
RAIRO-Oper. Res. 52 (2018) 429–438 RAIRO Operations Research
https://doi.org/10.1051/ro/2017037 www.rairo-ro.org

CONVERGENCE ANALYSIS OF THE PLANT PROPAGATION ALGORITHM

FOR CONTINUOUS GLOBAL OPTIMIZATION

Nassim Brahimi1,∗, Abdellah Salhi2 and Megdouda Ourbih−Tari3

Abstract. The Plant Propagation Algorithm (PPA) is a Nature-Inspired stochastic algorithm, which
emulates the way plants, in particular the strawberry plant, propagate using runners. It has been
experimentally tested both on unconstrained and constrained continuous global optimization problems
and was found to be competitive against well established algorithms. This paper is concerned with its
convergence analysis. It first puts forward a general convergence theorem for a large class of random
algorithms, before the PPA convergence theorem is derived and proved. It then illustrates the results
on simple problems.

Mathematics Subject Classification. 90C09, 05C15.

Received August 28, 2016. Accepted May 6, 2017.

1. Introduction

In recent years, a number of random search algorithms, the so-called heuristic and meta-heuristic algorithms,
have been suggested for optimization. They are popular because they are easy to understand and implement,
and they work well in practice although they do not guarantee optimality. Theoretical conditions under which
convergence to the global optimum is achieved, can be derived.

In the class of biologically inspired optimization algorithms, there are several types (Brownlee [6]; Yang [28]).
The Flower Pollination Algorithm (FPA) is inspired by the pollination of flowers through different agents such
as insects (Yang [29]); the Swarm Data Clustering (SDC) algorithm is inspired by the pollination of flowers
by bees (Kazemian et al. [17]); Particle Swarm Optimization (PSO) is inspired by the foraging behaviour of
groups of animals and insects (Eberhart and Kennedy [9]; Clerc [7]) the Artificial Bee Colony (ABC) algorithm
simulates the foraging behaviour of honeybees (Karaboga [15]; Karaboga and Basturk [16]); the Firefly algorithm
is inspired by flashing fireflies to attract a mate (Yang [27]; Gandomi et al. [10]); the Social Spider Optimization
(SSO) algorithm is inspired by the cooperative behaviour of social spiders (Cuevas and Cienfuegos [8]). The list
can easily be extended.

Keywords. Strawberry algorithm, randomised algorithms, convergence analysis, global optimisation.

1 Laboratoire de Mathématiques Appliquées, Faculté des Sciences Exactes, Université de Bejaia, 06000, Bejaia, Algeria.
∗Corresponding author: nassim.brahimi@univ-bejaia.dz
2 Department of Mathematical Sciences, Faculty of Science and Health, University of Essex, CO4 3SQ, United Kingdom.
3 Institut des Sciences et de la Technologie, Centre Universitaire Morsli Abdellah de Tipaza, 42000, Tipaza, Algeria.

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2017037
https://www.rairo-ro.org
mailto:nassim.brahimi@univ-bejaia.dz
http://www.edpsciences.org

430 N. BRAHIMI ET AL.

The Plant Propagation Algorithm (PPA) also known as the Strawberry Algorithm, introduced by Salhi and
Fraga, in 2011, has been found to be competitive with many of the algorithms here mentioned; its performance
characteristics have been established numerically by (Sulaiman et al. [25], [23]). However, its theoretical analysis
is yet to be carried out. This is what we intend to do in this paper. More precisely, we investigate the convergence
of PPA based on the propagation by runners as in the strawberry plant (Salhi and Fraga [20]). Note that there
is a version of PPA which is based on the propagation of the strawberry plant using seeds, (Sulaiman et al. [24]).
Runner-based PPA follows the principle that plants in good spots with plenty of nutrients send many short
runners. Those in nutrient poor spots send few long runners. Long runners allow PPA to explore the search
space (exploration) while short runners enable it to carry out refined local searches (exploitation).

Analyses of the convergence behaviour of some of Nature-Inspired algorithms have already been carried
out. For instance, (Yang [26]) analyzed the convergence of Simulated Annealing, (Gutjahr [11], [12]; Brahimi
et al. [5]) analyzed the convergence of the Ant Colony algorithm, (Bergh and Engelbrecht [3]) analyzed Particle
Swarm Optimization, (Agapie et al. [2]; Bienvenue and Francois [4]) and others analyzed that of Evolutionary
Algorithms.

