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Abstract. The decision maker’s perception of regret affects a company’s inventory control and pricing
decisions. In this paper, we investigate how regret aversion behaviors affect the inventory control and
pricing decisions under a newsvendor setting. To capture the regret aversion behaviors of the newsven-
dor, we provide a regret aversion utility function. Based on the built regret aversion utility function
and the classic inventory control and pricing model, we construct utility function by integrating the
profit utility and the regret aversion utility, and then analyze the conditions of optimal solution on the
inventory and pricing policy under additive and multiplicative demand in details. Further, by the anal-
ysis of properties and numerical study, we show that the optimal policy for regret-averse newsvendor
deviates from the one for regret-neutral newsvendor and changes with the regret aversion parameters
to varying degree. We also show the impact tendency of newsvendor’s regret aversion behaviors on the
optimal inventory and pricing policy under the additive and multiplicative demand.
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1. Introduction

Inventory management and pricing decisions are critical for most operations management in industries, if
not for all. Joint inventory control and pricing problems have been addressed intensively from the perspective
of Operations Research (OR) (e.g., see Whitin [35]; Lau and Lau [20]; Emmons [13]; Petruzzi and Dada [25];
Smith et al. [31]; You [38]; Chen and Bell [7]; Hua et al. [18]; Yu et al. [39]; Merzifonluoglu and Feng [23]; Devi
et al., [11], and Raza and Turiac [28]). However, most of existing analytical models and solutions are based on
the strong assumption of rationality of decision makers. The research results fail to consider decision maker’s
behavioral factors. It leads to the limited implementation of rational solutions in the real world because the
underlying assumptions of analytical OR models do not fully comply with business realities.

Behavioral economics and agent theory show that agents may also care about factors like bounded rationality,
reference dependence, loss aversion, overconfidence, reciprocity, fairness, and status in addition to the direct
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economic benefits (e.g., see Wu and Chen [36]; Fehr and Gächter [15]; Ho et al. [16]; Qiao et al., [26]; Camerer and
Loewenstein [5]; Wang [33]; Wang and Webster [34]; Ren and Croson [29], and Becker-Peth and Thonemann [2]).
This also holds in the real world operations management processes. For example, given the demand uncertainties
in reality, the newsvendor may exhibit regret aversion behaviors in the inventory control and pricing decisions.
The regret may be caused by the direct missing profit or non-tangible/non-capital losses, e.g., stakeholder’s
dissatisfaction or the lost good-will of the customers. These non-tangible losses usually play important roles in
business decision making process, but they might not have been captured by traditional loss penalties in the
classic profit maximization decision objectives. Therefore, it is necessary to take the impacts of regret aversion
into consideration of inventory control and pricing.

In this paper, we consider the newsvendor exhibiting regret aversion in decisions, and investigate how regret
aversion behaviors affect the inventory control and pricing decisions under a newsvendor setting. We first define
the regret aversion utility function for surplus and stock-out regret aversion utilities. Based on the built regret
aversion utility function and the classic inventory control and pricing model, we construct the newsvendor’s
utility function by integrating profit utility and regret aversion utility, and then analyze the conditions on the
optimal value under additive and multiplicative demand. By the analysis of the properties and numerical study,
we show that the regret aversion behaviors can affect the newsvendor’s optimal policy to varying degree in a
certain trend, and show the optimal policy deviates from the one of regret-neutral newsvendor.

The main contributions of our study are three folds: first, we analyze the behavioral utility for the joint pricing
and ordering quantity decision problem with regret aversions, and propose a linear function to describe and
capture the regret aversion utility of the newsvendor. Then, we formulate the inventory control and pricing model
for the regret-averse newsvendor and solve the model to optimality. Thirdly, the impacts of regret aversions on
the optimal policy are given for adjusting the perfectly rational solutions to better align with business practices.
To our best knowledge, this is an earlier paper to study the inventory control and pricing problems with regret
aversions.

The rest of the paper is organized as below. Section 2 reviews the relevant literatures. Section 3 introduces
regret aversion utility into the traditional inventory control and pricing decision model in which the surplus
regret aversion and stock-out regret aversion are demonstrated. Section 4 addresses the joint inventory control
and pricing decisions under the additive and multiplicative demand. A numerical study is conducted in Section 5
in order to show the impacts of regret aversion on the optimal price and order quantity. Section 6 presents the
managerial insights of our study. Section 7 concludes with a brief discussion of future research directions. All
proofs are provided in the technical appendix.

2. Literature review

The joint inventory control and pricing decision problem has attracted considerable research interests.
Whitin [35] first raises the joint inventory control and pricing decision problem based on the classical newsven-
dor model. Then, Petruzzi and Dada [25] extends Whitin’s work, they discuss the optimal solution for the joint
inventory and pricing decision problem under the additive and multiplicative demand. Since then, the joint
inventory control and pricing remains a fruitful research topic. Chan et al. [6] provide a thorough literature
review on joint inventory control and pricing decisions. Subsequently, Zhang [40] proposes a unified modeling
framework for this problem, and characterizes the structure of the optimal policies on inventory control and
pricing decisions. Given the limited space, we focus on the studies which are closely related to our study and
the most recent developments.

Recently, various extended joint problems are addressed extensively. Dye [12] constructs a deterministic
inventory model for deteriorating items with time-dependent backlogging rate. Ouyang et al. [24] introduce the
time factor into the joint inventory control and pricing model. Chen and Bell [7] build a joint inventory control
and pricing decision model considering product returns. Yang et al. [37] explore that if the product has greater
price elasticity, the best strategy is always to price lower and order more.
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However, all studies mentioned above are based on the assumption that the newsvendor is perfectly rational.
In practice, the real inventory control and pricing decisions are often inconsistent with the optimal rational
solutions of OR models. To mitigate the inconsistency, both analytical and experimental studies considering the
newsvendor’s behavioral factors are implemented. The research results show that the newsvendor’s behavioral
factors such as bounded rationality, fairness, and loss aversion, often affect the operations management related
decisions.

Su [32] addresses a newsvendor problem with the bounded rationality. The results verify some anomalies
highlighted by recent experimental findings. Wang and Webster [34] explore a scenario where a loss-averse
newsvendor may order more than a risk-neutral newsvendor does when shortage cost is not negligible. Wang [33]
investigates the competition problem between multiple loss-averse newsvendors and a risk-neutral supplier. He
concludes that the loss aversion effect causes decreasing of the newsvendors’ total inventory. Ma et al. [22]
propose a penalty model to the loss-averse newsvendor if a target profit is not attained. Chen et al. [9] show
that newsvendors become more rational through repeated game play, but may not converge to perfect rationality
assumed by the Nash equilibrium. Cui et al. [10] incorporate the fairness into the supply chain coordination
models. They find that the wholesale price contract can make channel coordination when considering fairness. Ho
et al. [17] investigate how the distributional and peer-induced fairness affect the results of channel coordination.

Apart from the analytical studies above, experimental study is also prevalent in the behavioral operations
management area. Schweitzer and Cachon [30] study the newsvendor problem by experiments considering mul-
tiple psychological behaviors of the newsvendor. The experiment results show that real decision-making results
systematically deviate from the rational analytical solutions. Bostian et al. [3] discover a “pull-to-center” effect
through experiments, i.e., average order quantities are too low when they should be high under the optimal
rationality assumptions and vice versa. Chen and Kök [8] discuss the effect of payment schemes on inventory de-
cisions considering the role of mental accounting. Katok and Pavlov [19] implement an experimental study on the
impacts of the bounded rationality, inequality aversion and incomplete information on the channel inefficiency,
and show that all three factors affect human decision making behavior to varying degree.

Although behavioral factors have attracted attention of many OR scholars, the joint inventory control and
pricing problem with regret aversions remains unaddressed. The newsvendor may exhibit regret aversion in
reality, i.e., the decision maker percepts extra (higher) loss than the over-stock or understock costs counted in
the profit function. Therefore, how to integrate the regret aversion perceptions into the joint inventory control
and pricing model is important both in theoretical and practical perspectives.

3. Formulations

We consider a single item inventory control and pricing problem under newsvendor settings. The newsvendor
needs to make decisions on the order quantity and retail price at the beginning of the selling season. A unit
ordering cost incurs for each unit of the product ordered. If there is remaining inventory at the end of the selling
season, a unit salvage cost incurs; if there is unsatisfied demand during the selling season, a unit stock-out cost
incurs. In addition, the newsvendor faces a price dependent stochastic demand; the demand is non-increasing
in price with a random factor. In Table 1, we summarize the used symbols and show the notation.

Based on the classic newsvendor model, the profit function (Petruzzi and Dada [25]) is,

Table 1. Notation.

