
(1− β)P −D

DP

)
MjQ

2 (A.7)
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B. Proof of the convexity of the IPPI model without shortage
in equation (3.19)

Based on the objective function in (3.19):

TC =
n∑
j=1

∆j
1 +∆2

(
1
Q

)
+

n∑
j=1

∆j
3

(
1

MjQ

)
+

n∑
j=1

∆j
4 (QMj) +

n∑
j=1

∆j
5 (Q) (B.1)

So,

∂TC

∂Q
=

n∑
j=1

∆j
5 +

n∑
j=1

∆j
4Mj −

∆2

Q2
−

n∑
j=1

∆j
3

MjQ2
(B.2)

∂2TC

∂2Q
=

2∆2

Q3
+

n∑
j=1

2∆j
3

MjQ3
(B.3)

∂TC

∂Mj
= ∆j

4Q−
∆j

3

QM2
j

(B.4)

∂2TC

∂2Mj
=

2∆j
3

QM3
j

(B.5)

∂2TIC

∂Mj∂Q
=

∂2TIC

∂Q∂Mj
= ∆j

4 +
∆j

3

Q2M2
j

(B.6)

∂2TIC

∂Mj∂Mr; j 6= r
= 0 (B.7)

Thus, the Hessian matrix is:

Hessian =



∂2TC

∂2Q

∂2TC

∂Q∂M1

∂2TC

∂Q∂M2
· · · ∂2TC

∂Q∂Mn

∂2TC

∂M1∂Q

∂2TC

∂2M1

∂2TC

∂M1∂M2
· · · ∂2TC

∂M1∂Mn

∂2TC

∂M2∂Q

∂2TC

∂M2∂M1

∂2TC

∂2M2
· · · ∂2TC

∂M2∂Mn
...

...
...

...
...

∂2TC

∂Mn∂Q

∂2TC

∂Mn∂M1

∂2TC

∂Mn∂M2
· · · ∂2TC

∂2Mn


(B.8)

From (B.3), (B.5), (B.6) and (B.7),

Hessian =



2∆2

Q3
+ 2

n∑
j=1

∆j
3

MjQ3
∆1

4 +
∆1

3

Q2M2
1

∆2
4 +

∆2
3

Q2M2
2

· · · ∆n
4 +

∆n
3

Q2M2
n

∆1
4 +

∆1
3

Q2M2
1

2∆1
3

QM3
1

0 · · · 0

∆2
4 +

∆2
3

Q2M2
2

0
2∆2

3

QM3
2

· · · 0

...
...

...
...

...

∆n
4 +

∆n
3

Q2M2
n

0 0 · · · 2∆n
3

QM3
n


(B.9)
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Therefore,

µ = XT (Hessian)X (B.10)

From (B.9)

µ = [Q,M1,M2, . . . ,Mn] (Hessian)


Q
M1

M2

...
Mn

 =
2∆2

Q
+

n∑
j=1

6∆j
3

MjQ
+

n∑
j=1

2∆j
4MjQ (B.11)

Since Q, Mj∆2∆
j
3∆

j
4 > 0, therefore:

µ =
2∆2

Q
+

n∑
j=1

6∆j
3

MjQ
+

n∑
j=1

2∆j
4MjQ > 0 (B.12)

So, the Hessian matrix in (B.9) is positive semi–definite and this means that the nonlinear form of objective
function in (B.1) is a convex function

C. Simplifying holding cost of finished product for the IPPI model with
shortage

Based on equation (4.13), the holding cost of the proposed model with shortage is equal to:

Holding cost for finished product =
H

2T
(I × (t2 + t3)) (C.1)

Using equations (4.2)–(4.4), hence

Holding cost for finished product =
H

2T

[
((1− β)P −D)

(
Q

P

)
−K

]

×
[
Q

P
− K

(1− β)P −D
+
(

(1− β)P −D
DP

)
Q− K

D

]

=
H

2T

[
((1− β)P −D)

(
Q

P

)
−K

]
×
[

(1− β)Q
D

− (1− β)PK
D ((1− β)P −D)

]

=
H

2T

[
((1− β)P −D) (1− β)Q2

PD
+

(1− β)PK2

D ((1− β)P −D)
− 2 (1− β)KQ

D

]
(C.2)
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From equation (4.8), so,

Holding cost for finished product =
DH

2 (1−β)Q

[
((1−β)P−D) (1−β)Q2

PD
+

(1−β)PK2

D ((1−β)P−D)
− 2 (1−β)KQ

D

]

=
H ((1− β)P −D)

2P
Q+

HP

2 ((1− β)P −D)

(
K2

Q

)
−HK (C.3)