Recall that convergence analysis provides an estimate of the range of the parameter values of the algorithm
that allows it to find the optimum solution. It can also improve these values leading potentially to a better
performance of the algorithm.

Our approach to the analysis here is first to propose a general convergence theorem that provides the range
of parameter values that ensure convergence to the global optimum for a large class of algorithms. Second, we
deduce a specific convergence theorem for PPA. This theorem is general enough to be applicable in a wider
range of continuous optimization contexts that can be formulated as

min
x∈Ω

f(x), (1.1)

where Ω is a subset of Rn and f is a real-valued function defined on Ω and assumed to have at least one global
minimum over Ω. Note that Ω is the feasible region defined by the constraint set of problem (1.1). Illustrations
will be provided. Here, we investigate the asymptotic convergence. The general convergence theorem is especially
important for algorithms with a bounded distribution. For those which have a non null distribution throughout
the search space, the asymptotic convergence is trivial, as we shall see later.

The paper is organized as follows. In Section 2, we present the original PPA. A variant of it which is more
amenable to analysis is presented in Section 3. In Section 4 we state and prove the general convergence theorem
and we deduce from it the conditions under which the global convergence of PPA is achieved. Section 5 discusses
special cases and provides examples. Section 6 is the conclusion.

2. The Plant Propagation Algorithm

PPA as the Strawberry Algorithm, (Salhi and Fraga [20]), is a neighborhood search-type algorithm. However,
while Variable Neighborhood Search (VNS) (Hansen and Mladenovie [13]) is trajectory-based, like Simulated
Annealing (Aarts et al. [1]; Salhi et al. [21]), PPA is population-based.

Let us for a moment contemplate what a strawberry plant, and possibly any plant which propagates through
runners, does to optimize its survival. If it is in a good spot of the ground, with enough water, nutrients and
light, then one can reasonably assume that there is no pressure on it to expand further afield and away from
that spot. So, it sends many short runners that give new strawberry plants and occupy the neighborhood of
the mother plant as best they can. On the other hand, if the mother plant is in a spot that is poor in water,
nutrients, light or any one of these necessary for a plant to survive, then it will try to find a better spot for its
off-spring. Therefore, it will send few runners away from its current position to explore distant neighborhoods.
It is also reasonable to assume that it will send only a few, since sending a long runner is a big investment
for a plant which is in a poor spot. It is also reasonable to assume that the quality of the spot (abundance of
nutrients, water and light) is reflected in the growth of the plant. With these assumptions in hand, consider the
following notation that will help describe the general PPA/Strawberry Algorithm.

CONVERGENCE ANALYSIS OF THE PLANT PROPAGATION ALGORITHM FOR CONTINUOUS . . . 431

A plant pi is in spot Xi in dimension n. This means that Xi = (xi,1, . . . , xi,n). A general PPA paradigm would
therefore be as in Algorithm 1. Note that in this algorithm, ‘Good/Bad’ refers to the value that function F
achieves at Xi; for a maximization problem, large values are good. It is clear that, in this paradigm, exploitation
is implemented by sending many short runners. Exploration is implemented by sending few long runners by
plants in poor spots; the long runners allow to explore distant neighborhoods.

Algorithm 1. Paradigm of PPA

1 Generate a population of NP plants, P = {pi, i = 1, . . . , NP} in spots Xi, i = 1, . . . , NP, with plant pi
achieving growth F (Xi);

2 For i from 1 to NP Do
3 If growth F (Xi) of plant pi is ‘good’ Then
4 Send nr > 1 short runners to generate nr new plants

5 {Xi + dx1, Xi + dx2, . . . , Xi + dxnr};
6 Else
7 Send one long runner Xi + dx;

8 Endif

9 Endfor
10 Keep the best NP plants as the new population;

11 Repeat from Step 3 until a termination criterion is satisfied;

12 Return the best plant as candidate solution.

The parameters used in PPA are: the population size, the number of generations, the number of runners per
plant and their lengths which are the distances from current solutions to new ones. Length/distance dx, is not
an arbitrary parameter since it is decided according to the objective value of the solution Xi, in a normalized
form, giving a dx ∈ [−1, 1], as calculated with equation 2.2 below. Equally, the number of runners per plant can
be decided according to the quality of the spot where the plant happens to be, i.e. the value of the objective
function at that point. It, therefore, does not have to be set arbitrarily. This means PPA requires only two
arbitrary parameters: the population size NP , and the maximum number of generations gmax, which is one of
many possible stopping criteria. This issue of arbitrary parameters is important in heuristic and meta-heuristic
design. Algorithms such as PPA with few arbitrary parameters are more desirable than those with many such
parameters. This is because finding good default parameters is difficult and relying on too much experimentation
restricts the use of the algorithm.