Symbols Description
Decision variables:

p

The price of the regret-averse retailer for the general demand,
p ∈ [p, p̄], p̄ and p are the upper and lower bounds of the range of
price p, p̄ > p ≥ 0. For additive demand, the price is pa, pa ≥ 0;
for the multiplicative demand, the price p is pm, pm ≥ 0.
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Q

The order quantity of the regret-averse retailer for the general
demand, Q ≥ 0. For the additive demand, the order quantity Q
is Qa, Qa ≥ 0; for the multiplicative demand, the order quantity
Q is Qm, Qm ≥ 0.

Parameters:
c The per-unit ordering cost, c ≥ 0.
s The per-unit penalty cost, s ≥ 0.
v The per-unit salvage value, v ≥ 0.

ε
The random factor of demand, it is a random variable defined
on the range [A, B], μ is the mean of the random factor ε.

k
The regret aversion parameter, k ≥ 0. For the surplus situation,
k = α; for the stock-out situation, k = β.

α The surplus regret aversion parameter, α ≥ 0.
β The stock-out regret aversion parameter, β ≥ 0.

z
The safety stock of the regret-averse retailer for general demand,
z ≥ 0. For the additive demand, the safety stock z is za, za ≥ 0;
for the multiplicative demand, the safety stock z is zm, zm ≥ 0.

px
The symbol which substitutes a long equation, it is used in the
description for the optimal price under multiplicative demand.

Functions:
f(·) The probability density function of the random factor ε.
F (·) The cumulative distribution function of the random factor ε.

D(·) The general demand function. The additive demand function is
Da(·), the multiplicative demand function is Dm(·).

M(·) The hazard rate for the additive demand.
T (·) The hazard rate for the multiplicative demand.
π(·) The profit function, πmax denotes the theoretical maximal profit.
r(·) The regret aversion utility function.
U(·) The utility function.

Optimal values:

p∗a
The optimal retail price determined by the regret-averse retailer
(α, β > 0) under the additive demand.

Q∗
a

The optimal order quantity determined by regret-averse retailer
(α, β > 0) under the additive demand.

z∗a
The optimal safety stock determined by the regret-averse retailer
(α, β > 0) under the additive demand.

p∗m
The optimal retail price determined by the regret-averse retailer
(α, β > 0) under the multiplicative demand.

Q∗
m

The optimal order quantity determined by regret-averse retailer
(α, β > 0) under the multiplicative demand.

z∗m
The optimal safety stock determined by the regret-averse retailer
(α, β > 0) under the multiplicative demand.

p∗a−n
The optimal retail price determined by the regret-neutral retailer
(α = β = 0) under the additive demand.

z∗a−n
The optimal safety stock determined by regret-neutral retailer
(α = β = 0) under the additive demand.

p∗m−n
The optimal retail price determined by the regret-neutral retailer
(α = β = 0) under the multiplicative demand.

z∗m−n
The optimal safety stock determined by regret-neutral retailer
(α = β = 0) under the multiplicative demand.
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p0
a

The optimal retail price determined by risk-neutral retailer under
the additive deterministic demand, where additive deterministic
demand Da(·) = a + bpa + μ.

Q0
a

The optimal order quantity determined by risk-neutral retailer
under the additive deterministic demand, where the additive
deterministic demand Da(·) = a + bpa + μ.

p0
m

The optimal retail price determined by risk-neutral retailer under
the multiplicative deterministic demand, where the multiplicative
deterministic demand Dm(·) = a(pm)−bμ.

Q0
m

The optimal order quantity determined by risk-neutral retailer
under multiplicative deterministic demand, where multiplicative
deterministic demand Dm(·) = a(pm)−bμ.

π =

{
(p − c)D(p, ε) − (c − v)[Q − D(p, ε)], D(p, ε) < Q

(p − c)Q − s[D(p, ε) − Q], D(p, ε) ≥ Q
(3.1)

As we well know, the objective function max π is also to balance the over-stock and under-stock costs.
Therefore, the ideal case is that the order quantity equals to the realized demand, i.e., D(p, ε) = Q. Under
the ideal case, we know that the theoretical maximal profit πmax = (p − c)D(p, ε). However, in fact, the order
quantity often deviates from the realized demand and the newsvendor often experiences over-stock or under-
stock situations. Although the lost sales and over-storage costs are considered in the profit maximization model,
the newsvendor may also percept regrets on the decisions which are beyond the lost sales and over-storage
penalties, i.e., surplus regret and stock-out regret. Usually, the newsvendor exhibits regret aversion.

The surplus regret aversion utility refers to the negative utility caused by the surplus regret aversion behaviors
of decision makers. The surplus regret aversion refers to the psychological behavior where the newsvendor intends
to avoid that the real profit is lower than the reference profit (reference point) and the order quantity is greater
than the demand. The surplus cost is the loss of unsold products when the order quantity is greater than
the demand. Similarly, the stock-out regret aversion utility refers to the negative utility caused by the stock-
out regret aversion behaviors of the decision makers. The stock-out regret aversion refers to the psychological
behavior that the newsvendor intends to avoid when the real profit is lower than the reference profit (reference
point) and the order quantity is lower than the demand. The stock-out cost is the loss of the unsatisfied demands
when the order quantity is lower than the demand. Thus, we distinguish the surplus (stock-out) regret aversion
utility from the surplus (stock-out) cost.

If the newsvendor orders too much such that the real profit is lower than the reference profit, the newsvendor
perceives the surplus regret aversion utility; if the newsvendor orders too little such that the real profit is lower
than the reference profit, then the newsvendor perceives the stock-out regret aversion utility. The utilities of
the regret aversions can be measured by the difference between the realized profit and the reference profit. The
reference profit may be the expected profit (it is a fixed value in most cases) or the theoretical maximum profit
(it changes with price, order quantity or demand, etc.). In this paper, given the variability of the theoretical
maximum profit and the profit-driven newsvendor, the theoretical maximum profit is considered as the reference
profit.

Therefore, the regret aversion utility can be measured by the difference between the realized profit and the
theoretical maximal profit and the regret sensitivity, i.e., r (π, πmax). For the tractability, we apply a linear
regret aversion utility function commonly used in literatures (e.g., see Bell [1]; Looms and Sugden [21]; Brann
and Muermann [4] and Engelbrecht-Wiggans and Katok [14]), i.e.,

r (π, πmax) = −k (πmax − π) (3.2)
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When the inventory is higher than the realized demand, i.e., D(p, ε) < Q, the newsvendor exhibits surplus
regret aversion, and according to the regret theory, the utility of the surplus regret aversion is

r (π, πmax)D<Q = −α (πmax − π) (3.3)

When the inventory is lower than or equal to the realized demand, i.e., D(p, ε) ≥ Q, the newsvendor exhibits
stock-out regret aversion, the utility of the stock-out regret aversion is

r (π, πmax)D≥Q = −β (πmax − π) (3.4)

Furthermore, taking the regret aversion into account, we consider the newsvendor’s decision objective to be
maximizing the profit and minimizing the regrets. Thus, the integrated utility function of the newsvendor can
be written as

U(π, πmax) =

{
π − α(πmax − π), D(p, ε) < Q

π − β(πmax − π), D(p, ε) ≥ Q
(3.5)

Substitutes equation (3.1) into equation (3.5), we have

U(p, Q) =

{
(p − c)D(p, ε) − (1 + α)(c − v)[Q − D(p, ε)], D(p, ε) < Q

(p − c)Q − [s + β(p − c + s)] [D(p, ε) − Q], D(p, ε) ≥ Q
(3.6)

The equation (3.6) is the joint inventory control and pricing decision model. In the following, we provide the
solutions to the constructed model under the additive and multiplicative demand, respectively.

4. Optimal solutions with endogenous price

Based on the above analysis, we further look into the conditions of optimal solutions to synchronize order
quantity and price decisions. The additive and multiplicative price dependent demand functions commonly
applied in literatures are considered in this section.

4.1. Additive demand

The additive demand function can be defined as (Petruzzi and Dada [25]), i.e.,

Da(pa, ε) = y(pa) + ε (4.1)

Where y(pa) = a− bpa, pa ∈ [p, p̄], and parameter a (a > 0) represents the market size of the product, b (b > 0)
is the price sensitivity.

