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PRICING DECISIONS IN DUAL-CHANNEL SUPPLY CHAIN
WITH ONE MANUFACTURER AND MULTIPLE
RETAILERS: A GAME-THEORETIC APPROACH
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Abstract. In this study, to price a product that can be simultaneously sold in the e-tail and retail
channels, a dual-channel supply chain is considered containing one manufacturer and multiple retailers.
In this setting, the game-theoretic approach is applied to obtain the equilibrium prices To our best
knowledge, the game-theoretic frameworks proposed to price the products in the dual-channel supply
chain have considered a single retailer in the retail channel, while multiple retailers can exist in the
retail channel in practice. It is assumed that the manufacturer and retailers have the same decision
powers. First, the Nash game model is established to set the prices in decentralized model A centralized
model is presented to maximize the profit of the whole system. Then, a coordination mechanism based
on the linear quantity discount schedule is applied to fully coordinate the supply chain. Finally, the
Nash bargaining model is used to share the extra profit given by the whole system cooperation among
the members
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1. Introduction

Nowadays, E-commerce has considerably changed buying and selling patterns. On one hand, customers prefer
the Internet-based sales on account of convenient and secure buying through the Internet. On the other hand, to
attract customers who cannot be reached through the traditional retail channel, the manufacturers and suppliers
should redesign the traditional selling structures by establishing the Internet-based sales [15]. Regarding the
statistical reports, about 42% of the top manufacturers like Dell, Nike, IBM, and Pioneer Electronics use
the Internet-based services to sell their products [6]. This growth in the Internet-based sales encourages the
manufacturers and suppliers to establish selling directly to customers.

Dual-channel supply chain is one in which a manufacturer or supplier sells his products to consumers simul-
taneously through the Internet directly (hereafter referred to as “e-tail channel”) as well as through a retailer
(hereafter referred to as “retail channel”). The e-tail channel attracts customers who prefer to buy the products
after viewing them online from the manufacturer’s or supplier’s website whereas the retail channel captures
customers who cannot access the Internet or who prefer to buy the products after viewing them in retail stores.
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Figure 1. The general structure of the dual-channel supply chain.

The combination of these two distribution channels leads to the channel conflict in the dual-channel structures.
Appearance of the competitive pricing policies between the e-tail and retail channels is the most important
result of this conflict [7]. Figure 1 depicts the general structure of the dual-channel supply chain.

Game theory is a mathematical instrument for specification of decisions by the rational and intelligent players
with conflicting interests [13, 14]. The need to increase our theoretical comprehension of the complicated inter-
dependent relationships in supply chains has motivated a great deal of the study (e.g., [2, 12, 19, 22–24,45, 46]).
There is a considerable body of research on the dualchannel supply chain. Below, we address several studies
that have applied the game-theoretic approach in the dual-channel supply chain.

The price is the most important competitive factor for customers [42]. The change of the price directly affects
the profit of the members and the whole system. Therefore, the managers’ decision about what price to set is
one of the most important decisions in the supply chains. Several researchers have studied the pricing policies
in the dual-channel supply chain (e.g., see: Yao and Liu [43]; Dai et al. [9]; Mukhopadhyay et al. [21]; Hua
et al. [15]; Liu et al. [20]; Huang et al. [17]; Jafari et al. [25]; Huang et al. [16]; Cao et al. [3]; Chen et al. [6];
Jafari et al. [27]). Service level influences the purchase option of customers. Some studies have considered the
pricing strategies as well as the various types of the services (e.g., see: Dumrongsiri et al. [10]; Chen et al. [1];
Yan and Pei [44]; Dan et al. [8]). Furthermore, coordination (vertical integration) is one of the useful techniques
to increase performance of the supply chain management [28]. To coordinate the members, different contracts
have been developed in the dual-channel supply chain (e.g., see: Jeuland and Shugan [29]; Cai et al. [5]; Yan [30])

In this study, we use the game-theoretic approach to price a single product in a dual-channel supply chain.
The considered structure consists of one manufacturer and multiple retailers. To our best knowledge, the game-
theoretic models proposed in the dual-channel supply chain have considered a single retailer in the retail channel
(e.g., see the researches addressed in the previous paragraph), while multiple retailers can exist in the retail
channel in practice. It is assumed that the manufacturer and retailers have the same decision powers. The price
competition is analyzed among the players under the different game models. A Nash game is established to set
the prices in the decentralized model and the centralized model is presented to maximize the profit of the whole
system. Then, the linear quantity discounts schedule is used as the channel coordination mechanism. Finally,
the Nash [31] bargaining model is provided to lead to the win–win situation.

The remainder of the paper is organized as follows: the research problem is described in details in Section 2.
The Nash and centralized models are developed in Sections 3 and 4, respectively. In Section 5, the linear quantity
discounts schedule is presented to coordinate the supply chain. To share the extra profit of the whole system
cooperation among the players, the Nash bargaining model is used in Section 6. In Section 7, an instance is
presented to well illustrate the research problem and in Section 8, a sensitivity analysis is provided to investigate
the effect of the changes of the parameters. Conclusions and directions for future researches are presented in
Section 9. Finally, the proofs of all theorems and lemmas are provided in the appendices.