To highlight the attractiveness/desirability of PPA based on this “loose” metric that is the number of arbitrary
parameters, we consider two of the well established Nature-inspired algorithms namely the Genetic Algorithm
(GA) (Holland [14]) and Simulated Annealing (SA) (Metropolis et al. [19], Kirkpatrick et al. [18]). Recall the
list of arbitrarily set parameters which are necessary for the implementation of GA. They are:

(1) The population size;
(2) The maximum number of generations;
(3) The number of generations without improvement to stop;
(4) The rate of crossover;
(5) The rate of mutation;
(6) The length of the chromosome;
(7) The number of points of crossover.

Recall also the list of parameters required for the implementation of SA.

(1) The maximum temperature;
(2) The minimum temperature;

432 N. BRAHIMI ET AL.

(3) α the percentage improvement in the objective value expected in each move;
(4) The maximum number of moves without achieving α% improvement in objective value;
(5) The number of iterations at each temperature.

To this, one can add the individual temperatures to be considered between the minimum and maximum
temperatures.

Clearly, compared to the two parameters that PPA requires, it is fair to say that on the above metric, PPA
is easier to implement. This, coupled with its competitive performance, (Sulaiman et al. [23, 25]), makes it,
therefore, more desirable.

The individuals in the random population of PPA represent strawberry plants. After all individuals/plants
in the population have sent out their allocated runners, new plants are created and evaluated, and the resulting
increased population is sorted. To keep the population constant, individuals with lower fitness and ranking below
the NP th position, are eliminated. Note that the number of runners allocated to a given plant are proportional
to its fitness as in,

nr = dnmaxNire, (2.1)

where nr is the number of runners generated by the ith plant in the population. nmax is the maximum number
of runners to generate. Ni is the fitness value, i.e. the normalized objective function value of the ith solution.
r ∈ [0, 1], is randomly selected for each solution in each generation. Every solution Xi generates at least one
runner and the length of each runner is inversely proportional to its fitness as in equation below

dxrj = 2(1−Ni)(r − 0.5), for j = 1, . . . , n, (2.2)

where n is the number of dimensions. Having calculated dxr, the extent to which the runner will reach, the
search equation that finds exactly where to find the next neighborhood to explore is

yi,j = xi,j + (bj − aj)dxrj , for j = 1, . . . , n. (2.3)

The new solution is almost guaranteed to be within [a, b], where a and b are lower and upper bounds delimiting
the search space. When it is not, the offending coordinates are forced to take the upper/lower bound values as
may be necessary. Note that new solutions are generated in the hyper-cube

[a1, b1]× . . .× [an, bn].

3. A Variant of PPA

Here we introduce a variant of PPA for the continuous global optimization problem which is more concise
than the above one and more amenable to mathematical analysis as will be seen later. The variant of PPA
for solving Problem (1.1) suggested here, can be built from the original PPA as follows. As we previously
noticed, the original PPA generates its new populations in a hyper-cube of side at most [aj , bj], in dimension
j = 1, . . . , n. Generating new individuals from each plant in position Xi in a ball of center Xi and radius at
most Rmax ∈]0,+∞[(which is the maximum length of runners) is more streamlined. It is important to point
out that parameter Rmax will be used later, in defining the convergence condition of PPA. Note that if a plant is
generated outside of Ω, it dies out and so it is eliminated (or it is projected onto Ω). As we study the convergence
of the algorithm, there is no need to define a stopping criterion (such as the maximum number of generations).
Convergence is shown for t tending to +∞. Thus, we substitute in the algorithm formulas 2.2 and 2.3 by

Yi = Xi + r(1−Ni)RmaxS
2, (3.1)

where Yi = (yi,1, . . . , yi,n) are the new plants, r U(0, 1) and S2 is the random vector uniformly distributed
in the Euclidean unit sphere. The fitness Ni of pi, i = 1, . . . , NP, takes its values in [0, 1[and can be defined as

Ni = (1− α)
maxi f(Xi)− f(Xi)

maxi f(Xi)−mini f(Xi)
, i = 1, . . . , NP and 0 < α < 1. (3.2)

Thus, Ni ∈ [0, 1− α]. Note that the choice of the fitness function influences the performance of the algorithm.