By substituting equation (4.1) into equation (3.6), the utility function can be rewritten as

U(pa, Qa) =

{
(pa − c)[y(pa) + ε] − (1 + α)(c − v){Qa − [y(pa) + ε]}, y(pa) + ε < Qa

(pa − c)Qa − [s + β(pa − c + s)] {[y(pa) + ε] − Qa}, y(pa) + ε ≥ Qa

(4.2)

To facilitate the further analysis, let za = Qa − y(pa) (Petruzzi and Dada [25]), then Qa = y(pa) + za, and
hence, the case Da(pa, ε) < Qa is the equivalent of ε < za, the case Da(pa, ε) ≥ Qa is the equivalent of ε ≥ za,
then equation (4.2) can be rewritten as

U(za, pa) =

{
(pa − c)[y(pa) + ε] − [(1 + α)(c − v)](za − ε), ε < za

(pa − c)[y(pa) + za] − [β(pa − c + s) + s](ε − za), ε ≥ za

(4.3)
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Given ε ∈ [A, B], the expected utility function can be determined, i.e.,

E[U(za, pa)] =
∫ za

A

{(pa − c)[y(pa) + ε] − [(1 + α)(c − v)](za − ε)}dε

+
∫ B

za

{(pa − c)[y(pa) + za] − [β(pa − c + s) + s](ε − za)} dε

= (pa − c)[y(pa) + μ] − (1 + α)(c − v)
∫ za

A

(za − ε)f(ε)dε

− (1 + β)(pa − c + s)
∫ B

za

(ε − za)f(ε)dε (4.4)

For ease of exposition, we rewrite equation (4.4) as

E[U(za, pa)] = ϕ(pa) − (1 + α)La(za, pa) − (1 + β)Sa(za, pa) (4.5)

where La(za, pa) = (c−v)
∫ za

A (za − ε)f(ε)dε denotes the surplus loss which leads to the surplus regret under the
additive demand, Sa(za, pa) = (pa−c+s)

∫ B

za
(ε − za)f(ε)dε denotes the stock-out loss which leads to the stock-

out regret under the additive demand. ϕa(pa) = (pa − c)[y(pa)+μ] denotes the deterministic expected utility of
the newsvendor under the additive demand. According to ϕa(pa), the optimal risk-neutral price, p0

a = a+bc+μ
2b , is

obtained for the deterministic situation, and the corresponding order quantity is Q0
a = y(p0

a) + μ = a− bp0
a + μ.

Then, according to equation (4.4), the first and second order derivatives with respect to za and pa can be
obtained, i.e.,

∂E[U(za, pa)]
∂za

= − [(1 + α)(c − v) + (1 + β)(pa − c + s)] y(pa)F (za) + (1 + β)(pa − c + s)y(pa) (4.6)

∂2E[U(za, pa)]
∂za

2
= − [(1 + α)(c − v) + (1 + β)(pa − c + s)] y(pa) f(za) < 0 (4.7)

∂E[U(za, pa)]
∂pa

= 2b(p0
a − pa) − (1 + β)

∫ B

za

(ε − za)f(ε)dε (4.8)

∂2E[U(za, pa)]
∂pa

2
= −2b < 0 (4.9)

Furthermore, to maximize the expected utility of the newsvendor, we have Lemma 4.1 and Theorem 4.2.

Lemma 4.1. For a fixed za, we have:

(a) If β ≥ 2b(p0
a−p)∫ B

za
(ε−za)f(ε)dε

− 1 or 0 ≤ β ≤ 2b(p0
a−p̄)∫ B

za
(ε−za)f(ε)dε

− 1, then price p∗a is the boundary price, i.e., p∗a = p

or p∗a = p̄.

(b) If 0 ≤ 2b(p0
a−p̄)∫

B
za

(ε−za)f(ε)dε
− 1 ≤ β ≤ 2b(p0

a−p)∫
B
za

(ε−za)f(ε)dε
− 1, then price p∗a is determined uniquely as a function of

za, i.e.,

p∗a = p(za) = p0
a − 1 + β

2b

∫ B

za

(ε − za)f(ε)dε (4.10)

and p∗a < p0
a.
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Proof. See Appendix.
It is easy to see that p∗a < p0

a for (b) in Lemma 4.1, and that the optimal regret-neutral price is obtained
when β = 0, i.e., p∗a−n = p0

a − 1
2b

∫ B

za
(ε − za)f(ε)dε, then the regret-neutral safety stock z∗a−n corresponding to

p∗a−n can be determined.
By substituting p∗a = p(za) into max

za,pa

E[U(za, pa)], the optimization problem becomes maximization over a

single variable za, i.e., max
za

E{U [za, p(za)]}. On the basis of this, When za is determined, price p∗a and order

quantity Q∗
a are determined. For the convenience of the description, let M(za) = f(za)/[1 − F (za)], M(za) is

the hazard rate.

Theorem 4.2. For the additive demand, the optimal policy is to order Q∗
a = y(p∗a)+z∗a units to sell at price p∗a,

where p∗a is specified by Lemma 4.1 and z∗a is determined as shown below:

(a) If price p∗a is p or p̄, i.e., β ≥ 2b(p0
a−p)∫ B

za
(ε−za)f(ε)dε

− 1 or 0 ≤ β ≤ 2b(p0
a−p̄)∫ B

za
(ε−za)f(ε)dε

− 1, then the optimal value of

za can be determine by

F (za) =
(1 + β)(p∗a − c + s)

(1 + α)(c − v) + (1 + β)(p∗a − c + s)
(4.11)

where p∗a = p̄ or p∗a = p.

(b) If price p∗a = p0 − 1+β
2b

∫ B

z (ε − z)f(ε)dε, i.e., 0 ≤ 2b(p0
a−p̄)∫ B

za
(ε−za)f(ε)dε

− 1 ≤ β ≤ 2b(p0
a−p)∫ B

za
(ε−za)f(ε)dε

− 1, then the

optimal value of za can be determined as described below:

(i) If F (ε) satisfies the condition 2M(za)2 + dM (za)/dza ≥ 0, then z∗a is the largest za in the region [A, B]
that satisfies ∂E[U(za, p∗a)]/∂za=0.

(ii) If 2M(za)2 + dM (za)/dza ≥ 0 and 2b(p0
a − c + s) − (1 + β)(μ − A) > 0, then z∗a is the unique za in the

region [A, B] that satisfies ∂E[U(za, p
∗
a)]/∂za=0.

Proof. See Appendix.

Corollary 4.3. The condition 2M(za)2 + dM (za)/dza ≥ 0 in Theorem 4.2 holds for the uniform distribution
and the exponential distribution.

Proof. See Appendix.
The economic meaning of the condition (i.e., 2M(za)2 + dM (za)/dza ≥ 0) refers to the constraint of the

requirement of the hazard rate. Here, the hazard rate is related to the probability density function and the
cumulative distribution function.

According to Theorem 4.2, the optimal solution of z∗a is determined by the following condition, i.e.,

F (z∗a) =
(1 + β)(p∗a − c + s)

(1 + α)(c − v) + (1 + β)(p∗a − c + s)
(4.12)

Furthermore, when z∗a is determined, according to equation (4.10) and Q∗
a = y(p∗a) + z∗a, the optimal order

quantity is determined, i.e.,

Q∗
a = y(p∗a) + z∗a = a − bp∗a + z∗a (4.13)

Based on the above analysis, we analyze the impacts of the newsvendor’s regret aversion parameters α and
β on price p∗a under the additive demand.
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Proposition 4.4. Given p∗a, z∗a decreases with parameter α, and Q∗
a decreases with parameter α, i.e., the

higher the newsvendor’s surplus regret aversion degree is, the smaller the order quantity is. z∗ increases with
parameter β, and Q∗

a increases with parameter β, i.e., the higher the newsvendor’s stock-out regret aversion
degree is, the higher the order quantity is.

Proof. See Appendix.

Proposition 4.5. Given z∗a, p∗a increases with parameter α, i.e., the higher the newsvendor’s surplus regret
aversion degree is, the higher the price is, until the price reaches the upper bound of the range p̄. p∗a decreases
with parameter β, i.e., the higher the newsvendor’s stock-out regret aversion degree is, the lower the price is,
until the price reaches the lower bound of the range p.

Proof. See Appendix.

4.2. Multiplicative demand

The multiplicative demand function can be defined as

Dm(pm, ε) = y(pm) ε (4.14)

where y(pm) = a(pm)−b denotes a non-increasing function of price pm, pm ∈ [p, p̄], a (a > 0) represents the
market size of the product, b (b > 1) is the price sensitivity.