2. Modeling assumptions and notations

In this study, we consider a dual-channel supply chain consisting of one manufacturer and multiple retailers.
The manufacturer produces a single product with the unit manufacturing cost Cm and sells it through the e-tail
and retail channels, simultaneously. Some customers buy the products through the e-tail channel after viewing
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them online from the manufacturer’s website, whereas others who do not access the Internet or who prefer to
purchase the products after viewing them in retail stores buy the products from the retailers. Thus, the scales
of the market for the manufacturer and retailers are specified based on the number of potential customers in the
channels. Number of the retailers in the retail channel is denoted as K. It is assumed that the players have the
same decision powers. Thus, they set the prices simultaneously. The manufacturer determines the e-tail price
Pe in the e-tail channel to end customer as well as the wholesale price W in the retail channel to the retailers.
Simultaneously, retailers 1, 2, . . . , K respectively specify the retail prices P1, P2 . . . PK in the retail channel to
end customers. The assumptions are as follows:

(1) The manufacturer has enough production capacity to meet the sum of the demands in the e-tail and retail
channels. Moreover, the order quantity of each retailer in the retail channel is exactly equal to his demand
(e.g., Ferrer and Ketzenberg [32]; Savaskan et al. [35]; Savaskan and VanWassenhove [36]).

(2) The wholesale prices charged by the manufacturer to the retailers are equal (e.g., Yang and Zhou [33]; Wang
et al. [34]).

(3) The demands are a linear function of the e-tail and retail prices (e.g., Pan et al. [39]; Edirisinghe et al. [11]).
(4) The self-price sensitivity of the demands is greater than the sum of the cross-price sensitivities β is the

self-price sensitivity of the demands whereas θ denotes the cross-price sensitivity indicating the degree of
substitutability among the members on the demands. β is the total number of customers who stop buying
through a channel as the price in this channel rises by one unit. Some of them switch to K other channels,
i.e., Kθ and others give the market up, i.e., β − Kθ. Obviously, it can be assumed that β > Kθ. This is a
common assumption in the literature (e.g., Dan et al. [8]; Wei et al. [40]).

(5) The effects of the self-price and cross-prices are similar in all the demand functions. In other words, in each
channel if the price rises by one unit, then the number of customers who stop buying through this channel
and the number of customers who switch to each of other channels respectively would be β and θ (e.g., Hua
et al. [15]; Huang et al. [17]).

(6) To encourage the retailers to enter into the business, it is assumed that the manufacturer’s unit profit margin
is not more than the retailers in the retail channel (e.g., Jorgensen and Zaccour [26]; Xie and Neyret [41];
Seyed Esfahani et al. [37]).

(7) If the profit the manufacturer or one of the retailers is equal to zero, then he as a rational entity/player will
not do business with the others and hence the business/game is not constituted in this situation.

Regarding assumption (2.3), the demand functions De and Di (i = 1, 2, . . .K) respectively faced by the manu-
facturer in the e-tail channel and by the retailers in the retail channel are:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

De = ae − βPe + θ
K∑

j=1

Pj (2.1)

Di = ai − βPi + θ

⎛
⎝Pe +

K∑
j=1(j �=i)

Pj

⎞
⎠ i = 1, 2, . . . , K (2.2)

where ae and ai (i = 1, 2, . . .K) respectively are the scales of the market for the manufacturer in the e-tail
channel and for the retailer i in the retail channel. In relation (2.1), βPe is the number of customers who quit

buying through the e-tail channel when the price in this channel is equal to Pe, while θ
K∑

j=1

Pj is the number

of customers who switch to the e-tail channel from the retail channel when the prices set by the retailers in
the retail channel are equal to P1, P2 . . . PK . The demands Di (i = 1, 2, . . . K) are similarly formulated in
relation (2.2).
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Figure 2. The structure of the dual-channel supply chain considered.

The profit functions πm, πi (i = 1, 2, . . .K), and πSC for the manufacturer, retailer i, and the whole system
respectively are formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

πm(W, Pe) = (Pe − Cm)De + (W − Cm)
K∑

i=1

Di (2.3)

πi (Pi) = (Pi − W )Di i = 1, 2, . . . , K (2.4)

πSC (Pe, P1, P2, . . . , PK) = πm +
K∑

i=1

πi = (Pe − Cm)De +
K∑

i=1

(Pi − Cm)Di (2.5)

We consider the following constraints into the model to ensure that the given prices are reasonable:

W, Pe � Cm (2.6)

W � P i (i = 1, 2, . . .K) (2.7)

The structure of the dual-channel supply chain considered is depicted in Figure 2.
In what follows, we will discuss the equilibrium pricing strategies that the manufacturer and retailers should

set in the e-tail and retail channels. The game-theoretic approach is developed to obtain the optimal prices
under the decentralized and centralized models. Furthermore, Karush−Kuhn−Tucker (KKT) conditions [38]
are applied to give the reasonable pricing policies that satisfy relations (2.6) and (2.7). Note that throughout
the paper, symbols N , C, and D denote the Nash, centralized, and linear quantity discounts models, respectively.

3. Nash game model

In Section 2, it was assumed that the manufacturer and retailers have the same decision powers and set the
prices independently and simultaneously. This situation is called a Nash game and the optimal pricing strategy
obtained from this game is the Nash equilibrium. In the Nash game model, the manufacturer and retailers’
decision problems are separately solved. The Nash game model is formulated as follows:⎧⎪⎪⎨

⎪⎪⎩
πm(W, Pe) = (Pe − Cm)De + (W − Cm)

K∑
i=1

Di s.t. W, Pe � Cm

πi (Pi) = (Pi − W )Di s.t. Pi � W i = 1, 2, . . . , K

(Problem A)
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Proofs of the lemmas and theorems in this section appear in Appendix A (in electronic companion).