CONVERGENCE ANALYSIS OF THE PLANT PROPAGATION ALGORITHM FOR CONTINUOUS . . . 433

Algorithm 2. Variant of PPA

1 Generate a population P = {pi, i = 1, . . . , NP} in spots

2 Xi, i = 1, . . . , NP, with plant pi achieving growth f(Xi);
3 Initialise the generation counter: g ← 1;
4 For g from 1 to ∞ Do
5 Compute f(Xi), ∀pi ∈ P;
6 Sort P in ascending order according to the fitness of its

7 elements;

8 Create new population Φ;
9 For Xi, i = 1, . . . , NP Do

10 ri ← set of runners where both size of set and length of

11 each runner are proportional to the fitness/objective

12 value fi as in Equation 3.1;

13 Φ← Φ ∪ ri {append to population; death occurs by omission};
14 Endfor
15 P ← Φ {new population};
16 Endfor
17 Return P, the population of solutions.

The variant of PPA as Algorithm 2, first considers NP plants uniformly randomly generated in Ω. Each
plant then generates nr new plants by equation (3.1). Finally, the algorithm selects the best NP individuals
among new and old, according to f , the objective function of problem (1). A new generation/iteration starts
with a new population.

For ease of analysis, we represent Algorithm 2 by its current solutions Pt = {X1
t , . . . , X

N
t }. PPA will refer,

from now on, to the variant of PPA, or Algorithm 2.

4. Convergence analysis

We proceed by presenting a general convergence theorem for a large class of stochastic algorithms when
applied to continuous global optimization problems. From it, we, later deduce the PPA convergence theorem.
The concern here is with asymptotic convergence, i.e. when t tends to +∞. Let us first define the implements
used in the theorem.

Definition 4.1. Let Ω ⊆ Rn. We define Open(Ω) as the set of open sets of Ω.

Definition 4.2. Let Ω ⊆ Rn and O the function defined by

O : Ω 7−→ Open(Ω)
x 7−→ Ox.

We say that function O is continuous within the meaning of Lebesgue if and only if for all x ∈ Ω

lim
y−→x

λ (Oy∆Ox) = 0

where y ∈ Ω is in the vicinity of x and λ is the measure of Lebesgue.

Note that, this definition means that Ox deforms continuously to x ∈ Ω because

λ(A) = 0⇐⇒ A = ∅

for A ∈ Open(Ω).

434 N. BRAHIMI ET AL.

Definition 4.3. Let f be a continuous function defined from Ω ⊆ Rn to R. Then, Mloc(f) is the set of strict
local minima of f and Mglo(f) its set of global minima.

Lemma 4.4. Let C be an open set of Ω ⊆ Rn and L a function defined from Ω to Open(Ω) which is continuous
in the sense of Lebesgue. Let x0 ∈ Ω. If Lx0

∩C is not empty, then, there exists a vicinity of x0 noted Vx0
such

that
∀x ∈ Vx0 , Lx ∩ C 6= ∅.

Proof. Suppose that A = Lx0∩C is not empty; this set is open. From the continuity of L we have, ∀ε > 0,∃η > 0
such that

‖x− x0‖ < η =⇒ λ (Lx∆Lx0
) < ε.

So, by letting Bx = A ∩ (Lx∆Lx0) and ε = λ (A) /2 then, ∃η > 0 such that

∀x ∈ B(x0, η), λ (Bx) < λ (Lx∆Lx0
) <

λ (A)

2
=⇒ Bx A,

and so
∀x ∈ B(x0, η), Lx ∩ C = A\Bx 6= ∅.