According to equations (3.6) and (4.14), the newsvendor’s utility function is given below, i.e.,

U(pm, Qm) =

{
(pm − c)y(pm) ε − (1 + α)(c − v)[Qm − y(pm) ε], y(pm) ε < Qm

(pm − c)Qm − [s + β(pm − c + s)] [y(pm) ε − Qm], y(pm) ε ≥ Qm

(4.15)

Let zm = Qm/y(pm), then Qm = y(pm)zm, hence, the case Dm(pm, ε) < Qm is the equivalent of ε < zm, the
case Dm(pm, ε) ≥ Qm is the equivalent of ε ≥ zm, then equation (4.15) can be rewritten as

U(zm, pm) =

{
(pm − c)[y(pm) ε] − [(1 + α)(c − v)] y(pm) (zm − ε), ε < zm

(pm − c)[y(pm) zm] − [β(pm − c + s) + s] y(pm) (ε − zm), ε ≥ zm

(4.16)

Given ε ∈ [A, B], according to equation (4.16), the expected utility maximization function is
max E[U(zm, pm)], where E[U(zm, pm)] is shown below, i.e.,

E[U(zm, pm)] = (pm − c) y(pm)μ − (1 + α)(c − v) y(pm)
∫ zm

A

(zm − ε)f(ε)dε

− (1 + β)(pm − c + s) y(pm)
∫ B

zm

(ε − zm)f(ε)dε (4.17)

For ease of exposition, equation (4.17) is rewritten as

E[U(zm, pm)] = ϕm(pm) − (1 + α)Lm(zm, pm) − (1 + β)Sm(zm, pm) (4.18)

where Lm(zm, pm) = (c−v) y(pm)
∫ zm

A
(zm − ε)f(ε)dε denotes the surplus loss which leads to the surplus regret

under the multiplicative demand, Sm(zm, pm) = (pm − c + s) y(pm)
∫ B

zm
(ε − zm)f(ε)dε denotes the stock-out

loss which leads to the stock-out regret under the multiplicative demand, ϕm(pm) = (pm−c) y(pm)μ denotes the
deterministic expected utility function under the multiplicative demand. According to ϕm(pm), we can obtain
the risk neutral price p0

m = bc
b−1 , and the corresponding order quantity is Q0

m = y(p0
m)μ = a(p0

m)−bμ.
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According to equation (4.17), we know that

∂E[U(zm, pm)]
∂pm

= apm
−b−1 [b c− p (b − 1)]

[
μ − (1 + β)

∫ B

zm

(ε − zm)f(ε)dε

]

+ apm
−b−1b (c − v)(1 + α)

∫ zm

A

(zm − ε)f(ε)dε

+ apm
−b−1b s (1 + β)

∫ B

zm

(ε − zm)f(ε)dε (4.19)

By analyzing equation (4.19) we have the following Lemma 4.6 and Theorem 4.7.

Lemma 4.6. For a fixed zm, we have:

(a) If β ≥ μ∫ B
zm

(ε−zm)f(ε)dε
− 1, then price p∗m is the boundary price, i.e., p∗m = p̄ or p∗m = p.

(b) If β < μ∫ B
zm

(ε−zm)f(ε)dε
− 1, then price p∗m is determined uniquely as a function of zm, i.e.,

p∗m =
bc

b − 1
+

b

b − 1

[
(1 + α)(c − v)

∫ zm

A (zm − ε)f(ε)dε + s (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

μ − (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

]
(4.20)

and p∗m ≥ p0
m.

Proof. See Appendix.
By substituting p∗m = p(zm) into function max

zm,pm

E[U(zm, pm)], the problem becomes a single variable problem

in zm, i.e., max
zm

E{U [zm, p(zm)]}. When the optimal solution of zm is determined, the optimal price and the

inventory are determined indirectly. For convenience of description, let Tm(zm) = f(zm)/[1 − F (zm)] and px =
bc

b−1 + b
b−1 [ (1+α)(c−v)

∫
z
A

(z−ε)f(ε)dε+ s (1+β)
∫

B
z

(ε−z)f(ε)dε

μ−(1+β)
∫ B

z
(ε−z)f(ε)dε

] , where T (zm) is the hazard rate, then we have p∗m = px.

Theorem 4.7. For the multiplicative demand, the optimal policy is to order Q∗
m = y(p∗m)z∗m units to sell at

price p∗m, where p∗m is specified by Lemma 4.6 and z∗m is determined as shown below:

(a) When price p∗m is p or p̄, then the optimal value of zm can be determined by

F [z] =
(1 + β)[p∗m − c + s]

(1 + α)(c − v) + (1 + β)[p∗m − c + s]
(4.21)

where p∗m = p̄ or p∗m = p.
(b) When the price p∗m is px, i.e., β < μ∫

B
zm

(ε−zm)f(ε)dε
−1, if F (ε) satisfies the condition 2T (zm)2+dT (zm)/dz >

0 for ∀zm ∈ [A, B], and if b ≥ 2, then z∗m is the unique zm in the region [A, B] that satisfies
∂E[U(zm, p∗m)]/∂zm=0.

Proof. See Appendix.
Furthermore, we can also obtain the optimal regret-neutral price p∗m−n = p0

m +
b

b−1 [
(c−v)

∫ zm
A

(zm−ε)f(ε)dε+ s
∫ B

zm
(ε−zm)f(ε)dε

μ−∫ B
zm

(ε−zm)f(ε)dε
] , and the variable z∗m−n for the regret-neutral newsvendor

corresponding to p∗m−n can be determined.

Corollary 4.8. The condition 2T (zm)2 + dT (zm)/dz > 0 in Theorem 4.6 holds for the uniform distribution
and the exponential distribution.
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The Proof is same to the one of Corollary 4.3 since T (zm) is similar to M(za).
According to Theorem 4.7, the optimal solution of z∗m is determined by the following condition, i.e.,

F (z∗m) =
(1 + β)[p∗m − c + s]

(1 + α)(c − v) + (1 + β)[p∗m − c + s]
(4.22)

Thus, according to equation (4.20) and Q∗
m = y(p∗m) z∗m, the optimal order quantity Q∗

m is determined, i.e.,

Q∗
m = y(p∗m) z∗m = a(p∗m)−bz∗m (4.23)

In the following, we present the analysis on the impacts of the newsvendor’s regret aversion parameters α
and β on price p∗ under the multiplicative demand.

Proposition 4.9. Given p∗m, z∗m decreases with parameter α, and Q∗
m decreases with parameter α, i.e., the

higher the newsvendor’s surplus regret aversion degree is, the smaller the order quantity is; z∗m increases with
parameter β, and Q∗

m increases with parameter β, i.e., the higher the newsvendor’s stock-out regret aversion
degree is, the higher the order quantity is.

Proof. See Appendix.

Proposition 4.10. Given z∗m, p∗m increases with parameter α, i.e., the higher the newsvendor’s surplus regret
aversion degree is, the higher the price is, until the price reaches the upper bound of the range p̄. p∗m increases
with parameter β, i.e., the higher the newsvendor’s stock-out regret aversion degree is, the higher the price is,
until the price reaches the upper bound of the range p̄.

Proof. See Appendix.
It is necessary to point out that, when the price is exogenous, the optimal order quantity under additive

demand can be determined by Q∗
a = y(p∗a) + z∗a = a − bp∗a + z∗a and F (za) = (1+β)(p∗

a−c+s)
(1+α)(c−v)+(1+β)(p∗

a−c+s) ; the
optimal order quantity under multiplicative demand can be determined by Q∗

m = y(p∗m) z∗m = a(p∗m)−bz∗m and
F (z∗m) = (1+β)[p∗

m−c+s]
(1+α)(c−v)+(1+β)[p∗

m−c+s] . Specially, under both additive and multiplicative demand, if α = β, the
optimal order quantity equals to the regret-neutral one, i.e., the optimal order quantity is not related to the
regret aversion of retailer if α = β. This is reasonable, because when the newsvendor has equal perception on
over-stock regret and under-stock regret, they offset each other, and the regret neutral decision is the optimal
option.

5. Numerical examples

In this section, a numerical example is given to illustrate the impacts of regret aversions on the joint inven-
tory and pricing decision models, and to examine the robustness of research results above by considering an
appropriate scale of regret aversion parameters. In the example, the uniform distribution is applied to model
the stochastic demand factor, and by using the data used by Raza [27], some instances are generated to show
the optimal decision making trends when regret aversion parameters are taken into account for the additive and
multiplicative demand function respectively as shown in Tables 2 and 4. It is necessary to say that, based on
Bell [1], we consider α ∈ (0, 1] and β ∈ (0, 1], and three parameter values of α and β are used in the numerical
study, the used parameter values of α are α = 0.1 (it implies lower surplus regret aversion degree), α = 0.5 (it
implies medium surplus regret aversion degree) and α = 1 (it implies higher surplus regret aversion degree),
and the used parameter values of β are β = 0.1, β = 0.5 and β = 1 for lower, medium, and higher stock-out
regret aversion degree.
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5.1. Sensitivity analysis under the additive demand

Nine hypothetical instances are generated to show the properties of the optimal policy under the additive
demand, the boundary conditions are not considered here, and the used parameters are presented in Table 2
below.