Lemma 3.1 (The manufacturer’s profit function πm is not jointly concave in W and Pe). But it is increasing
in line with W .

In the manufacturer’s point of view, from Lemma 3.1 and relation W � Pi (i = 1, 2, . . .K), the optimal value
of W is minP1, P2 . . . PK . However, if there is i in 1, 2, . . .K subject to W = P i, then πi = 0 and therefore
regarding Assumption (2.7), retailer i will not do business with the other players. We use a similar approach as
applied by Jorgensen and Zaccour [26], Xie and Neyret [41], and Seyed Esfahani et al. [37] to tackle the research
problem Regarding Assumption (2.6), the manufacturer’s unit profit margin is not higher than the retailers in
the retail channel, i.e., W − Cm � Pi − W (i = 1, 2, . . .K). Therefore, we have:

W � Pi + Cm

2
i = 1, 2, . . .K (3.1)

The manufacturer’s profit function is increasing in line withW As a result, the optimal value of W is equal to
(min {P1, P2, . . . , PK}+Cm)/2

Lemma 3.2. The retailer i’s profit function πi is concave in Pi(i = 1, 2, . . .K).

Theorem 3.3. If the wholesale price W and the e-tail price Pe are determined by the manufacturer, then the
optimal retail prices are:

Pi (W, Pe) =
(2β + θ) (βW + θPe) + [2β − (K − 1) θ]ai + θ

K∑
j=1

aj

(2β + θ)[2β − (K − 1) θ]
i = 1, 2, . . .K (3.2)

Without the loss of generality, it is assumed that ar = mina1a2 . . . aK . Thus, from assumptionβ > Kθ we
have:

[2β − (K − 1) θ]ar � [2β − (K − 1) θ]ai i = 1, 2, . . .K (3.3)

Clearly, one can derive that Pr (W, Pe) = min {P1 (W, Pe) , P2 (W, Pe) , . . . , PK (W, Pe)} and thus the optimal
value of W is equal to (Pr + Cm)/2 .

πN
m and πN

i (i = 1, 2, . . .K) are respectively calculated substituting W = (Pr + Cm)/2 into πm and πi

(i = 1, 2, . . .K). Moreover, the players’ decision problems are equivalent to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πN
m(Pe) = (Pe − Cm)De +

(
Pr − Cm

2

) K∑
i=1

Di s.t. Pe � Cm (3.4)

πN
r (Pr) =

(
Pr − Cm

2

)
Dr s.t. Pr � Cm (3.5)

πN
i (Pi) =

(
2Pi − Pr − Cm

2

)
Di s.t. Pi � (Pr + Cm)

2
i = 1, 2, . . . , K(i �= r) (3.6)
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Lemma 3.4. The new profit functions πN
m and (πN

i (i = 1, 2, . . .K) are concave in Pe and Pi, respectively

Theorem 3.5. Assuming ar = mina1a2 . . . aK the optimal prices made by the manufacturer and retailers in
the Nash game model can be given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WN =
E1Cm + θae + θ

K∑
j=1

aj + (2β − Kθ)ar

E2

PN
e =

(2β + θ)E3Cm + (2β + θ) E4ae + θE5

K∑
j=1

aj + KθE6ar

(2β + θ) E2

PN
r =

E7Cm + 2θae + 2θ
K∑

j=1

aj + 2 (2β − Kθ) ar

E2

PN
i =

(2β + θ)

[
E7Cm + 2θae + 2θ

K∑
j=1

aj

]
+ (2β2 + Kθ2)ar + E2ai

(2β + θ) E2
i = 1, 2, . . . , K(i �= r)

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WN =
E8Cm + θ

K∑
j=1

aj + [2β − (K − 1) θ]ar

E9
PN

e = Cm

PN
r =

E10Cm + 2θ
K∑

j=1

aj + 2[2β − (K − 1) θ]ar

E9

PN
i =

(β + 2θ) (2β + θ) [(3β + θ) Cm + ar] + θ (5β + 2θ)
K∑

j=1

aj + E9ai

(2β + θ)E9
i = 1, 2, . . . , K(i �= r)

(3.8)

• If Cm � min{Ae, Ai (i = 1, 2, . . . , K), then:
– If Cm � min{A′

i (i = 1, 2, . . . , K) and Cm > A′
e, then:

– Otherwise, the business/game is not constituted or there is no equilibrium solution to Problem A

where, sets {Ae, A′
e, Ai, A′

i (i = 1, 2, . . . , K)} and {E1, E2, . . . , E10} appear in Appendix A

4. Centralized model

In this section, the relationship among the manufacturer and retailers is modeled as a cooperative game in
which all the members agree to cooperate and maximize the profit of the whole system. The centralized model
is as follows:⎧⎪⎪⎨

⎪⎪⎩
πSC (Pe, P1, P2, . . . , PK) = πm +

K∑
i=1

πi = (Pe − Cm)De +
K∑

i=1

(Pi − Cm)Di

s.t. Pe, Pi � Cm i = 1, 2, . . . , K
(Problem B)

