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A MULTI-RETAILER SUPPLY CHAIN MODEL WITH BACKORDER

AND VARIABLE PRODUCTION COST

Arunava Majumder1, Chandra K. Jaggi2 and Biswajit Sarkar3,∗

Abstract. The modern marketing environment involves variability and randomness within the numer-
ous parties of any supply chain network. Thus, formation of a supply chain model including multiple
buyers and variable production rate is more acceptable than assuming a single-buyer with constant pro-
duction rate model. This paper considers a supply chain network, where a single-vendor manufactures
products in a batch production process and supplies them to a set of buyers over multiple times. Instead
of assuming a fixed production rate, as commonly used in the literature, a variable production rate is
introduced by the vendor and the production cost of the vendor is treated as a function of production
rate. The continuous review inventory model is applied for multiple buyers to inspect inventory levels
and a crashing cost is incurred by all buyers to reduce their lead times. The lead time demand follows
a normal distribution. The unsatisfied demands at the buyers end are partially backordered. A model
is formulated to minimize the joint expected cost of the vendor-buyers supply chain system. A classical
optimization technique is utilized to solve the model. An improved algorithm is developed to obtain
the numerical solution of the model. Finally, numerical examples are given to illustrate the model.
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1. Introduction

In the modern marketing environment, it is more relevant to optimize the total system cost jointly for all
parties involved in the supply chain system than to optimize the individual cost of each party [29]. Currently,
a vendor or manufacturer typically delivers products to numerous buyers. Many vendors build their own retail
outlet to deliver products to multiple buyers. Thus, a single-vendor multi-buyer model is applicable in many
cases. Goyal [16] proposed the integrated inventory model with coordination between a single buyer and a single
vendor as a pioneering approach. Banerjee [2] extended Goyal’s [16] model by assuming a lot-for-lot policy,
which was again extended by Goyal [18] with SSMD policy. Goyel [18] suggested a supply chain model, where
the vendor’s production quantity is an integer multiple of the buyer’s order quantity. Ha and Kim [20] developed
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a lot splitting supply chain model with a single retailer and a single supplier. Ouyang et al. [27] investigated
an integrated vendor-buyer cooperative model with controllable lead time and stochastic demand. Sarkar and
Majumder [29] developed an integrated inventory model with vendor’s setup cost reduction and solved by a
distribution free-approach. Cárdenas-Barrón et al. [6] surveyed a number of research articles regarding economic
order quantity model. Cárdenas-Barrón and Sana [6] investigated the channel coordination of a two-echelon
supply chain, where the demand pattern is dependent on sales’ teams initiatives. Moon et al. [25] introduced
a service level constrain in a continuous review model with variable stochastic lead time. Regarding backorder
rate, Sarkar et al. [31] introduced random defective production rate with variable backorder rate. Sarkar et al.
[33] introduced fill rate in a continuous review inventory model to minimize the total system cost with setup
cost reduction. Sarkar and Mahapatra [33] developed a periodic review inventory model with fuzzy demand to
minimize the total cost by considering setup cost reduction of vendor. Sarkar et al. [33] considered backorder
price discount in an integrated inventory model, where they developed two models with lead time demand
as normally distributed and without having any distribution. Sarkar et al. [36] introduced product specific
(products having fixed lifetime) backordering policy in a two-echelon supply chain model with coordination
between the supply chain players. Based on the imperfect quality of products, Sarkar et al. (2017) discussed the
way to improve the quality by additional investment.

Banerjee and Burton [4] discussed a comparison between coordinated and independent replenishment policies
in a single-vendor multi-buyer supply chain model. Banerjee and Banerjee [3] developed a multi-buyer inven-
tory model using electronic data interchange with an order-up-to inventory control policy. Sarmah et al. [38]
considered a single-supplier multi-buyer coordinated supply chain model with a trade credit policy. Hoque [21]
discussed three different single-vendor multi-buyer models by synchronizing the production flow with equal and
unequal sized batch transfer for the first two models and the last model, respectively. Guan and Zhao [19]
developed a multi-retailer inventory system with a continuous review policy, which optimizes the decisions of
pricing and inventory management with the aim of maximizing profit. Jha and Shankar [22] developed a single-
vendor multi-buyer constrained non-linear model under service level constraint and solved it using a Lagrangian
multiplier method. Cárdenas-Barrón and Treviño-Garza [6] developed a three-echelon supply chain model with
multiple products and multiple periods. Glock and Kim [15] studied the effect of forward integration in a multi-
retailer supply chain under retailer competition. Cárdenas-Barrón and Sana [9] studied a two-layer supply chain
model with multiple items and a promotional effort.