D. Proof of the convexity of the IPPI model with shortage
in equation (4.24)

Based on the objective function in (4.24):

TC =
n∑
j=1

{
∆j

1 +∆2

(
1
Q

)
+∆j

3

(
1

MjQ

)
+∆j

4 (QMj) +∆j
5 (Q)−HK +∆6

(
K2

Q

)}
(D.1)

So,

∂TC

∂Q
=

n∑
j=1

∆j
5 +

n∑
j=1

∆j
4Mj −

∆2

Q2
−

n∑
j=1

∆j
3

MjQ2
− ∆6K

2

Q2
(D.2)

∂2TC

∂2Q
=

2∆2 + 2∆6K
2

Q3
+

n∑
j=1

2∆j
3

MjQ3
(D.3)

∂TC

∂Mj
= ∆j

4Q−
∆j

3

QM2
j

(D.4)

∂2TC

∂2Mj
=

2∆j
3

QM3
j

(D.5)

∂2TIC

∂Mj∂Q
=

∂2TIC

∂Q∂Mj
= ∆j

4 +
∆j

3

Q2M2
j

(D.6)

∂TC

∂K
= −H +

2∆6K

Q
(D.7)

∂2TC

∂2K
=

2∆6

Q
(D.8)

∂2TIC

∂K∂Q
=
∂2TIC

∂Q∂K
= −2∆6K

Q2
(D.9)

∂2TIC

∂K∂Mj
=

∂2TIC

∂Mj∂K
= 0 (D.10)

∂2TIC

∂Mj∂Mr; j 6= r
= 0 (D.11)
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Thus, the Hessian matrix is:

Hessian =



∂2TC

∂2Q

∂2TC

∂Q∂K

∂2TC

∂Q∂M1

∂2TC

∂Q∂M2
· · · ∂2TC

∂Q∂Mn
∂2TC

∂K∂Q

∂2TC

∂2K

∂2TC

∂K∂M1

∂2TC

∂K∂M2
· · · ∂2TC

∂K∂Mn
∂2TC

∂M1∂Q

∂2TC

∂M1∂K

∂2TC

∂2M1

∂2TC

∂M1∂M2
· · · ∂2TC

∂M1∂Mn
∂2TC

∂M2∂Q

∂2TC

∂M2∂K

∂2TC

∂M2∂M1

∂2TC

∂2M2
· · · ∂2TC

∂M2∂Mn
...

...
...

...
...

...
∂2TC

∂Mn∂Q

∂2TC

∂Mn∂K

∂2TC

∂Mn∂M1

∂2TC

∂Mn∂M2
· · · ∂2TC

∂2Mn


(D.12)

From (D.3), (D.5), (D.6), (D.8), (D.9), (D.10) and (D.11),

Hessian =



2∆2 + 2∆6K
2

Q3
+ 2

n∑
j=1

∆j
3

MjQ3

−2∆6K

Q2
∆1

4 +
∆1

3

Q2M2
1

∆2
4 +

∆2
3

Q2M2
2

· · · ∆n
4 +

∆n
3

Q2M2
n

−2∆6K

Q2

2∆6

Q
0 0 · · · 0

∆1
4 +

∆1
3

Q2M2
1

0
2∆1

3

QM3
1

0 · · · 0

∆2
4 +

∆2
3

Q2M2
2

0 0
2∆2

3

QM3
2

· · · 0

...
...

...
...

...
...

∆n
4 +

∆n
3

Q2M2
n

0 0 0 · · · 2∆n
3

QM3
n


(D.13)

Therefore,
µ = XT (Hessian)X (D.14)

From (D.13)

µ = [Q,K,M1,M2, · · · ,Mn] (Hessian)



Q
K
M1

M2

...
Mn

 =

2∆2

Q2
+

n∑
j=1

∆j
4Mj +

n∑
j=1

3∆j
3

MjQ2
, 0, ∆1

4Q

+
3∆1

3

M2
1Q

,∆2
4Q+

3∆2
3

M2
2Q

, · · · , ∆n
4Q+

3∆n
3

M2
nQ

]


Q
K
M1

M2

...
Mn

 =
2∆2

Q
+

n∑
j=1

6∆j
3

MjQ
+

n∑
j=1

2∆j
4MjQ (D.15)

Since Q, Mj∆2∆
j
3∆

j
4 > 0, therefore:

µ =
2∆2

Q
+

n∑
j=1

6∆j
3

MjQ
+

n∑
j=1

2∆j
4MjQ > 0 (D.16)
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So, the Hessian matrix in (D.13) is positive semi-definite and this means that the nonlinear form of objective
function in (D.1) is a convex function
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