According to the Lemma 4.1 and Theorem 4.2, we can obtain the optimal price, optimal order quantity,
optimal expected profit, and optimal expected utility under the additive demand as shown in Table 3. In the
following, we provide the sensitivity analysis of the regret aversion parameters under the additive demand.

In Table 3, we can see from instances 1-9 that the optimal price, order quantity, expected profit, and expected
utility are affected by the regret aversions exhibited by the retailer under the additive demand. Specifically,
when the surplus regret aversion parameter α is fixed (for example, see instances 1, 2, and 3), the optimal
price p∗a increases sharply with the stock-out regret aversion parameter β, but the optimal order quantity Q∗

a

decreases sharply with the stock-out regret aversion parameter β. Moreover, when the stock-out regret aversion
parameter β is fixed (for example, see instances 1, 4, and 7), the optimal price p∗a decreases slowly with the
surplus regret aversion parameter α, and the optimal order quantity Q∗

a also decreases with the surplus regret
aversion parameter α. We can also see that the profit of the retailer decreases with the surplus (stock-out)
regret aversion parameter when the stock-out (surplus) regret aversion parameter is fixed; similarly, the utility
changes with the regret aversion parameters α and β to varying degree. Specially, when α = 1 and β = 1, the
price and utility take the maximum, but the order quantity and profit take the minimum.

Table 2. Data for analysis of the regret aversions effects under additive demand (Raza [27]).

Parameters values a b v s c A B α β
Benchmark (Raza [27]) 1000 5 2 6 5 350 650 – –

Instance 1 1000 5 2 6 5 350 650 0.1 0.1
Instance 2 1000 5 2 6 5 350 650 0.1 0.5
Instance 3 1000 5 2 6 5 350 650 0.1 1
Instance 4 1000 5 2 6 5 350 650 0.5 0.1
Instance 5 1000 5 2 6 5 350 650 0.5 0.5
Instance 6 1000 5 2 6 5 350 650 0.5 1
Instance 7 1000 5 2 6 5 350 650 1 0.1
Instance 8 1000 5 2 6 5 350 650 1 0.5
Instance 9 1000 5 2 6 5 350 650 1 1

Table 3. The effects of the regret aversions under additive demand.

p∗
a Q∗

a E(π∗
a) E(U∗

a )

Benchmark (Raza [27]) 173.0776 779.5294 142675.1425 –

Instance 1 175.1395 769.2784 142660.4500 146304.6436

Instance 2 183.5159 728.8857 142312.5884 161407.8540

Instance 3 193.9858 677.5535 140808.9604 181273.4340

Instance 4 175.0130 768.1206 142462.5056 146160.8229

Instance 5 183.3934 728.2302 142175.9514 161259.3088

Instance 6 193.8688 677.2318 140720.0915 181121.6597

Instance 7 174.8573 766.6883 142219.0153 145987.6046

Instance 8 183.2419 727.4159 142006.9991 161078.2614

Instance 9 193.7235 676.8307 140609.7987 180935.2346
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The main reason of the above effects under the additive demand is that decision objective of the regret-averse
retailer is not only the profit but also the regret aversion utility. This is because the regret-averse retailer cares
about the negative utility from the regret aversions. Actually, the higher the retailer’s regret aversion degree is,
the greater the effects are.

Compared with benchmark (regret-neutral policy), the order quantity of the regret-averse retailer is lower
than the one of the regret-neutral retailer. It implies that the decision of the regret-averse retailer is more
conservative than the one of the regret-neutral retailer. Moreover, the price is higher than the one of the regret-
neutral one. It is because that the regret-averse retailer will set higher price to make up the profit loss for the
conservative order quantity. By comparing, we also know that the profit of the regret-averse retailer is lower
than the one of the regret-neutral retailer. It implies that the regret-averse retailer pays the attention to the
regret aversion utility which causes profit loss.

5.2. Sensitivity analysis under the multiplicative demand

Nine hypothetical instances are generated to show the properties of the optimal policy under the multiplicative
demand, the parameters are presented in Table 4 below.

According to the Lemma 4.6 and Theorem 4.7, we can obtain the optimal price, optimal order quantity,
optimal expected profit, and optimal expected utility under the multiplicative demand as shown in Table 5.
In the following, we provide the sensitivity analysis of the regret aversion parameters under the multiplicative
demand.

We can see from instances 1-9 in Table 5 that the optimal policy of the regret-averse retailer can be affected
by the surplus and stock-out regret aversions under the multiplicative demand. Specifically, when the stock-out
regret aversion parameter β is fixed (for example, see instances 3, 6, and 9), the optimal price p∗m increases with
the surplus regret aversion parameter α, but the optimal order quantity Q∗

m decreases sharply with the surplus
regret aversion parameter α. Similarly, when the surplus regret aversion parameter α is fixed (for example, see
instances 4, 5, and 6), the optimal price p∗m increases slowly with the stock-out regret aversion parameter β,
and the optimal order quantity Q∗

m decreases slowly with the stock-out regret aversion parameter β. Similar to
the analyzing results under the additive demand, under the multiplicative demand, the profit of the retailer also
decreases with the surplus (stock-out) regret aversion parameter when the stock-out (surplus) regret aversion
parameter is fixed, and the utility changes with the regret aversion parameters α and β to varying degree.
Specially, when α = 1 and β = 1, the price takes the maximum, but the order quantity, profit and utility take
the minimum, it is different from the situation under the additive demand.

Table 4. Data for analysis of regret aversions effects under multiplicative demand (Raza [27]).

Parameters values a b v s c A B α β

Benchmark (Raza [27]) 5000 1.5 1 6 5 0.7 1.3 – –

Instance 1 50000 1.5 1 6 5 0.7 1.3 0.1 0.1

Instance 2 50000 1.5 1 6 5 0.7 1.3 0.1 0.5

Instance 3 5000 1.5 1 6 5 0.7 1.3 0.1 1

Instance 4 50000 1.5 1 6 5 0.7 1.3 0.5 0.1

Instance 5 50000 1.5 1 6 5 0.7 1.3 0.5 0.5

Instance 6 50000 1.5 1 6 5 0.7 1.3 0.5 1

Instance 7 50000 1.5 1 6 5 0.7 1.3 1 0.1

Instance 8 50000 1.5 1 6 5 0.7 1.3 1 0.5

Instance 9 50000 1.5 1 6 5 0.7 1.3 1 1
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Table 5. The effects of the regret aversions under multiplicative demand.

p∗
m Q∗

m E(π∗
m) E(U∗

m)

Benchmark (Raza [27]) 18.9218 783.8195 7662.3706 –

Instance 1 19.3277 759.8235 7658.7678 7581.5503

Instance 2 19.3544 759.3302 7654.0904 7576.3918

Instance 3 19.3864 758.7459 7648.3765 7570.3109

Instance 4 20.8986 675.7197 7634.0061 7291.0250

Instance 5 20.9357 674.9000 7629.0347 7284.6396

Instance 6 20.9798 673.9306 7623.0158 7277.1388

Instance 7 22.8620 590.5277 7570.1864 6970.9065

Instance 8 22.9126 589.4437 7564.6014 6963.2865

Instance 9 22.9719 588.1810 7557.9669 6954.4607

The main reason of the above effects under the multiplicative demand is that the regret-averse retailer cares
about the negative utility from the surplus and stock-out regret aversions, and thus the retailer adjust his/her
optimal policy to reduce the regret aversion utility. Actually, the higher the retailer’s regret aversion degree is,
the greater the effects are.

Compared with benchmark (regret-neutral policy), the order quantity of the regret-averse retailer is lower
greatly than the one of the regret-neutral retailer, but the price is higher than the one of regret-neutral retailer.
It implies that, under the multiplicative demand, the retailer with regret aversions is more conservative than
the regret-neutral retailer. In addition, the profit of regret-averse retailer is lower than the one of regret-neutral
retailer, and the higher the regret aversion degree is, the less the regret-averse retailer’s profit is.

By the above sensitivity analysis, we find that the effects of the regret aversions on the optimal price and
order quantity are different for different demands. The optimal policy is more sensitive to the regret versions
under the multiplicative demand than that under the additive demand. Under the additive demand, the price
and order quantity are more sensitive to the surplus regret aversion, but under the multiplicative demand, the
price and order quantity are more sensitive to the stock-out regret aversion. Besides, we also find that, under
both demands, the regret-averse profit is lower than the regret-neutral one.

6. Managerial insights

According to the above analysis, we know that the optimal policy will be affected by the regret aversion
behavior under the additive and multiplicative demand. In the following, we provide managerial insights.