Since the ball is a vicinity of x0, the result follows. �

The following theorem gives the convergence of any elitist random algorithm (statement (1) below) that
is represented by a stochastic process (Xt)t≥0 which has the property of continuity defined in statement (2)
below. Such algorithms generate their new solutions at the (t + 1)th generation/iteration with the probability
density lXt

, which does not depend on time t. Afterwards, they choose the best solutions among new and
old. Here, we consider without loss of generality, the convergence analysis of such algorithms on continuous
functions with at least one global minimum. The general idea is to show that the algorithm can get out of a
local minimum, i.e. it doesn’t get stuck, after a finite number of iterations; this means, it is sufficient to show
that the algorithm progresses, or there is improvement in the search, with positive probability for all x ∈ Ω.

Recall that
◦
A is the Interior of A, and A its closure.

Theorem 4.5. Let Ω ⊆
◦
Ω ⊆ Rn. Let f be a continuous function defined from Ω to R which admits at least

one global minimum. If an algorithm generating the current solution (Xt)t≥0, satisfies the following conditions

(1) f (Xt+1) ≤ f (Xt) for all t ∈ N and X0 ∈ Ω.
(2) The function L defined by

Lx = {s ∈ Ω : lx(s) > 0} ,

is such that
◦
L is continuous in the sense of Lebesgue,

where lx is the probability density function of the distribution with which PPA generates its solutions, i.e. the
uniform distribution over the ball B(x,Rmax), then, it converges to the global minimum with probability 1 if and
only if

∀x ∈ Ω\Mglo :
◦
Lx ∩ Cx 6= ∅,

with Cx = {s ∈
◦
Ω : f(s) < f(x)}.

Proof. From the convergence condition given in the theorem, we get

λ

(
◦
Lx ∩ Cx

)
6= 0 for x ∈ Ω\Mglo.

CONVERGENCE ANALYSIS OF THE PLANT PROPAGATION ALGORITHM FOR CONTINUOUS . . . 435

So, we have

Pr (Xt+1 ∈ CXt
|Xt ∈ Ω\Mglo) =

∫
CXt

lXt
(s)ds (4.1)

=

∫
LXt∩CXt

lXt(s)ds > 0.

Thus, we conclude with the condition (1) of the theorem that if Mloc = ∅, then our algorithm converges to a
global minimum. And if Mloc 6= ∅ then, due to the continuity of function f , we get that ∀xloc ∈Mloc,Cxloc

is a
non empty open. Add this to the condition (2) of the theorem, and the fact that

∀xloc ∈Mloc,
◦
Lxloc

∩ Cxloc
6= φ,

we can apply the Lemma 4.4. Thus, for each xloc ∈Mloc, there exists a vicinity of xloc noted Vxloc
such that for

A = Vxloc
∩Ω, we have

∀x ∈ A,∃Bx =
◦
Lx ∩ Cxloc

6= ∅,

with λ (A) 6= 0. We note that

∀x ∈ A, f(Bx) < f(xloc) ≤ f(A).

Thus, we get

Pr (Xt+1 ∈ BXt
|Xt ∈ A) > 0.

More generally, since for all x ∈ A, Bx ⊂ Cxloc
, we get

Pr (Xt+1 ∈ Cxloc
|Xt ∈ A) > 0.

This means that the algorithm can get out from a vicinity of a local optimum. Add this to fact 4.1 above, we
get the first implication.

For the converse, it is clear that if for all x ∈ Ω\Mglo the process (Xt)t≥0 with X0 = x, converges to the
global minimum then, for all x ∈ Ω\Mglo, the probability of progression is not null. So, the Lebesgue measure

of
◦
Lx ∩ Cx is also not null, and therefore the set is not empty, as expected. �

Note that, Ω does not need to be compact or convex. Moreover, it can be replaced by CX0 , after X0 is chosen.

To establish that Algorithm 2 will converge to the global minimum for any starting point(s), we state the
following result which gives a range of parameter values of Rmax. The idea of this theorem is as follows; the ball
B(x,Rmax) must meet the progression set Cx, what is clear for non-optimal points; we, therefore, need to give
the conditions for local optimality.

Theorem 4.6. Let Ω ⊆
◦
Ω ⊆ Rn. Let f be a continuous function defined on Ω taking its values in R, and

admitting at least one global minimum. Then, PPA converges to a global minimum for any starting point
X0 ∈ Ω with probability 1, if and only if

Rmax >

{
maxxloc∈Mloc

{d (xloc, Cxloc
)} if Mloc 6= ∅

0 otherwise

with maxxloc∈Mloc
{d (xloc, Cxloc

)} < +∞ and d being the Euclidian distance.