To improve customer service and to reduce stockout loss, it is important to reduce lead time. Liao and Shyu
[24] first incorporated a probabilistic inventory model assuming lead time as a unique decision variable. Ben-
Daya and Rauf [5] considered an inventory model as an extension of Liao and Shyu’s [24] model, where lead
time is one of the decision variables. Ben-Daya and Rauf’s [5] model dealt with no shortage and continuous lead
time. Ouyang et al. [26] extended Ben-Daya and Rauf’s [5] model by assuming discrete lead time and shortages.
Pan and Yang [28] analyzed an integrated inventory model with lead time in a controllable manner. Annadurai
and Uthayakumar [1] developed a periodic review inventory model under controllable lead time and lost sales
reduction. Gholami-Qadikolaei et al. [13] developed a probabilistic inventory model with lead time and ordering
cost reduction under budget and space constraint. Shin et al. [39] studied an integrated inventory model with
controllable lead time and a service level constraint. You [41] studied an inventory model with partial backorder
under vertical shift demand. Chung [11] assumed an integrated production-inventory model with backorder and
used the method of comprising cost difference rate. Sarkar and Moon [31] developed an inventory model with
variable backorder and deduced the procedure to reduce setup cost and quality improvement.

The production rate is assumed to be constant in the classical supply chain model, however, in many cases, the
machine production rate may change [23]. Conard and McClamrock’s [12] analysis stated that a 10% change in
processing rate resulting a 50% change in machine tool cost. Moreover, the possibility of failure in the production
process gradually increases with increasing production rate. As a result, the product quality may deteriorate
at some rate. Thus, it is reasonable to consider the production rate as a decision variable not constant. Unit
production cost also depends on the production rate and should be treated as one of the decision variables.
Giri and Dohi [14] considered a generalized extended EMQ model with variable production rate by assuming
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stochastic machine breakdown and repair. Chang et al. [10] developed an EMQ model with variable production
rate for a two-stage assembly system. Soni and Patel [40] studied an integrated single-supplier single-retailer
inventory model with variable production rate and trade-credit policy.

This article develops a vendor-buyer supply chain model. Instead of considering a single-buyer, multiple
buyers are assumed to construct the model [19, 22]. To improve customer service, variable lead time and lead
time crashing cost are utilized [26]. Shortages are considered, which is partially backordered [11]. As a con-
stant production rate is inappropriate in the recent several marketing situations, variable production rate and
variable production cost [12, 23] are assumed to develop this proposed model. The paper is organized in the
following way: Section 2 contains problem definition, notation, assumptions. Section 3 includes descriptions of
the mathematical model and solution algorithm. Section 4 describes numerical experiments with optimal values
of decision variables for different backorders and sensitivity analysis. Sections 5 and 6 consist of managerial
insights and concluding remarks, respectively.

2. Problem definition, notation, and assumptions

This section includes the problem definition with discussion, notation, and assumptions to formulate the
mathematical model.

2.1. Problem definition

This paper develops a supply chain model, where single vendor supplies products to multiple buyers. The
production rate and production cost are considered as a variable quantities, as in many previous studies.
Moreover, production cost is assumed as production rate and a special ‘U’-shaped function is used to develop
the model (Fig. 1). The vendor follows a single-setup-multi-delivery (SSMD) policy for delivering products to
buyers. At the buyer’s end, partial backorder is considered for shortages and the buyer minimizes lead time
by utilizing a lead time crashing cost. The lead time demand is considered as stochastic and follows a normal
distribution.

Figure 1. Graphical representation of production rate versus production cost.
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2.2. Notation

For buyers
Decision variables

qi order quantity for buyer i (units).
ki safety factor for buyer i.
Li length of lead time for buyer i (week/weeks).