(1) Regret-averse newsvendor needs to consider behavioral effects on the policy, and determines the policy of
order quantity and price with respect to the different demand types.
For the newsvendor who mainly concerns about over-stock regret, the greater the over-stock regret aversion
degree is, the less the order quantity should be under both additive and multiplicative demand, and the
higher the price should be under multiplicative demand, but the lower the price should be under the additive
demand. For the newsvendor who mainly concerns about under-stock regret, the greater the under-stock
regret aversion degree is under both additive and multiplicative demand, the less the order quantity should
be, and the higher the price should be under both additive and multiplicative demand too.

(2) The policy of the regret-averse newsvendor deviates from the one of the regret-neutral newsvendor, the
decision on the optimal order quantity is more conservative than the one of regret-neutral newsvendor, but
the decision on the optimal price is more radical than the one of regret-neutral newsvendor. In addition,
the optimal policy of regret-averse newsvendor is also different from the one of risk-neutral retailer. The



INVENTORY CONTROL AND PRICING FOR REGRET-AVERSE NEWSVENDOR 1047

regret-averse retailer may be more conservative or radical than the risk-neutral retailer in their decision
under additive or multiplicative demand.

(3) The profit of the regret-averse newsvendor is less than the one of the regret-neutral newsvendor. If the
newsvendor reduces the degree of the concern on the regret, the profit increases.

7. Conclusion and further research

In this paper, we studied a joint inventory control and pricing decision problem with newsvendor’s regret aver-
sion behaviors. Specifically, we extended the classic joint inventory control and pricing model under newsvendor
settings to accommodate regret aversion parameters, and constructed a new utility function of the newsvendor.
By analyzing the constructed utility function, we provided the conditions of the optimal order quantity and
price.

We found that the regret-averse policy was different from the regret-neutral one, and that the regret aversion
can affect the newsvendor’s optimal order quantity and price decision to varying degree. Specially, if the price
was exogenous and the degree of stock-out regret aversion was equal to the degree of surplus regret aversion,
then the optimal policy was the regret-neutral one which was the optimal solution to the model of Petruzzi and
Dada [25].

Compared with Raza [27] and Petruzzi and Dada [25], we constructed the joint inventory control and pricing
model in behavioral perspective, provided the analysis of the impacts of the regret aversions on joint inventory
control and pricing decisions, and showed the trend of the impacts under the additive and multiplicative demand.
Compared with the existing research on the joint order quantity and price decision considering newsvendor’s
behavior factors such as overconfidence, loss aversion, and bounded rationality, we compensated them by clearly
describing and modeling regret aversion effects.

In addition, we analyzed the impacts of regret aversion in joint inventory control and pricing decisions
successfully, and provided the sensitivity analysis of the regret aversion effects by using the data of Raza [27].
In the future research, it is necessary to investigate how to measure the regret aversion effects. Moreover, it is
also interesting to look into the impacts of newsvendor’s regret aversion behaviors in supply chains.

Appendix A.

Proof of Lemma 4.1. According to the Petruzzi and Dada [25], we provide the mathematical proof for the
Lemma 4.1 in the following.

For a fixed za, we know that the expected utility function max
za,pa

E[U(za, pa)] with variables za and pa

changes into the function max
pa

E[U(za, pa)] with only one variable pa. According to equation (4.9), we have

that ∂2 max
pa

E[U(za, pa)]/.∂pa
2 = −2b < 0, it implies that max

pa

E[U(za, pa)] is a concave function with respect

to pa, i.e., there is unique optimal price for the function max
pa

E[U(za, pa)], and the optimal price meets first

order condition. Since the first order condition is ∂ max
pa

E[U(za, pa)]/.∂pa = 0, according to equation (4.8), we

have ∂ max
pa

E[U(za, pa)]/.∂pa = 2b(p0
a − pa) − (1 + β)

∫ B

za
(ε − za)f(ε)dε = 0, then we know

p∗a = p(za) = p0
a − 1 + β

2b

∫ B

za

(ε − za)f(ε)dε (A.1)

It is necessary to point out that, according to equation (A.1), we have that, when β ≥ 2b(p0
a−p)∫

B
za

(ε−za)f(ε)dε
− 1,

the optimal p∗a is lower than the lower bound price p, i.e., p∗a ≤ p. Since the price p∗a is usually in a range

in reality, i.e., p∗a ∈ [p, p̄], and thus, we set that p∗a = p when β ≥ 2b(p0
a−p)∫

B
za

(ε−za)f(ε)dε
− 1 . Similarly, when
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0 ≤ β ≤ 2b(p0
a−p̄)∫ B

za
(ε−za)f(ε)dε

− 1, the optimal p∗a is greater than the upper bound price p̄, i.e., p∗a ≥ p̄. Since the price

p∗a is usually in a range in reality, i.e., p∗a ∈ [p, p̄], and thus, we set that p∗a = p̄ when 0 ≤ β ≤ 2b(p0
a−p̄)∫

B
za

(ε−za)f(ε)dε
−1.

Furthermore, when 0 ≤ 2b(p0
a−p̄)∫ B

za
(ε−za)f(ε)dε

− 1 ≤ β ≤ 2b(p0
a−p)∫ B

za
(ε−za)f(ε)dε

− 1, the optimal price p∗a is in the range of

[p, p̄], and p∗a = p(za) = p0
a − 1+β

2b

∫ B

za
(ε − za)f(ε)dε. �

Proof of Theorem 4.2. According to the Petruzzi and Dada [25], we provide the mathematical proof for the
Theorem 4.2 in the following.

Proof of (i) in (b). Based on the analysis of solution in Petruzzi and Dada [25], we give the specific proof.
Since p∗a = p0 − 1+β

2b

∫ B

za
(ε − za)f(ε)dε, by substituting p∗a = p(za) into max

za,pa

E[U(za, pa)], the problem for

max
za,pa

E[U(za, pa)] changes into the one for max
za

E[U(za, p(za))]. According to equation (4.6), we know the first

order derivative of E[U(za, p(za))] with respect to za, i.e.,

dE[U(za, p(za))]
dza

= (1 + β)[p0
a − c + s − 1 + β

2b

∫ B

za

(ε − za)f(ε)dε][1 − F (za)] − (1 + α)(c − v)F (za) (A.2)

In the following, we will obtain the optimal safety stock z∗a by analyzing the function dE[U(za, p(za))]/dza.
For the convenience of description, let r(za) = dE[U(za, p(za))]/dza, then the first order derivative of r(za) with
respect to safety stock za can be obtained, i.e.,

dr(za)
dza

=
(1 + β)2

2b
[1 − F (za)]2 − f(za)(1 + α)(c − v)

− f(za)(1 + β)

[
p0

a − c + s − (1 + β)
2b

∫ B

za

(ε − za)f(ε)dε

]
(A.3)

Then, the second order derivative of r(za) with respect to safety stock za can be obtained, i.e.,

d2r(za)
dza

2
= − 3(1 + β)2[1 − F (za)]f(za)

2b
− (1 + α)(c − v)

[
dM(za)

dza
− M(za)2

]
[1 − F (za)]

− (1 + β)

[
p0

a − c + s − (1 + β)
2b

∫ B

za

(ε − za)f(ε)dε

][
dM(za)

dza
− M(za)2

]
[1 − F (za)] (A.4)

where M(za) = f(za)/[1 − F (za)].

Since df(za)/dza =
[
dM(za)/dza − M(za)2

]
[1 − F (za)], d2r(za)

/
dza

2 can be further rewritten as

d2r(za)
dza

2
= −

{
(1 + α)(c − v) + (1 + β)

[
p0

a − c + s − (1 + β)
2b

∫ B

za

(ε − za)f(ε)dε

]}
df(za)

dza

− 3(1 + β)2[1 − F (za)]f(za)
2b

=
dr(za)/dza

f(za)
df(za)

dza
− (1 + β)2 [1 − F (za)] f (za)

2bM(za)
2

[
2M(za)2 +

dM (za)
dza

]
(A.5)
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Furthermore, the second order derivative d2r(za)
/
dza

2 when dr (za)/dza = 0 can be obtained, i.e.,

d2r (za)
dza

2

∣∣∣∣
dr(za)/dza=0

= − (1 + β)2 [1 − F (za)] f (za)
2bM(za)

2

[
2M(za)2 +

dM (za)
dza

]
(A.6)

According to Petruzzi and Dada [25], we give the analysis of the optimal safety stock z∗a based on equa-
tion (A.5). Specifically, if F (·) is a distribution satisfying the condition 2M(za)2 + dM (za)/dza ≥ 0, then
we know that d2r(za)

/
dza

2 ≤ 0 at dr (za)/dza = 0, it follows that r(za) has at most two roots. Since
r(B) = −(1 + α)(c − v) < 0, if r(za) has only one root, it indicates a change of sign for r(za) from posi-
tive to negative, and thus it corresponds to a local maximum of E{U [za, p(za)]}; if r(za) has two roots, the
larger root corresponds to the a local maximum of E{U [za, p(za)]}, the smaller root corresponds to a lo-
cal minimum of E{U [za, p(za)]}. Obviously, in either case, E{U [za, p(za)]} has only one local maximum, for
the situation of the only one root, the optimal safety stock z∗a is identified as the unique value that satisfies
r(za) = dE{U [za, p(za)]}/dza = 0; for the situation of two roots, the optimal safety stock z∗a is identified as the
larger one of the two values of za that satisfies r(za) = dE{U [za, p(za)]}/dza = 0.