436 N. BRAHIMI ET AL.

Proof. Describe the solutions of the tth generation as follows.

Pt =
(
X1
t , . . . , X

NP
t

)
with f

(
Xi
t

)
≤ f(Xj

t), 1 ≤ i < j ≤ NP.

It suffices to establish the convergence of each ith current solution. Note that Xt = Xi
t for i fixed. First, by the

fact that PPA is elitist, we have, for all X0 ∈ Ω, f (Xt+1) ≤ f (Xt). Secondly, define for all x ∈ Ω

Lx = B(x,Rmax) ∩Ω and Cx =

{
s ∈

◦
Ω : f(s) < f(x)

}
.

It is clear that the function
◦
L is continuous on Ω and

∀x ∈ Ω\(Mloc ∪Mglo) :
◦
Lx ∩ Cx 6= φ.

Since, in addition, ∃ε > 0 such that

Rmax = max
xloc∈Mloc

{d (xloc, Cxloc
)}+ ε =⇒ ∀xloc ∈Mloc, Rmax ≥ d (xloc, Cxloc

) + ε,

then, it is clear that

∀x ∈ Ω\Mglo :
◦
Lx ∩ Cx 6= φ.

Now, if we have

Rmax ≤ max
xloc∈Mloc

{d (xloc, Cxloc
)} =⇒ ∃xloc ∈Mloc,∃ε ≥ 0 : Rmax = d (xloc, Cxloc

)− ε,

then, it is clear that
◦

Lxloc
∩ Cxloc

= φ.

We conclude that the condition on Rmax is equivalent to the convergence condition of the Theorem 4.5. This
ends the proof. �

Note that, PPA may converge to any one of the global minima.

5. Illustration

To illustrate the above results, we consider two examples, one with a single global minimum and no strict
local minima and the other with many local minima.

Example 5.1. Let f be a positive definite quadratic function. We know that f admits a unique (global)
minimum. From Theorem 4.6, it is clear that, for any Rmax > 0, PPA converges to the unique global minimum
of f .

Example 5.2. This example shows how the algorithm can get stuck in a local minimum and how it gets out
of it. Consider the continuous function

x 7−→ |x|
(

3

2
− cos(x)

)
·

As can be seen in the graph below, Rmax > 4.4 is the convergence condition of Algorithm 2, the variant of PPA,
to the minimum.

Note that for values of Rmax < 4.3 only a local minimum is guarantedd to be found. However, global optimality
cannot be guaranteed.

CONVERGENCE ANALYSIS OF THE PLANT PROPAGATION ALGORITHM FOR CONTINUOUS . . . 437

Figure 1. Illustration of the global convergence condition

6. Conclusion

In this paper, we have given a pseudo-code of the general PPA paradigm as Algorithm 1 and details of its
implementation. Algorithm 1 searches in the hypercube centered at a given solution Xi. For ease of analysis,
we have described a variant of it which searches in the hypersphere centred at Xi. The pseudo-code of this
more concise version is given as Algorithm 2. To analyse its convergence, we have first shown in Theorem 4.5
under what conditions a general class of stochastic algorithms converges to a global minimum with probability
1. We have then extended this result to cater for the convergence of PPA as Algorithm 2, in Theorem 4.6. This
required showing that parameter Rmax determines its global convergence. We have then given the estimate of
the range of values of Rmax which guarantee convergence to the global minimum with probability 1. The results
also show under what conditions PPA and algorithms in the same class, get stuck in local minima.

Follow up work will try to extend the theorem to other classes of stochastic algorithms for both continuous
and discrete problems.

References

[1] E.H.L. Aarts, J. Korst and P.J.M. Van Laarhoven, Simulated Annealing. In Local Search in Combinatorial Optimization.
edited by E.H.L. Aarts and J.K. Lenstra. Wiley (1997) 91–120.

[2] A. Agapie, M. Agapie, G. Rudolph, G. Zbaganu, Convergence of evolutionary algorithms on the n-dimensional continuous
space. Cybernetics. IEEE Trans. 43 (2013) 1462–1472.

[3] F. Bergh and A. Engelbrecht, A convergence proof for the particle swarm optimiser. Fundamenta Informaticae 105 (2010)
341–374.

[4] A. Bienvenue and O. Francois, Global convergence for evolution strategies in spherical problems: some simple proofs and
difficulties. Theoretical Comput. Sci. 306 (2003) 269–289.