Proofs of the lemmas and theorems in this section are presented in Appendix B (in electronic companion).
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Lemma 4.1. The profit function of the whole system πSC is jointly concave in PeP1P2 . . . PK

Theorem 4.2. The optimal prices in the centralized model are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PC
e =

(β + θ) (β − Kθ)Cm + [β − (K − 1) θ]ae + θ
K∑

j=1

aj

2 (β + θ) (β − Kθ)

PC
i =

(β + θ) (β − Kθ)Cm + θae + θ
K∑

j=1

aj + (β − Kθ)ai

2 (β + θ) (β − Kθ)
i = 1, 2, . . . , K

(4.1)

• If Cm � min{Be, Bi(i = 1, 2, . . .K )} :
• If Cm � min{B′

i(i = 1, 2, . . .K )} and Cm > Be :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

PC
e = Cm

PC
i =

(β + θ) [β − (K − 2) θ]Cm + θ
K∑

j=1

aj + [β − (K − 1) θ]ai

2 (β + θ) [β − (K − 1) θ]
i = 1, 2, . . . , K

(4.2)

• Otherwise, the business/game is not constituted or there exists no equilibrium solution to Problem B.

where, set ?Be, Bi, B′
i(i = 1, 2, . . .K )} is shown in Appendix B

5. Linear quantity discounts schedule

In this section, a linear quantity discounts schedule introduced by Ingene and Parry [18] is applied to coor-
dinate the considered supply chain. The quantity discounts schedule is permitted under the Federal Robinson-
Patman Act that does not discriminate among the retailers [4]. In fact, to discriminate among the same retailers
by offering them different the wholesale prices is unlawful Thus, it is assumed that the discount slope of per-unit
wholesale pricing schedule is the same for all the retailers.

Under the linear quantity discounts schedule, the wholesale prices charged by the manufacturer to the retailers
depend on their order quantities, i.e., their demands in the retail channel. If the order quantity of retailer i (i =
1, 2, . . .K) is equal to Di, then he is charged by the manufacturer with (W−ϕDi)Di, where W and ϕ respectively
are the maximum variable wholesale price and the discount slope of per-unit wholesale pricing schedule. In other
words, if the order quantity of retailer iis Di, then the discount quantity of per-unit wholesale pricing charged
by the manufacturer to retailer i is equal to ϕDi. The linear quantity discounts model is formulated as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πD
m(W, Pe, ϕ) = (Pe − Cm)De +

K∑
i=1

(W − ϕDi − Cm)Di

s.t. Pe � Cm, W − ϕDi � Cm, and ϕ � 0 i = 1, 2, . . . , K

πD
i (Pi) = (Pi − W + ϕDi)Di

s.t. Pi � W − ϕDi i = 1, 2, . . . , K

(Problem C)

Based on the vertical integration mechanism proposed by Ingene and Parry [18], as the prices in the linear
quantity discounts model are equal to the centralized model the supply chain is fully coordinated under the
linear quantity discounts schedule. Thus, the considered supply chain is fully coordinated when PD

e = PC
e and

PD
i = PC

i (i = 1, 2, . . .K) where symbols C and D respectively denote the centralized and linear quantity
discounts models. Proofs of theorems in this section appear in Appendix C (in electronic companion).
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Theorem 5.1. By setting the wholesale price W , e-tail price Pe, and discount slope ϕ by the manufacturer and
assuming ϕβ < 1πD

i (i = 1, 2 . . .K) is concave with respect to Pi. Furthermore, the optimal retail prices are:

PD
i (W, Pe, ϕ) =

F1W + F 2Pe + θ(1 − 2ϕβ)2
K∑

j=1

aj + F3ai

F4
i = 1, 2, . . .K. (5.1)

where, set {F1, F2, F3, F4} is defined in Appendix C.
By solving equations PD

e = PC
e and PD

i (W, Pe, ϕ) = PC
i (i = 1, 2, . . .K) simultaneously, the following theorem

can be given:

Theorem 5.2. The dual-channel supply chain considered is fully coordinated by a linear quantity discounts
schedule as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WD =

[2β − (K − 1)θ] (β − Kθ)Cm + θ

(
ae +

K∑
j=1

aj

)

2 (β + θ) (β − Kθ)

PD
e =

(β + θ) (β − Kθ)Cm + [β − (K − 1) θ]ae + θ
K∑

j=1

aj

2 (β + θ) (β − Kθ)

PD
i =

(β + θ) (β − Kθ)Cm + θae + θ
K∑

j=1

aj + (β − Kθ)ai

2 (β + θ) (β − Kθ)
i = 1, 2, . . . , K

ϕD =
θ

2β (β + θ)

(5.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WD =
2
[
β2 − (K − 1)βθ + θ2

]
Cm + θ

K∑
j=1

aj

2 (β + θ) [β − (K − 1) θ]

PD
e = Cm

PD
i =

(β + θ) [β − (K − 2) θ]Cm + θ
K∑

j=1

aj + [β − (K − 1) θ]ai

2 (β + θ) [β − (K − 1) θ]
i = 1, 2, . . . , K

ϕD =
θ

2β (β + θ)

(5.3)

• If Cm � min{Be, Bi, Hi, Gi (i = 1, 2, . . .K )} :
– If Cm � min{B′

i, H ′
i, Gi (i = 1, 2, . . .K )} and Cm > Be :