Parameters

n number of buyers.
di average demand per unit time (units).
Abi ordering cost of the buyer per order ($ / order).
hbi holding cost rate per unit time ($ / unit / unit time).
σi standard deviation of the demand per unit time (units).
πi stockout cost per unit of shortage($ / unit).
π0i marginal profit per unit item for buyer i ($ / unit).
βi fraction of the demand for buyer i that will be backordered during stockout, 0 ≤ β ≤ 1.

For vendor
Decision variables

P production rate per unit time (units).
Q delivery lot size of vendor such that Q =

∑n
i=1 qi.

m number of lots (same for all buyers) delivered to each buyer in one production cycle (positive integer).

Parameters

C(P ) production dependent unit production cost ($ / unit).
Av setup cost for vendor ($ / setup).
hv holding cost rate per unit time for vendor ($ / unit / unit time).

Other notation

Xi normally distributed lead time demand for buyer i with mean diLi and standard deviation σi
√
Li.

E(·) mathematical expectation.
x+ maximum value of x and 0.

2.3. Assumptions

1. A single vendor supplies single type of products to multiple buyers with equal lot size.
2. To satisfy the demand of each buyer, the vendor supplies a total of Q quantity such that Q =

∑n
i=1 qi.

3. The vendor manufactures mQ quantity against the order of qi quantity of buyer i, but the shipment should
be in quantity Q over m times. The shipment procedure follows the relation qi = di

Q
D , i.e., qi

di
= Q

D .
4. The inventory is continuously reviewed by each buyer. According to this policy, an order is placed whenever

the level of inventory decreases to a particular inventory level (reorder point).
5. Production rate is a variable quantity that varies within the range Pmin (Pmin > D =

∑n
i=1 di) and Pmax.

6. The unit production cost of the vendor is a function of P having the expression as C(P ) =
(
a1

P + a2P
)

(Khouja and Mehrez, 1994), where a1 and a2 are constants producing the best fit for the function C(P ).
7. Partial backorder is considered with backorder ratio βi for the ith retailer.
8. For the ith retailer, it is assumed Li,0 ≡

∑ni

j=1 bi,j , where Li,r is the length of lead time with components

1, 2, . . . , r crashed to their minimum duration. Thus, Li,r can be expressed as Li,r = Li,0−
∑r

j=1(bi,j−ai,j),
r = 1, 2, . . . , n; and the lead time crashing cost per cycle Ci(Li) is expressed as Ci(Li) = ci,r(Li,r−1−Li) +∑r−1

j=1 ci,j(bi,j − ai,j), L ∈ [Li,r, Li,r−1].
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9. The lead time crashing cost entirely belongs to the buyer’s cost component.
10. The time horizon is infinite.

3. Mathematical model

This section contains mathematical models for vendor and buyers along with solution procedures.

3.1. Mathematical model for buyers

The ordering cost for the ith buyer is Abidi

qi
as the expected cycle time for each buyer is qi

di
. The inventory level

is continuously reviewed by each buyer. Thus, the ith buyer places an order (qi) only when the level of inventory
reaches to a specified indicator say, reorder point (ri). The net inventory level for buyer i just before and after
receipt of an order is ri−diLi and qi +ri−diLi, respectively. Therefore, the approximated average inventory for
buyer i over the cycle is qi

2 + ri−diLi. Now, ri can be expressed as DiLi +kiσi
√
Li which results in the average

inventory for the ith buyer being qi
2 +kiσi

√
Li. Again, (1−βi) is the fraction of demand that is not backordered.

Hence, the holding cost for buyer i per unit time is hbi[
qi
2 + ri − diLi + (1− βi)E(Xi − ri)+]. As π0i and πi are

the marginal profit and stockout cost per unit item, respectively, for buyer i, {πi +π0i(1−βi)}di

qi
E(Xi− ri)+ is

the shortage cost per item per unit time. According to assumption 8, the lead time crashing cost per unit time
can be expressed as R(Li)

di

qi
for buyer i.