[5] N. Brahimi, A. Salhi and M. Ourbih−Tari, Drift Analysis of Ant Colony Optimization of Stochastic Linear Pseudo-Boolean
Functions. Operat. Res. Lett. 45 (2017) 342–347.

[6] J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes (2011).

[7] M. Clerc, Particle Swarm Optimization. In Vol.93. John Wiley and Sons (2010).

[8] E. Cuevas and M. Cienfuegos, A new algorithm inspired in the behavior of the social-spider for constrained optimization.
Expert Syst. Appl. 41 (2014) 412–425.

[9] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory. In Proc. of the 6th Inter. Sympos. Micro Machine
and Human Scie. (MHS’95), IEEE, Nagoya, Japan (1995) 39–43.

[10] A.H. Gandomi, X.-S. Yang and A.H. Alavi, Mixed variable structural optimization using Firefly Algorithm. Comput. Structures
89 (2011) 2325–2336.

[11] W. Gutjahr, A graph-based ant system and its convergence. Future Generation Comput. Syst. 16 (2000) 873–888.

[12] W. Gutjahr, ACO algorithms with guaranteed convergence to the optimal solutions. Information Processing Lett. 82 (2002)
145-153.

438 N. BRAHIMI ET AL.

[13] P. Hansen and N. Mladenovic, Variable neighborhood search: Principles and applications. Eur. J. Operat. Res. 130 (2001)
449–467.

[14] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press. Ann. Arbor, MI (1974).

[15] D. Karaboga, An idea based on honey bee swarm for numerical optimization. Tech. Rep. (TR06), Erciyes University Press,
Kayseri, Turkey (2005).

[16] D. Karaboga and B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. J. 8 (2008)
687–697.

[17] M. Kazemian, Y. Ramezani, C. Lucas and B. Moshiri, Swarm clustering based on flowers pollination by artificial bees. Studies
Comput. Intell. 34 (2006) 191–202.

[18] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by Simulated Annealing. Science 220 (1983) 671–680.

[19] N. Metropolis, A.W. Rosenbluth, M. Rosenbluth, A.H. Teller and E. Teller, Equation of State Calculations by Fast Computing
Machines. J. Chem. Phys. 21 (1953) 1087–1092.

[20] A. Salhi and E. Fraga, Nature-inspired optimisation approaches and the new plant propagation algorithm. In Proc. of the
International Conference on Numerical Analysis and Optimization ICeMATH ’11 (2011) K2-1–K2-8, Yogyakarta, Indonesia.

[21] A. Salhi, L.G. Proll, D. Rios Insua and J.I. Martin, Experiences with stochastic algorithms for a class of constrained global
optimisation problems. Recherche Opér. 34 (2000) 183-197.

[22] A. Salhi, J.A. Vázquez−Rodŕıguez and Q. Zhang, An estimation of distribution algorithm with guided mutation for a complex
flow shop scheduling problem. In Proc. of 9th Ann. Genetic and Evolutionary Comput. Conf. (GECCO’07), edited by D.
Thierens. ACM (2007) 570–576.

[23] M. Sulaiman, A. Salhi, E.S. Fraga and W.K. Mashwani, M.M. Rashidi, A Novel Plant Propagation Algorithm: Modifications
And Implementation. Science International-Lahore 28 (2015) 201–209.

[24] M. Sulaiman and A. Salhi, A Seed-based Plant Propagation Algorithm: The feeding Station Model. Scientific World J. 2015
(2015) 1–16.

[25] M. Sulaiman, A. Salhi, B. Selamoglu and O. Kirikchi, A plant propagation algorithm for constrained engineering optimisation
problems. Math. Problems Eng. 2014 (2014) 1–10.

[26] R. Yang, Convergence of the simulated annealing algorithm for continuous global optimization. J. Optimiz. Theory Appl. 104
(2000) 691–716.

[27] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation. Inter. J. Bio-Inspired Comput. 2 (2010) 78–84.

[28] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Luniver Press (2011).

[29] X.-S. Yang, Flower pollination algorithm for global optimization. In Unconventional Computation and Natural Computation.
Springer (2012) 240–249.

	Introduction
	The Plant Propagation Algorithm
	A Variant of PPA
	Convergence analysis
	Illustration
	Conclusion
	References