Proof of (ii) in (b). According to Petruzzi and Dada [25], we give the analysis of the uniqueness. Accord-
ing to equation (A.2) and r(za) = dE[U(za, p(za))]/dza, we know that r(B) = −(1 + α)(c − v) < 0. Since
E{U [za, p(za)]} is unimodal if r(za) has only one root (still assuming that 2M(za)

2 + dM (za)/dza ≥ 0), if
r(A) > 0 is satisfied, i.e., 2b(p0

a − c + s) − (1 + β)(μ − A) > 0, then we know that E{U [za, p(za)]} is unimodal.
That is, if 2b(p0

a − c + s) − (1 + β)(μ − A) > 0, then there exists the unique optimal solution. �

Proof of Corollary 4.3. Let � = 2M(za)2+dM (za)/dza. Since M(za) = f(za)/[1 − F (za)], � can be converted
into

� =
1

[1 − F (za)]2
{
3f(za)

2 + f(za)′[1 − F (za)]
}

(A.7)

In the following, we provide the proof to show that both uniform distribution U [A, B] and exponential distri-
bution E(λ) meets the condition of 2M(za)2 + dM (za)/dza ≥ 0.

(1) Uniform distribution U [A, B]. According to the probability density function and the cumulative distribution

function of the uniform distribution, i.e., fUni(za) = 1
B−A and FUni(za) =

⎧⎨
⎩

0, za ≤ A
za−A
B−A , A < za ≤ B
1, za > B

we have

that fUni(za) > 0 and fUni(za)′ = 0, then we know that � ≥ 0. By this, we have that the uniform distribution
satisfies the condition 2M(za)

2 + dM (za)/dza ≥ 0.
(2) Exponential distribution E(λ). The probability density function and the cumulative distribution function

of the exponential distribution are fExp(za) =
{

λe−λza , za > 0
0, za ≤ 0 and FExp(za) =

{
1 − e−λza , za > 0
0, za ≤ 0 , re-

spectively. Obviously, if za ≤ 0, we have that fExp(za) = 0, FExp(za) = 0, and fExp(za)′ = 0, then we know
� = 0; if za > 0, we have fExp(za) = λe−λza , FExp(za) = 1 − e−λza , and fExp(za)′ = −λ2e−λza , then we
know that � = 1

e−2λza

{
3λ2e−2λza + [−λ2e−λza ]e−λza

}
= 2λ2 ≥ 0. Therefore, we have that the exponential

distribution satisfies the condition 2M(za)2 + dM (za)/dza ≥ 0. �

Proof of Proposition 4.4. Given p∗a, according to equation (4.12) and Q∗
a = a − bp∗a + z∗a, we can determine the

first order condition of optimal order quantity with respect to surplus and stock-out regret aversion parameters,
i.e.,

∂Q∗
a

∂α
=

∂z∗a
∂α

= − (1 + β)(p∗a − c + s)(c − v)

[(1 + α)(c − v) + (1 + β)(p∗a − c + s)]2f(z∗a)
(A.8)
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∂Q∗
a

∂β
=

∂z∗a
∂β

=
(1 + α)(c − v)(p∗a − c + s)

[(1 + α)(c − v) + (1 + β)(p∗a − c + s)]2f(z∗a)
(A.9)

Since p∗a ≥ c ≥ v, f(z∗a) ≥ 0 and α, β ≥ 0, we know that ∂Q∗
a/∂α < 0 and ∂Q∗

a/∂β > 0. �

Proof of Proposition 4.5. Given z∗a, according to equations (4.20) and (4.22), we can determine the first order
condition of optimal price with respect to surplus and stock-out regret aversion parameters, i.e.,

∂p∗a
∂α

=
(c − v)F (z∗a)

[1 − F (z∗a)](1 + β)
(A.10)

∂p∗a
∂β

= −
∫ B

z∗
a
(ε − z∗a)f(ε)dε

2b
(A.11)

Since
∫ B

z∗
a
(ε − z∗a)f(ε)dε ≥ 0 and c ≥ v, we know that ∂p∗a/∂α > 0 and ∂p∗a/∂β < 0. �

Proof of Lemma 4.6. Following the solution process of Petruzzi and Dada [25], we provide the mathematical
proof for the Lemma 4.6. Specifically, we conduct the proof in two cases: one is for β = μ∫

B
zm

(ε−zm)f(ε)dε
− 1; the

other is for β �= μ∫ B
zm

(ε−zm)f(ε)dε
− 1.

(1) Since β = μ∫
B
zm

(ε−zm)f(ε)dε
− 1, we have μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε = 0 for ∀zm ∈ [A, B]. On the

basis, according to the equation (4.19), we know that the first order derivative of expected utility function
E[U(zm, pm)] with respect to price pm, i.e.,

∂E[U(zm, pm)]
∂pm

= apm
−b−1b (c − v)(1 + α)

∫ zm

A

(zm − ε)f(ε)dε

+ apm
−b−1b s (1 + β)

∫ B

zm

(ε − zm)f(ε)dε (A.12)

Since
∫ zm

A
(zm − ε)f(ε)dε ≥ 0,

∫ B

zm
(ε − zm)f(ε)dε ≥ 0, c ≥ v, and α, β ≥ 0, we know that

∂E[U(zm, pm)]/∂pm > 0. Given pm ∈ [p, p̄], so we can determine that p̄ is the optimal solution of
E[U(zm, pm)], i.e., p∗m = p̄.

(2) Since β �= μ∫ B
zm

(ε−zm)f(ε)dε
− 1, we have μ− (1 + β)

∫ B

zm
(ε − zm)f(ε)dε �= 0 for ∀zm ∈ [A, B], we know that

the first order derivative of expected utility function E[U(zm, pm)] with respect to price pm as shown in
equation (4.19). Since μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε �= 0, equation (4.19) can be rewritten as

∂E[U(zm, pm)]
∂pm

= apm
−b−1(b − 1)

[
μ − (1 + β)

∫ B

zm

(ε − zm)f(ε)dε

]

×
{

bc

b − 1
+

b

b − 1

[
(1 + α)(c − v)

∫ zm

A
(zm − ε)f(ε)dε + s (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

μ − (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

]
− pm

}

(A.13)

Further, since px = bc
b−1 + b

b−1 [
(1+α)(c−v)

∫
zm
A

(zm−ε)f(ε)dε+ s (1+β)
∫

B
zm

(ε−zm)f(ε)dε

μ−(1+β)
∫

B
zm

(ε−zm)f(ε)dε
] , equation (A.13) can be

changed into equation (A.14), i.e.,

∂E[U(zm, pm)]
∂pm

= apm
−b−1(b − 1)

[
μ − (1 + β)

∫ B

zm

(ε − zm)f(ε)dε

]
(px − pm) (A.14)
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For β �= μ∫ B
zm

(ε−zm)f(ε)dε
− 1, we consider two situations in the following analysis, i.e., β > μ∫ B

zm
(ε−zm)f(ε)dε

− 1

and β < μ∫
B
zm

(ε−zm)f(ε)dε
− 1.

(a) If β > μ∫
B
zm

(ε−zm)f(ε)dε
− 1, then we have μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε < 0 for ∀zm ∈ [A, B]. Further,

because apm
−b−1(b − 1) ≥ 0, when pm < px, we know that ∂E[U(zm, pm)]/∂pm < 0, i.e., the expected

utility function E[U(zm, pm)] is a decreasing function with respect to price pm when pm ∈ [p, px]; similarly,
when pm > px, we know that ∂E[U(zm, pm)]/∂pm > 0, i.e., the expected utility function E[U(zm, pm)] is an
increasing function with respect to price pm when pm ∈ [px, p̄]. Obviously, E[U(zm, pm)] first decreases and
then increases with price pm, and thus E[U(zm, pm)] reaches its minimum at pm = px. Since pm ∈ [p, p̄],
the optimal price is one of the bound prices, if the E[U(zm, pm)] at p∗m = p is greater than or equal to the
one at p∗m = p̄, then p∗m = p; if not, p∗m = p̄.