Total expected cost for buyer i is

TECbi =Ordering cost+holding cost+shortage cost+lead time crashing cost

Thus, TECbi leads to the following expression:

TECbi(qi, ki, Li) =

[
Abidi
qi

+ hbi

{qi
2

+ kiσi
√
Li + (1− βi)E(Xi − ri)+

}
+ {πi + π0i(1− βi)}

di
qi
E(Xi − ri)+ +R(Li)

di
qi

]
, (3.1)

where, Xi is the lead time demand for buyer i having a normal distribution with diLi and σi
√
Li as mean and

standard deviation, respectively. Shortages occur only when Xi > ri for each buyer. The expected shortage
at the end of the cycle for the ith buyer is E(Xi − ri)+ =

∫∞
ri

(xi − ri)dF (x) = σi
√
Liψ(ki), where, ψ(ki) =

φ(ki)−ki[1−Φ(ki)], φ is the standard normal probability density function, and Φ is the cumulative distribution
function of a normal distribution.

According to assumption 3 and using E(Xi − ri)+ = σi
√
Liψ(ki), (3.1) becomes

TECbi(Q, ki, Li) =

[
AbiD

Q
+ hbi

{
Q

2D
di + kiσi

√
Li + (1− βi)σi

√
Liψ(ki)

}
+ {πi + π0i(1− βi)}

D

Q
σi
√
Liψ(ki) +R(Li)

D

Q

]
· (3.2)

3.2. Mathematical model for the vendor

The setup cost for the vendor per unit time is

AvD

mQ
·

The average inventory of the vendor is[{
mQ

(
Q

P
+ (m− 1)

Q

D

)
− m2Q2

2P

}
−
{
Q2

D
(1 + 2 + . . .+ (m− 1))

}]
D

mQ

=
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
(Fig. 2).
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Figure 2. Inventory pattern for the vendor and buyers.

Therefore, the holding cost per unit time for vendor is

hv
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
·

The production cost of the vendor is assumed to be a function of P . The expression of unit production cost is

C(P ) =
(
a1

P + a2P
)

[23]. The production rate that minimizes the unit production cost is P ∗ =
√

a2

a1
. Therefore,
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the total expected cost of vendor is expressed as TECv= Setup cost+holding cost+material cost i.e.,

TECv(m,Q,P ) =
AvD

mQ
+
Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+D

(a1
P

+ a2P
)
. (3.3)

In order to obtain the centralized decisions for both vendor and the buyers to minimize the entire supply
chain cost, the total cost expression of both ends must be combined. Therefore, the joint total expected cost for
both vendor and the buyers (JTEC) is obtained as follows:

JTEC(Q, ki, Li, P,m) =

n∑
i=1

D

Q

[
Abi + {πi + πoi(1− βi)}σi

√
Liψ(ki) +

Av

m
+R(Li)

]

+

n∑
i=1

hbi

[
Q

2D
di + kiσi

√
Li + (1− βi)σi

√
Liψ(ki)

]
+
Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+D

(a1
P

+ a2P
)
. (3.4)

Now, the aim is to obtain the optimal solution for all decision variables such that the joint total expected
cost is minimized. The problem becomes an unconstrained minimization problem with five decision variables.
Therefore, in order to obtain the optimal supply chain cost, the derivatives of the objective function are obtained
with respect to all decision variables and equate them with zero. Now, according to the assumption, m is an
integer and therefore, can be treated as a discrete decision variable. Thediscrete optimization technique is usedto
obtain the optimal value for m [27,29]. After calculating derivatives with respect to Q, ki, Li, and P , we obtain

∂JTEC(Q, ki, Li, P,m)

∂Q
=

n∑
i=1

hbi
2D

di +
hv
2

[
m(1− D

P
)− 1 +

2D

P

]

−
n∑

i=1

D

Q2

[
Abi + {πi + π0i(1− βi)}σi

√
Liψ(ki)

+Av/m+R(Li)
]

∂JTEC(Q, ki, Li, P,m)

∂ki
=
D

Q
{πi + π0i(1− βi)}σi

√
Li(Φ(ki)− 1) + hbiσi

√
Li

+ (1− βi)σi
√
Li(Φ(ki)− 1)