– Otherwise, the business/game is not constituted or there is no equilibrium solution to Problem C

where, sets {Be, Bi, B
′
i (i = 1, 2, . . . , K)} and {Hi, H ′

i, G
′
i (i = 1, 2, . . . , K)} respectively are included in

Appendices B and C
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6. Bargaining model

In Section 4, the optimal prices that maximize the profit of the whole system are obtained under the centralized
model. Due to the maximization of the profit of the whole system in this model, the profit of the whole system

in the centralized model is higher than in the Nash game model, i.e., πC
SC � πN

SC = πN
m +

K∑
i=1

πN
i , where symbols

C and N denote the centralized and Nash game models, respectively Moreover, since the wholesale price W is
neglected in the centralized model, the profits of the members cannot be specified. Now, the Nash [31] bargaining
model is applied to obtain the following values in the centralized model based on the bargaining powers of the
members:

• The share of increased profit obtained from the whole system cooperation for the members.
• The profit of the members.
• The wholesale price.

Assume that the manufacturer and retailer i (i = 1, 2, . . .K) respectively receive the shares Δπm and Δπi of
the extra profit given by the whole system cooperation. In fact, Δπm and Δπi(i = 1, 2, . . .K ) are the increased
profit of the members in the centralized model compared to the Nash model in which they set the decisions
independently. Thus, we have:

Δ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πm = πC
m − πN

m (6.1)

Δπi = πC
i − πN

i i = 1, 2, . . . , K (6.2)

ΔπSC = πC
SC − πN

SC = πC
SC −

(
πN

m +
K∑

i=1

πN
i

)
(6.3)

Based on the Nash [31] bargaining model, the bargaining profit scheme is shown as follows:

⎧⎪⎪⎨
⎪⎪⎩

max Z = (Δπm)γm
K∏

i=1

(Δπi)
γi

s.t. Δπm +
K∑

i=1

Δπi = ΔπSC

(Problem D)

where, the positive parameters γm and γi(i = 1, 2, . . .K ) respectively are the bargaining powers of the
manufacturer and retailer i Proofs of the theorems appearing in this section are included in Appendix D (in
electronic companion).

Theorem 6.1. The extra profits of the members obtained from the whole system cooperation in the centralized
model are:

Δπm

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B =
γm

γm +
K∑

i=1

γi

ΔπSC (6.4)

Δπi
B =

γi

γm +
K∑

i=1

γi

ΔπSC i = 1, 2, . . .K (6.5)

As a result, based on the Nash bargaining model, the profit of the members in the centralized model is not less
than in the Nash game model, i.e., πC

m � πN
m and πC

i � πN
i (i = 1, 2, . . .K) Furthermore, from relations (6.1),

(6.2), (6.4), and (6.5), the profit of the members in the centralized model can be determined, easily.
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Table 1. The value of the parameters in the illustrative instance.

Parameters N Cm β θ ae a1 a2 a3 a4 a5

Values 5 80 1.8 0.3 300 150 130 170 200 120

Insight 1. Regarding relations (6.4) and (6.5), we obviously derive that :

• When all the members have the same bargaining powers, they will share the extra profit, equally.
• The more the bargaining power of a member the more the share of the increased profit for his/her.
• When the bargaining power of a member is significantly higher than the others, he receives approximately

the total value of the extra profit, and vice versa.

Now, the Nash bargaining model is used to set wholesale price W in the centralized model.

Theorem 6.2. The wholesale price WB in the centralized model is:

WB =
1

K∑
i=1

DC
i

⎡
⎢⎢⎣ γm

γm +
K∑

i=1

γi

ΔπSC + πN
m − (PC

e − Cm)DC
e

⎤
⎥⎥⎦+ Cm (6.6)

where, DC
e and DC

i (i = 1, 2, . . .K) respectively are the optimal values of the e-tail and retail demands in the
centralized model.

7. Illustrative instance

In this section, an instance is presented to well illustrate the characteristics of the studied models. Consider
a manufacturer who produces one product that can be sold both through the Internet in the e-tail channel and
through the retailers in the retail channel. The manufacturer delivers the products to end customers in the retail
channel through five retailers. Hence, a dual-channel structure is considered consisting of one manufacturer and
five retailers. The value of the parameters has been shown in Table 1 and the results given by the different
models have been summarized in Table 2 In the linear quantity discounts model, regarding Theorem 5.2, the
optimal value of the discount slope ϕ is equal to 0.04

In the Nash (centralized) model, the players determine the prices independently (jointly) to maximize their
own profits (the profit of the whole system). Thus, due to the competition among the players in the Nash game,
the prices specified in this game are less than in the centralized game. Customers are assumed to be price
sensitive and therefore higher prices lead to lower demands. Consequently, the demands in the Nash game are
more than in the centralized game. Regarding the applied vertical integration mechanism, the e-tail and retail
prices, demands, and profits of the whole system are exactly equal in both the centralized and linear quantity
discounts models. Obviously, the competition among the players in the Nash game leads to lower profits for
them than in the linear quantity discounts schedule in which they made the decisions jointly. Thus, the profits
of the players and the whole system in the linear quantity discounts schedule are higher than in the Nash game
model

