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Abstract. In this paper, a novel model for dynamic pricing and inventory control of non-
instantaneously deteriorating items is proposed. To reflect the dynamic nature of the problem, the
selling price is modeled as a time-dependent function of the initial selling price and the discount rate.
To this end, the product is sold at the initial price value for a time period; then its price is exponentially
discounted to boost customer demands. The demand rate is a function of dynamic price, advertisement
and changes in price over time. The model seeks to maximize total profit of the system by determining
the optimal replenishment cycle, initial price, discount rate, and frequency of advertisement. In order
to characterize the optimal solution, some useful theoretical results are derived upon which an iterative
solution algorithm is developed. To demonstrate validity of the proposed model and applicability of the
developed algorithm, numerical results are provided that are accompanied by an efficient sensitivity
analysis on the important parameters of the model.

Mathematics Subject Classification. 90-XX.

Received April 15, 2016. Accepted November 4, 2016.

1. Introduction

In competitive and dynamic environment of business, meeting customer’s expectations is an essential task.
According to the classic approach, price was purely considered as a way to earn revenue. However, these days
it is considered not only as a way to earn profit but also as an effective agent in customer’s satisfaction and
subsequently raising demand.

In most of the mathematical formulations of inventory management problems it is implicitly assumed that
products have an infinite lifetime. However, most of products lose their initial value over time and for some
of them the velocity of this process is more than usual. These products are called deteriorating items. Due to
the imposed costs of deterioration on the system, the appropriate inventory control of these items is of great
importance.

Most of the time there is a negative relationship between demand and the price of a product which can be
modeled in a diverse variety of ways [1]. Despite of the mentioned diversity, these demand models fall into two
main categories named additive and multiplicative demand models.
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Previously, inventory management and pricing policies were considered separately, and dealt with by opera-
tional and marketing departments of businesses, respectively. However, trade-off between pricing decisions and
replenishment policies in inventory management problems is of great significance which can efficiently enhance
the profit of the firms.

Inspired by significance of pricing and inventory control of deteriorating items, in this paper, a novel model for
dynamic pricing and inventory control of non-instantaneously deteriorating items is developed. To tackle with
the practical conditions of the inventory systems, not only the selling price is assumed to be time-dependent
but also the effect of changes in price is incorporated into the demand model. Since the demand rate is a
decreasing function of the selling price, the negative impact of price increases (or positive influence of price
reductions) on demand is obvious. This relation is more highlighted for some of the perishable items such as
fashion accessories or Petroleum products. As reported in [1], Luxury brands such as Louis Vuitton, Calvin Klein
and Versace incorporate successive price reductions in mid-season and end of the season sales. Following such a
manner, when the discount rate increases by 20 percent much more customers are absorbed in comparison with
10 percent. Similarly, in oil industry, when the price reductions are high the demand rate increases drastically.
Iranol and SPD incorporate this same selling strategy to stimulate the sale of oil motor.

Apart from price, the demand rate is dependent on advertisement as a powerful marketing parameter. In
order to characterize the optimal solution, some useful theoretical results are derived based on which an iterative
and simple solution algorithm is developed.

The remainder of the paper is organized as follows: in Section 2, the literature of the problem is reviewed
and the related research gaps are distinguished. The assumptions and notations of the model are presented
in Section 3. In Section 4, the mathematical model of the inventory system is formulated. Section 5 provides
the theoretical results and the solution algorithm which are applied to derive the optimal solution. Numerical
results and sensitivity analysis are represented in Section 6. Finally Section 7, finishes the paper with conclusion
and recommended future research directions.

2. Literature review

The literature body of the problem is categorized by considering three types of demand including price-
dependent demand, price and time-dependent demand, and price and stock-level-dependent demand. Each
category involves a number of noteworthy studies.

2.1. Price-dependent demand

You [3] proposed a model which investigated the optimal times of price reductions where backorders were
allowed and the demand curve might vertically shift down by reducing price. Chen and Sapra [4] also considered
a two-period lifetime for products with a finite planning horizon and a periodic review inventory system. In
Ghasemy Yaghin et al. [5] a similar problem was studied in a bi-level supply chain c for a multi-product and
multi-period system.

Cai et al. [6] represented one of the rare studies on dynamic pricing that modeled price as a function of time.
Wang et al. [7] also considered price as a function of time and modeled a non-instantaneous deterioration pattern.
Yang et al. [8] investigated the possible effects of a supply price increase on retail pricing of deteriorating items.
Zhang et al. [9] considered the problem of pricing and inventory management of deteriorating items under the
assumption that the deterioration rate can be reduced by means of effective preservation technology investment.

Feng et al. [10] proposed a dynamic optimization model to maximize total profit by setting a joint pricing and
advertising policy under advertising capacity limit. Liu et al. [11] developed an inventory model for perishable
foods with price and quality dependent demand. The purpose of the paper was to determine a joint pricing
and preservation technology investment strategy that optimizes the profit of the system. Chang et al. [12]
proposed a model to determine optimal pricing and replenishment policies where linked-to-order trade credits
were offered to the retailer. Shah et al. [13] provided another study that analyzed the impact of advertisement
on demand. They considered an inventory system with non-instantaneous deteriorating items in which demand



INVENTORY AND REVENUE MANAGEMENT UNDER NON-INSTANTANEOUS DETERIORATION 1253

rate was a function of selling price and the frequency of advertisement in each replenishment cycle. Modeling
the inventory holding cost as a time-dependent function was another notable feature of their model.