∂JTEC(Q, ki, Li, P,m)

∂Li
=

D

2Q
{πi + π0i(1− βi)}σiψ(ki)L

−1/2
i − Dci,r

Q

+ (kiσi + (1− βi)σiψ(ki))
hbiL

−1/2
i

2
∂JTEC(Q, ki, Li, P,m)

∂P
=

D

P 2

[
Q

2
hv(m− 2)− a1

]
+ a2D. (3.5)

Again, it is shown that the second-order partial derivative of the joint total cost function with respect to Li

is

∂2JTEC(Q, ki, Li, P,m)

∂L2
i

= − D

4Q
{πi + π0i(1− βi)}σiψ(ki)L

−3/2
i

− (kiσi + (1− βi)σiψ(ki))
hbiL

−3/2
i

4
, (3.6)

which is a negative term for 0 < βi < 1 and positive values of all parameters and decision variables. Therefore,
for fixed Q, ki, P , and m, the function JTEC(Q, ki, Li, P,m) is concave in Li. Thus, for fixed Q, ki, P , and
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m, the minimum value of JTEC(Q, ki, Li, P,m) is attained at the end point of the interval [Li,j , Li,j−1]. For a
fixed positive integer m and for any fixed value of Li, the values of Q, Φ(ki), and P can be obtained by equating
every individual equation of the system (3.5) to zero.

Q =

{
2D{Av/m+

∑n
i=1(Abi + [πi + π0i(1− βi)]σi

√
Liψ(ki) +R(Li))}∑n

i=1
hbi

D di + hv
[
m
(
1− D

P

)
− 1 + 2D

P

] }1/2

(3.7)

Φ(ki) = 1− hbi
D
Q (πi + π0i(1− βi)) + (1− βi)

(3.8)

P =

{
2a1 −Qhv(m− 2)

2a2

}1/2

· (3.9)

3.3. Solution algorithm

A closed form solution of the mathematical model is very difficult to obtain. The fixed point iteration technique
is required to create a suitable algorithm in order to solve the model.

Step 1 Set m = 1 and input all parametric values.

Step 2 For all buyers i = 1, 2, . . . , n assign the values of all parameters and perform the following steps.

Step 3 For every combination of Li,r, r = 1, 2, . . . , Ni, i = 1, 2, . . . , n perform Steps 3a−3e.

Step 3a Set kj1i = 0 for each buyer i.

Step 3b Substitute kj1i , (i=1,2,. . . ,n) into (3.7) and evaluate Qj1.

Step 3c Utilize Qj1 to determine the value of Φ(kj2i ) for each i from (3.8).

Step 3d Using the value of Φ(kj2i ), obtain the value of kj2i from the normal table.

Step 3e Repeat 3b to 3d until no changes occur in the values of Qj and kji and denote these values as Qj∗ and

kj∗i , respectively.

Step 4 Evaluate the value of P j∗ from (3.9) using the value of Qj∗.

Step 5 Denote the latest updated values of Qj , kji , and P j as Qj∗∗, kj∗∗i , and P j∗∗, respectively.

Step 6 Obtain JTEC(Qj∗∗, kj∗∗i , P j∗∗, Li,r,m) and Minj=1,2,...,Ni
JATC(Qj∗∗, kj∗∗i , P j∗∗, Li,r,m) for all i.

Step 5 Set m = m+ 1.
If JTEC(Q∗∗m , k

∗∗
im, P

∗∗
m , Li,m,m) ≤ JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, θ

∗∗
m−1, Lm−1,m−1), repeat Step 2, Step

3, and Step 4. Otherwise, go to Step 6.

Step 6 Set JTEC(Q∗∗m , k
∗∗
m , S

∗∗
m , θ∗∗m , Lm,m) = JTEC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, θ

∗∗
m−1, Lm−1,m− 1).

Then, (Q∗∗, k∗∗, L∗∗, S∗∗, θ∗∗,m∗∗) is the optimal solution and the optimal reorder point can be obtained
from R∗∗ = DL∗∗ + k∗∗σ

√
L∗∗, where R∗∗ denotes the optimal solution for R, the reorder point.