Now, to share the increased profit obtained from the cooperation in the centralized model among the members,
the Nash bargaining model presented in Section 6 is used. The increased profit is shared among the members
under the different bargaining powers using relations (6.4) and (6.5). Moreover, the wholesale price in the
centralized model is given using relation (6.6). The results are provided in Table 3. Obviously, more bargaining
powers lead to higher shares of the extra profit for the members. Furthermore, the more the manufacturer’s
bargaining power, the more the given wholesale price.
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Table 2. The results of the investigated models for the illustrative instance.

models
Prices

W Pe P1 P2 P3 P4 P5

Nash 130.73 223.71 189.15 184.02 194.28 201.97 181.46

Centralized − 366.19 330.48 325.71 335.24 342.38 323.33

Coordination 300.48 366.19 330.48 325.71 335.24 342.38 323.33

Demands

De D1 D2 D3 D4 D5

Nash 183 105 96 114 128 91

Centralized 138 63 53 73 88 48

Coordination 138 63 53 73 88 48

Profits

πm π1 π2 π3 π4 π5 πSC

Nash 53382.09 6143.73 5112.50 7269.64 9136.01 4632.39 85676.36

Centralized − − − − − − 12 169 889

Coordination 110271.05 2047.50 1448.66 2748.95 3994.50 1188.23 12 169 889

Table 3. The results of the Nash bargaining model for the illustrated instance.

Bargaining Extra Shares of Wholesale
powers profit the extra profit price

γm γ1 γ2 γ3 γ4 γ5 ΔπSC Δπm
B Δπ1

B Δπ2
B Δπ3

B Δπ4
B ΔπB

5 W B

0.5 0.1 0.1 0.1 0.1 0.1 36022.5 18011.3 3602.3 3602.3 3602.3 3602.3 3602.3 178.2
0.4 0.2 0.1 0.1 0.1 0.1 36022.5 14409.0 7204.5 3602.3 3602.3 3602.3 3602.3 167.1
0.3 0.2 0.1 0.2 0.1 0.1 36022.5 10806.8 7204.5 3602.3 7204.5 3602.3 3602.3 156.0
0.2 0.2 0.2 0.2 0.1 0.1 36022.5 7204.5 7204.5 7204.5 7204.5 3602.3 3602.3 144.9
0.1 0.3 0.2 0.2 0.1 0.1 36022.5 3602.3 10806.8 7204.5 7204.5 3602.3 3602.3 133.8

8. Sensitivity analysis

In this section, the effects of the changes of the self-price and cross-price sensitivities of the demands and
the number of the retailers in the retail channel (i.e., β, θ, and K) are investigated on the optimal strategies
obtained from the models.

Theorem 8.1. In the linear quantity discounts model, the more the self-price/cross-price sensitivity of the
demands leads to the less/more the discount slope of per-unit wholesale pricing schedule while the number of the
retailers in the retail channel has no effect on it.

Proof. From Theorem 5.1, the discount slope of per-unit wholesale pricing schedule, i.e., ϕ is equal
to θ/ [2β (β + θ)]. We have: ∂ϕ/∂β = −(2β + θ)/

[
2β2 (β + θ)2

]
< 0, ∂ϕ/∂θ = 1/

[
2 (β + θ)2

]
> 0, and

∂ϕ/∂K = 0. This completes the proof of Theorem 8.
Due to complexity of the given relations in general case, one cannot derive such explicit results for other

decisions. Thus, the numerical sensitivity analysis is implemented to investigate the effects of the changes of β,
θ, and K on the optimal decisions. Consider a case in which the total number of potential customers for the
product is a = 500. Assume that the number of the retailers in the retail channel is K = 3 and the default values
of the parameters are: Cm = 10, β = 1.7, θ = 0.2, ae = 0.4a = 200, and a1 = a2 = a3 = 0.6a/K = 100. In fact,
the scales of the market for the retailers are assumed to be similar. Consequently, under all the studied models,
the prices, demands, and profits in the retail channel are equal, i.e., P1 = P2 = P3 = P , D1 = D2 = D3 = D,
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Figure 3. Changes of the optimal strategies with β.

and π1 = π2 = π3 = π. Therefore, in the retail channel, the effects of the changes ofβ, θ, and K are only
investigated on P , D, and π Moreover, regarding the developed coordination mechanism, the e-tail and retail
prices, demands, and profit of the whole system are equal in both the centralized and linear quantity discounts
models. Thus, the effects of the changes of the parameters are only investigated on the decisions obtained from
the Nash and linear quantity discount models.

8.1. Investigating the effects of the self-price sensitivity of the demands, i.e., β

We change parameter β from 1. to 1.9 in step sizes of 0.3. The changes of the optimal strategies with respect
to β are shown in Figure 3

Insight 2. The higher the self-price sensitivity of the demands, i.e., β, the lower the values of all the optimal
strategies obtained from all the models, i.e., if β increases, then the optimal values of the prices, demands, and
profits decrease under all the models.

Interpretation: β is the number of customers who quit buying through a channel when the price in this
channel increases by one unit. A portion of these customers switch to the other channels and others give buying
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Figure 4. Changes of the optimal strategies with θ.

up. Consequently, as β increases, each player decreases his price to reduce the number of customers who quit
buying through his channel. On the other hand, the number of customers who give up buying increases by
increasing β. Hence, the demands in the channels are reduced as β increases. Clearly, the profits of the players
and the whole system decrease by reducing all the prices and demands.
8.2. Investigating the effects of the cross-price sensitivity of the demands, i.e., θ

Parameter θ is changed from 0.1 to 0.4 in step sizes of 0.1. The changes of the optimal decisions with respect
to θ are shown in Figure 4.