(b) If β < μ∫
B
zm

(ε−zm)f(ε)dε
−1, then we have μ−(1+β)

∫ B

zm
(ε − zm)f(ε)dε > 0 for ∀zm ∈ [A, B]. Further, when

pm > px, we know that ∂E[U(zm, pm)]/∂pm < 0; when pm < px, we know that ∂E[U(zm, pm)]/∂pm > 0.
Obviously, E[U(zm, pm)] first increases and then decreases with price pm, and thus E[U(zm, pm)] reaches
its maximum at pm = px, i.e., p∗m = px . Further, we have

p∗m = px = p0
m +

b

b − 1

[
(1 + α)(c − v)

∫ zm

A (zm − ε)f(ε)dε + s (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

μ − (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

]
(A.15)

Thus, if β < μ∫
B
zm

(ε−zm)f(ε)dε
− 1 for a fixed zm, optimal price p∗m is determined uniquely as a function of zm.

In addition, it is easy to see that p∗m ≥ p0
m. �

Proof of Theorem 4.7. According to the Petruzzi and Dada [25], we provide the mathematical proof for the
Theorem 4.7 in the following.

Proof of (b). Based on the analysis of solution in Petruzzi and Dada [25], we give the specific proof. According
to equation (4.17), we know first order derivative of E{U [zm, p(zm)]} with respect to zm, i.e.,

∂E{U [zm, p(zm)]}
∂zm

= y(p(zm)) [1 − F (zm)]
[
(1 + β)(p(zm) − c + s) − (1 + α)(c − v)F (zm)

1 − F (zm)

]
(A.16)

For the convenience of description, we let R(zm) = (1 + β)(pm − c + s)− (1+α)(c−v)F (zm)
1−F (zm) . If zm �= B, then we

know that y(pm) [1− F (zm)] > 0, in this situation, if R(zm) > 0, E{U [zm, p(zm)]} is the increasing function of
zm; if R(zm) < 0, E{U [zm, p(zm)]} is the decreasing function of zm; and thus when R(zm) = 0, E{U [zm, p(zm)]}
has a local optimum for any zm. Hence, the shape of E{U [zm, p(zm)]} can be determined by analyzing R(zm).
According to R(zm) and zm ∈ [A, B], we have

R(A) = (1 + β)[p(A) − c + s] = (1 + β)
{

bc

b − 1
+

b

b − 1

[
s (1 + β)(μ − A)

μ − (1 + β)(μ − A)

]
+ s − c

}

= (1 + β)
1

b − 1

{
bs

[
(1 + β)(μ − A)

μ − (1 + β)(μ − A)
+ 1

]
+ c − s

}

= (1 + β)
1

b − 1

{
bsμ

μ − (1 + β)(μ − A)
+ c − s

}

= (1 + β)
1

b − 1

{
s

(b − 1)μ + (1 + β)(μ − A)
μ − (1 + β)(μ − A)

+ c

}
(A.17)
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R(B) = (1 + β)[p(B) − c + s] − (1 + α)(c − v)
0

→ −∞ < 0 (A.18)

Since β < μ∫
B
zm

(ε−zm)f(ε)dε
−1, μ−(1+β)

∫ B

zm
(ε − zm)f(ε)dε > 0 for ∀zm ∈ [A, B], for zm = A, we know that

μ− (1 + β)
∫ B

A
(ε − A)f(ε)dε = μ− (1 + β)(μ−A) > 0. According to equation (A.17), we know that R(A) > 0.

Next, we consider how R(zm) behaves in zm. The first and second order derivative of R(zm) with respect to
zm can be determined, i.e.,

dR(zm)
dzm

=
dp(zm)
dzm

− (1 + α)(c − v)T (zm)
1 − F (zm)

(A.19)

d2R(zm)
dzm

2
=

d2p(zm)
dzm

2
− (1 + α)(c − v)

[
dT (zm)

1 − F (zm)
+

T (zm)2

1 − F (zm)

]
(A.20)

where, from Lemma 4.6, we have

dp(zm)
dzm

=
b(1 + α)(c − v)

[
(1 + β)F (zm)zm − F (zm)β μ − (1 + β)

∫ zm

A (zm − ε)f(ε)dε
]

(b − 1)
[
μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

]2

− bs (1 + β) [1 − F (zm)]μ

(b − 1)
[
μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

]2 (A.21)

d2p(zm)
dzm

2
=

b

b − 1
f(zm)

(1 + α)(c − v) [(1 + β)zm − βμ] + s (1 + β)μ[
μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

]2

− 2 (1 + β) [1 − F (zm)]

μ − (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

dp(zm)
dzm

=
b

b − 1

(1 + α)(c − v)T (zm)
{
(1 + β)

[
μ − ∫ B

zm
(ε − zm)f(ε)dε

]
− βμ

}
[
μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

]2

−
{

2 (1 + β) [1 − F (zm)]

μ − (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

+ T (zm)

}
dp(zm)
dzm

(A.22)

Thus, by substitution, we have

d2R(zm)
dzm

2
= − (1 + α)(c − v)

⎧⎪⎨
⎪⎩

bβ
[
μ − ∫ B

zm
(ε − zm)f(ε)dε

]
+ (b − 2)

[
μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

]
(b − 1)

[
μ − (1 + β)

∫ B

zm
(ε − zm)f(ε)dε

]2

+
dT (zm)/dzm + 2T (zm)2

1 − F (zm)

}

−
{

2 (1 + β) [1 − F (zm)]

μ − (1 + β)
∫ B

zm
(ε − zm)f(ε)dε

+ T (zm)

}
dp(zm)
dzm

(A.23)

if 2T (zm)2 + dT (zm)/dzm > 0 and b ≥ 2, then d2R(zm)
dzm

2 |dR(zm)/dzm=0 < 0, we further know that R(zm) is
unimodal in zm, first increasing and then decreasing. Hence, given that 2T (zm)2 + dT (zm)/dzm > 0 and
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b ≥ 2, E{U [zm, p(zm)]} is unimodal and reaches local maximum at the value of z∗m �= B that satisfies
∂E{U [zm, p(zm)]}/∂zm = y(p(zm)) [1 − F (zm)]R(zm) = 0. �

Proof of Proposition 4.9. Since the price is given, according to equation (4.22) and Q∗
m = a(p∗m)−bz∗m, we can

determine the first order condition of the optimal order quantity with respect to surplus and stock-out regret
aversion parameters, i.e.,

∂Q∗
m

∂α
= a(p∗m)−b ∂z∗m

∂α
= − a(p∗m)−b(1 + β)(p∗m − c + s)(c − v)

[(1 + α)(c − v) + (1 + β)(p∗m − c + s)]2f(z∗m)
(A.24)

∂Q∗
m

∂β
= a(p∗m)−b ∂z∗m

∂β
=

a(p∗m)−b(1 + α)(c − v)(p∗m − c + s)
[(1 + α)(c − v) + (1 + β)(p∗m − c + s)]2f(z∗m)

(A.25)

Since p∗m ≥ c ≥ v, f(z∗m) ≥ 0, and α, β ≥ 0, we know that ∂Q∗
m/∂α < 0 and ∂Q∗

m/∂β > 0. �

Proof of Proposition 4.10. Given z∗m, according to the equation (4.20), we can determine the first order condition
of the optimal price with respect to surplus and stock-out regret aversion parameters, i.e.,

∂p∗m
∂α

=
b(c − v)

∫ z∗
m

A
(z∗m − ε)f(ε)dε

(b − 1)
[
μ − (1 + β)

∫ B

z∗
m

(ε − z∗m)f(ε)dε
] (A.26)

∂p∗m
∂β

=
b

b − 1

s
∫ B

z∗
m

(ε − z∗m)f(ε)dε
[
μ − (1 + β)

∫ B

z∗
m

(ε − z∗m)f(ε)dε
]

[
μ − (1 + β)

∫ B

z∗
m

(ε − z∗m)f(ε)dε
]2

+
b

b − 1

[
(1 + α)(c − v)

∫ z∗
m

A
(z∗m − ε)f(ε)dε + s (1 + β)

∫ B

z∗
m

(ε − z∗m)f(ε)dε
] ∫ B

z∗
m

(ε − z∗m)f(ε)dε[
μ − (1 + β)

∫ B

z∗
m

(ε − z∗m)f(ε)dε
]2

(A.27)

According to the Lemma 4.6, we know that μ − (1 + β)
∫ B

z∗
m

(ε − z∗m)f(ε)dε > 0 when the optimal price is

not the bound price (i.e., p∗m = px). Since
∫ B

z∗
m

(ε − z∗m)f(ε)dε ≥ 0 and
∫ z∗

m

A (z∗m − ε)f(ε)dε ≥ 0, we know that
∂p∗m/∂α > 0 and ∂p∗m/∂β > 0. �
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