4. Numerical examples

The following parameter values are used to interpret the model numerically: d1 = 200 units/week,
d2 = 300 units/week, d3 = 200 units/week, Av = $4000/setup, Ab1 = $100/setup, Ab2 = $150/setup,
Ab3 = $100/setup, hv = $10/unit/week, hb1 = $11/unit/week, hb2 = $11/unit/week, hb3 = $12/unit/week,
σ1 = 9, σ2 = 10, σ3 = 15, π01 = $150/unit, π02 = $140/unit, π03 = $152/unit, π1 = $50/unit, π2 = $50/unit,
π3 = $51/unit, a1 = 2× 104, and a2 = 0.01. The lead time data are given below in Table 1.

From Tables 2–4, the optimal values of the decision variables are obtained at different backorder ratios.
Tables 2–4 represent optimal results for β=0.0, 0.5, and 0.8, respectively. Many solutions in each table are
shown for the different lead times. The decisions regarding optimal lead time are displayed in Table 5.

Therefore, it is found that minimum cost is attained at 4 weeks of lead time for every buyer and the optimal
shipment is 3 for each of the three backorder ratio values.
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Table 1. Lead time data.

Buyer i Lead time component Normal duration Minimum duration Unit crashing cost
(bi,r) (ai,r) (ci,r)

1 1 20 6 0.1
2 20 6 1.2
3 16 9 5.0

2 1 20 6 0.5
2 16 9 1.3
3 13 6 5.1

3 1 25 11 0.4
2 20 6 2.5
3 18 11 5.0

Table 2. Total optimal cost for βi = 0, i = 1, 2, 3.

m L1 L2 L3 Q k1 k2 k3 P C(P ) JTEC r1 r2 r3
3 3 4 4 469.943 1.789 1.765 1.755 1328.543 28.339 30 287.838 39 58 68
3 4 4 4 466.458 1.792 1.769 1.759 1329.199 28.338 30 270.744 47 58 68
3 4 3 4 469.925 1.789 1.765 1.755 1328.547 28.339 30 282.853 47 48 68
3 4 4 3 471.373 1.787 1.764 1.754 1328.274 28.339 30 276.958 47 58 57
3 4 3 3 474.778 1.784 1.760 1.751 1327.633 28.340 30 288.206 47 48 57
3 3 4 3 474.797 1.784 1.760 1.751 1327.630 28.340 30 293.196 39 58 57
3 3 3 4 473.367 1.785 1.762 1.752 1327.899 28.340 30 299.351 39 48 68
3 3 3 3 478.160 1.781 1.757 1.747 1326.996 28.341 30 303.874 39 48 57

Table 3. Total optimal cost for βi = 0.5, i = 1, 2, 3.

m L1 L2 L3 Q k1 k2 k3 P C(P ) TEC r1 r2 r3
3 3 4 4 471.905 1.561 1.541 1.525 1328.174 28.340 30153.094 36 54 61
3 4 4 4 468.487 1.565 1.544 1.529 1328.817 28.339 30131.424 43 54 61
3 4 3 4 471.879 1.561 1.541 1.525 1328.179 28.340 30148.556 43 44 61
3 4 4 3 473.274 1.560 1.539 1.524 1327.916 28.340 30146.095 43 54 51
3 4 3 3 476.604 1.556 1.536 1.520 1327.289 28.341 30162.393 43 44 51
3 3 4 3 476.631 1.556 1.536 1.520 1327.284 28.341 30166.934 36 54 51
3 3 3 4 475.255 1.558 1.537 1.522 1327.543 28.340 30169.646 36 44 61
3 3 3 3 479.920 1.553 1.532 1.517 1326.664 28.342 30182.676 36 44 51

Table 4. Total optimal cost for βi = 0.8, i = 1, 2, 3.