Insight 3. The higher the cross-price sensitivity of the demands, i.e., θ, the higher the values of all the optimal
strategies given by all the models, i.e., if θ increases, then the optimal values of the prices, demands, and profits
increase under all the models.

Interpretation: θ is the number of customers who switch from a channel to another channel when the price
in the first channel increases by one unit. When θ increases, the number of customers who switch to a channel
increases while the number of customers who give up buying is reduced and hence all the demands increase.
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Figure 5. Changes of the optimal decisions with K.

By increasing θ, the players set the prices with a lower risk and consequently the prices increase. Obviously, the
profits of the players and the whole system increase by increasing all the prices and demands

In this study, the dual-channel structure has been investigated with multiple retailers in the retail channel
in comparison with the previous studies that have considered only one retailer in the retail channel. In what
follows, the effects of considering more than one retailer in the retail channel are discussed.

8.3. Investigating the number of the retailers in the retail channel, i.e., K

To discuss the effects of the number of the retailers in the retail channel on the optimal decisions, K is
changed from 1 to 7 in step sizes of 2. The changes are shown in Figure 5.

Insight 4. Larger the number of the retailers in the retail channel, i.e., K, leads to lower the optimal values of
the retail prices, retail demands, and retailers’ profits, while the optimal values of the other strategies increase
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Figure 6. Changes of the optimal decisions with K.

Interpretation: As K increases, the scales of the market for the retailers and consequently for the retail
demands decrease. Therefore, the retailers reduce the retail prices to increase their demands. As a result, the
retailers gain less profit by decreasing the retail prices and the retail demands. By increasing K, the manufacturer
sets the wholesale and e-tail prices with a lower risk and consequently the optimal values of these prices increase.
Obviously, the e-tail demand can decrease by increasing the e-tail price and decreasing the retail prices. When
the number of the retailers increases, the competition among them increases and as the result the manufacturer
gains more profit as K becomes larger. Regarding Figure 6, the total profit of the retail channel (i.e., sum of
the retailers’ profits) can increase as K increases Clearly, the profit of the whole system increases by increasing
the profits in the e-tail and retail channels

Insight 5. When there are more than one retailer in the retail channel (i.e., K > 1), one can observe that the
total profit of the retail channel, manufacturer’s profit, and profit of the whole system become higher than the
situation in which there is a single retailer in the retail channel.

Interpretation: Although, as K > 1, the retailers gain less profits but the total profit of the retail channel in
this case is higher than in case K = 1. Moreover, the manufacturer can benefit by increasing the competition
among the retailers in the retail channel. As a result, the total profit of the whole system increases asK > 1.

Insight 6. From coordination mechanism investigated in Section 5 and regarding Figure 3–5, the profits of all
the players and the whole system given by the centralized model and the linear quantity discounts schedule are
higher than by the Nash game.

Interpretation: In the centralized and linear quantity discounts models, the players cooperate to maximize
the total profit of the whole system while in the Nash game model the players set the prices independently to
maximize their own profits. Thus, the profits of the players and the whole system obtained from the centralized
model and linear quantity discounts schedule cannot be lower than from the Nash game.

9. Conclusions

In this study, to price a single product that can be sold simultaneously in the e-tail and retail channels, a
dual-channel structure was considered consisting of one manufacturer and multiple retailers. The manufacturer
produces the product and sells it through the e-tail and retail channels, simultaneously. A portion of customers
purchase the products through the e-tail channel after viewing them online from the manufacturer’s website,
while others who do not access the Internet or who prefer to buy the products after viewing them in retail
stores purchase the products from the retailers. It was assumed that the manufacturer and retailers have the
same decision powers

The game-theoretic approach was used to analyze the equilibrium pricing strategies that the manufacturer
and retailers should set in the e-tail and retail channels. First, the Nash game model was established to set the
prices in the decentralized model. The centralized model was developed to maximize the profit of the whole
system. Then, a linear quantity discounts model was presented to coordinate the supply chain. Ultimately,
the Nash bargaining model was applied to share the extra profit obtained from the centralized model among
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the players. The results indicated that more bargaining powers lead to higher shares of the extra profit for the
players.

An instance was presented to well-illustrate the research problem. Then, the effects of the changes of the
self-price and cross-price sensitivities of the demands and the number of the retailers in the retail channel were
investigated on the optimal strategies. The following managerial insights were derived:

In the Nash (centralized) model, the players set the prices independently (jointly) to maximize their profits
(the profit of the whole system). Hence, due to the competition among them in the Nash game, the prices
given by this game are less than by the centralized game. It was assumed that customers are price sensitive
and as a result more prices lead to lower demands. Consequently, the demands in the Nash game are more than
in the centralized game. From the vertical integration mechanism, the final prices, demands, and total profits
of the whole system are exactly equal in the centralized and linear quantity discounts models. Moreover, the
competition among the players in the Nash game leads to lower profits for the players than in the centralized
model and linear quantity discounts schedule in which they made the decisions jointly. Thus, profits of the
players and whole system given by the centralized model and linear quantity discounts schedule are higher than
by the Nash game.

The more the self-price/cross-price sensitivity of the demands leads to the less/more the values of all the
optimal policies given by all the studied models. Moreover, in the linear quantity discounts schedule, the more
the self-price/cross-price sensitivity of the demands, the less/more the discount slope of per-unit wholesale
pricing schedule whereas the number of the retailers has no effect on it.

In this study, a multi-retailer dual-channel supply chain was considered in comparison with the previous
studies that have investigated one retailer in the retail channel. In this setting, the effects of considering more
than one retailer in the retail channel were investigated on the optimal decisions. One can derive that the larger
the number of the retailers in the retail channel, the lower the optimal values of the retail prices, retail demands,
and retailers’ profits, whereas the optimal values of the other decisions increase. Moreover, when there is more
than one retailer in the retail channel, one can observe that the total profit of the retail channel, manufacturer’s
profit, and profit of the whole system become higher than the situation in which there is a single retailer in the
retail channel.

There are several directions for future studies: In this study it was assumed that the demands are the linear
function of the e-tail and retail prices. A different form of the demand function could be adopted. Moreover,
all the models presented in this study were established under a deterministic environment. One can investigate
the effects of the demand disruption in the stochastic environments on the optimal policies

Appendix A. Notations and proofs in the Nash game model

E1 = 4β2 − (2K − 3)βθ − 2Kθ2

E2 = 6β2 − 4(K − 1)βθ − 3Kθ2

E3 = 3β2 − 2(K − 1)βθ + K(K − 1)θ2

E4 = 3β − 2(K − 1)θ

E5 = 3β + 2(K + 2)θ

E6 = 3β − (K − 1)θ

E7 = 2β2 + 2βθ − Kθ2

E8 = 6β2 − (3K − 8)βθ + (K − 2)θ2

E9 = 8β2 − (5K − 9)βθ − 2(K − 1)θ2

E10 = 4β2 − (K − 7)βθ + 2θ2
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E11 = 2β2 − 2(K + 1)βθ − (K + 1)θ2

E12 = 8β2 − (5K − 9)βθ − 2(K − 1)θ2

E13 = (2β + θ)(β − Kθ) [4β + (K + 2)θ]

Ae =
KθE6ar + θ [3β + (K + 2) θ]

K∑
j=1

aj + (2β + θ)E4ae

(2β + θ)(β − Kθ)[3β + (K + 2)θ]

A′
e =

θ [(3K − 1)β − K(K − 1) θ] ar + θ [4β + (K + 2)θ]
K∑

j=1

aj + E12ae

E13

Ar =
(2β − Kθ)ar + θ

K∑
j=1

aj + θae

(β − Kθ)(2β + θ)

A′
r =

[2β − (K − 1)θ]ar + θ
K∑

j=1

aj

(β − Kθ)(2β + θ)

Ai =

−2 (β + θ) (β − Kθ) ar + θ (2β + θ)

[
ae +

K∑
j=1

aj

]
+ E2ai

(2β + θ)(β − Kθ)
i = 1, 2, . . .K (i �= r)

A′
i =

−E11ar + θ (3β + θ)
K∑

j=1

aj + E12ai

(2β + θ)(β − Kθ)(3β + θ)
i = 1, 2, . . .K (i �= r)

Supplementary materials associated with the proofs of Lemmas 3.1−3 and Theorems 3.3 and 3.5 can be found
in the online version.

Appendix B. Notations and proofs in the centralized model

Be =
[β − (K − 1)θ] ae + θ

K∑
j=1

aj

(β + θ)(β − Kθ)

Bi =
θae + (β − Kθ)ai + θ

K∑
j=1

aj

(β + θ)(β − Kθ)
i = 1, 2, . . .K

B′
i =

[β − (K − 1)θ] ai + θ
K∑

j=1

aj

(β + θ)(β − Kθ)
i = 1, 2, . . .K

Supplementary materials associated with the proofs of Lemma 4.1 and Theorem 4.2 can be found in the
online version.

https://rairo-ro.org/10.1051/ro/2017003/olm
https://rairo-ro.org/10.1051/ro/2017003/olm
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Appendix C. Notations and proofs in the linear quantity discount model

F1 = β (2β + θ) − 2ϕβ2(β + θ)
F2 = 4ϕβθ

(
ϕβ2 + ϕβθ − θ

)
+ 2βθ (1 − 3ϕβ) + θ2

F3 = 4Kϕβθ (1 − ϕβ) + [2β − (K − 1) θ] + 4ϕβθ (K − 1) (1 − ϕβ) + 2ϕβ2(2ϕβ − 3)
F4 = [[β − (K − 1) θ] (1 − 2ϕβ) + β] [(2β + θ) − 2ϕβ(β + θ)]

Hi =

2β

(
ae +

K∑
j=1

aj

)
− (β − Kθ)ai

(β − Kθ) [(2K + 1)β + Kθ]
i = 1, 2, . . .K

H ′
i =

2β
K∑

j=1

aj − [β − (K − 1) θ] ai

(β − Kθ) [(2K − 1)β + θ]
i = 1, 2, . . .K

Gi =
(2β + θ)ai

(β − Kθ) (2β + θ)
i = 1, 2, . . .K

Supplementary materials associated with the proofs of Theorems 5.1 and 5 can be found in the online version.

Appendix D. Proofs in the bargaining model

Supplementary materials associated with the proofs of Theorems 6.1 and 6.2 can be found in the online
version.
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