m L1 L2 L3 Q k1 k2 k3 P C(P ) TEC r1 r2 r3
3 3 4 4 474.268 1.322 1.308 1.283 1327.729 28.340 30016.004 32 49 54
3 4 4 4 470.930 1.326 1.312 1.287 1328.357 28.339 29989.695 39 49 54
3 4 3 4 474.234 1.322 1.308 1.283 1327.736 28.340 30011.853 39 40 54
3 4 4 3 475.563 1.320 1.306 1.281 1327.485 28.340 30012.957 39 49 45
3 4 3 3 478.804 1.317 1.302 1.277 1326.875 28.341 30034.312 39 40 45
3 3 4 3 478.840 1.317 1.302 1.277 1326.868 28.341 30038.465 32 49 45
3 3 3 4 477.529 1.318 1.304 1.279 1327.115 28.341 30037.601 32 40 54
3 3 3 3 482.040 1.313 1.299 1.273 1326.265 28.342 30059.281 32 40 45
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Table 5. Summarization of optimal values.

β m L1 L2 L3 Q k1 k2 k3 p C(p) TEC r1 r2 r3
0.0 3 4 4 4 470.930 1.326 1.312 1.287 1328.357 28.339 29989.695 47 58 68
0.5 3 4 4 4 468.487 1.565 1.544 1.529 1328.817 28.339 30131.424 43 54 61
0.8 3 4 4 4 470.930 1.326 1.312 1.287 1328.357 28.339 29989.695 39 49 54

Table 6. Sensitivity analysis for different key parameters.

Parameters Changes(in %) TECN

−50% −0.41
−25% −0.22

Ab1 +25% +0.19
+50% +0.38
−50% −1.23
−25% −0.49

hb1 +25% +0.57
+50% +1.14

Parameters Changes(in %) TECN

−50% −5.01
−25% −2.65

Av +25% +2.47
+50% +4.75
−50% −5.81
−25% −3.00

hv +25% +2.86
+50% +5.70

4.1. Sensitivity analysis

Some key parameters are changed at the percentage values −50%, −25%, +25%, and +50%. Each parameter
is changed one at a time while keeping the other parameters fixed. The effects of this changes of the key
parameters are illustrated in Table 6.

Variations of key parameters Abi, hb1, Av, and hv are considered. For the sake of simplicity, the cost parameters
of buyer 1 are taken into consideration. Observations from sensitivity analysis are described as follows:

• Vendor’s cost components are more sensitive than buyer’s cost components.
• Holding cost of buyer is more sensitive that ordering cost, which is true for all buyers.
• Vendor’s holding cost is also more sensitive than vendor’s setup cost, but the sensitivity is less than that of

the buyer.

5. Managerial insights

This article provides a two-echelon single-vendor multi-buyer supply chain model with variable production
rate. A constant entity under which the managerial decisions are obtained is irrelevant in the modern marketing
environment. Thus, decisions are made on the basis of many variable quantities such as order quantity, lead
time, reorder point, production rate, production cost, and number of shipments. Moreover, a number of retailers
are considered to imitate a real life scenario for obtaining realistic managerial decisions. The managerial insights
of this chapter are furnished point-wise as follows:

• The managerial decisions are made under a variable production rate. This assumption is more realistic than
a fixed production rate.

• Production cost is also considered as variable and a special type of cost function is assumed to obtain more
generalized decisions than with a fixed production cost.

• Manager can reduce lead time and enhance customer service by incurring a lead time crashing cost.

6. Concluding remarks

This study proposed a single-vendor multi-buyer supply chain model. Variable lead time was considered at
the buyer’s end. The lead time demand was assumed to follow a normal distribution. The vendor’s production
rate was considered as a variable rather than as a fixed entity. Moreover, the unit production cost was also
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considered as a variable [23] that was dependent on the production rate, and a special type of function was
considered to establish the relation between the production rate and the unit production cost. At the end of
production, the finished goods were delivered to a number of buyers through a multiple delivery policy. The
optimal decision variables were obtained for different backorder ratios combined with various lead times. It
was observed that the value of the chain increased with increasing backorder ratio and the lowest cost was
attained at four weeks of lead time. There are many possible extensions and further research directions in this
model. One suitable direction for extension is to incorporate a multi-echelon and multi-product supply chain
network. Another avenue of extension is to reduce setup and ordering costs for vendor and buyers, respectively.
To maintain the quality of products, the model can be extended by considering by quality improvement by
continuous investment as in Sarkar et al. (2017) or as in Huang et al. (2011).
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