2.2. Price and time-dependent demand

Tsao and Sheen [14] presented one of the very few researches on effect of advertising on demand. Demand
was modeled as a linear function of price, exponential function of time, and quadratic function of advertising
costs. Zhang et al. [15] proposed a different structure. They developed a dynamic advertising model in which
goodwill affected by advertising effort had a positive impact on the reference price.

Tripathy and Pradhan [16] considered demand as a decreasing function of price and time and assumed three-
parameter Weibull distribution for deterioration rate. Dye [17] modeled demand as a general decreasing function
of time and price. Purchasing price and product deterioration rate were defined as general functions of time.
Finite time horizon and partial time-dependent backlog are considered in the structure of the proposed model.
Delayed payments provided by both supplier and retailer are incorporated in the model as well.

Avinadav et al. [18] studied the pricing and ordering policies for products with time and price-dependent
demand where demand was a linear decreasing function of the time elapsed after the last inventory system
review. Panda et al. [19] studied the pricing and inventory management problem for perishable products by
considering non-instantaneous deterioration. The price of the product in each period was obtained by defining
price as a function of initial price and discount parameter. Krommyda et al. [20] studied a same problem for a
two-warehouse inventory system.

2.3. Price and stock-level-dependent demand

Teng and Chang [21] were the first researchers who considered constant deterioration rate for products with
price and stock-level-dependent demand. Giri and Bardhan [22] studied a single-period inventory system by
considering price-stock-level-dependent demand in a bi-level supply chain including one supplier and one seller.
In Soni and Patel [23] non-instantaneous deterioration and delayed payment by supplier are considered while
shortage was not allowed. Table 1 represents a brief review of the mentioned papers.

Despite of the rich literature of the problem, a number of research gaps are distinguished: in the area of
dynamic pricing, there are few studies formulating price as a function of time by defining discount variable,
while this study has formulated the selling price as a time-dependent function by defining discount fraction
variable as well as initial price. To the best of our knowledge, there is no research work incorporating the effect
of changes in price into the demand function. However, this consideration enhances the dynamic feature of the
model and is embedded into the structure of our demand function. The impact of the price of the substitute
products has been rarely taken into account in the related literature. This consideration has been incorporated
into the proposed demand model as well. Finally, despite of the high significance of advertisement in stimulating
demand, there are few related research works linking demand to the advertisement factor. In this study the
advertisement factor is modeled as the frequency of advertisement in each cycle.

3. Notations and assumptions

In order to have a uniform set of notations, the following notations are used throughout the paper:

Notations

Parameters
c Unit purchasing cost.
h Unit inventory holding cost per unit time.
O The ordering cost per order.
B Cost of each advertisement.
td The period of time with no deterioration.
ps Unit purchasing cost of substitute products.
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Variables
A The frequency of advertisement in each cycle (decision variable).

s(t) The unit dynamic price of product at any time t (decision variable).
T The replenishment cycle of the product (decision variable).

I1(t) The inventory level at time t(0 � t � td).
I2(t) The inventory level at time t(td � t � T ).
I0 The maximum inventory level.
Q The order quantity.
ṡ Changes in price per unit time.

OC The total ordering cost.
HC The total inventory holding cost.
PC The total purchasing cost.
AC The total advertisement cost.

TP (s(t), A, T ) The total profit per unit time of the inventory system.

Assumptions

The following assumptions form our proposed dynamic pricing and inventory control model:

1. The planning horizon is infinite and shortage is not allowed.
2. The replenishment rate is infinite and the lead time is zero.
3. The inventory system involves single non-instantaneous deteriorating item.

4. The dynamic price of the product at any time t is formulated as: p(t) =
{

s0 0 � t � td
s0 exp(−η(t − td)) td < t � T

where s0 is the initial price and η ∈ π is variable of discount fraction for each unit time passing after the
start of deterioration. In this paper π = {0.2, . . . , 0.8, 0.9}.

5. The demand rate is a function of the selling price, frequency of advertisement and changes in price during
time. The price of substitute products affects demand as well. Therefore, we set D(s(t), A) = (D0 − μs(t) +∑
s∈Ω

γs ps − εṡ)(1 + A)λ where D0 is the potential demand where price is equal to zero, μ > 0 is the price

sensitivity factor, γs > 0 is the price sensitivity factor for substitute products, Ω is the set of substitute
products, ε > 0 is the sensitivity factor of changes in price and 0 � λ < 1 is the shape parameter of the
advertisement. As in [24], this demand model is in form of additive-multiplicative demand models which has
been vastly incorporated in recent literature.

6. The deterioration rate θ(t) at any time t � 0 follows Weibull distribution given by αβtβ−1. Where 0 < α � 1
is the scale parameter and β > 0 is the shape parameter. Weibull distribution is the most widely used
deterioration rate because of its power in projecting different decaying patterns. Figure 1 expresses this
claim. As shown, when the shape parameter (β) is equal to unity the deterioration rate takes constant
values. When β > 1 the deterioration rate is increasing and the initial rate is almost zero which is mostly
applied in non-instantaneous deterioration case. On the other hand when β < 1 the initial decaying rate is
extremely high and decreasing. As common in literature and for mathematical simplicity we have assumed
β = 2.

4. The mathematical formulation

As mentioned in assumptions, the dynamic price of the product at any time t is formulated as:

s(t) =

{
s0 0 � t � td

s0 exp(−η(t − td)) td < t � T .
(4.1)
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Figure 1. The Weibull deterioration rate.

 dt T      dt T  

Figure 2. The inventory system for different cases.

Therefore, the changes in price per unit time are defined as:

ṡ =

{
0 0 � t � td

−s0η exp(−η(t − td)) td < t � T .
(4.2)

The inventory system evolves as follows: I0 units of items arrive at the inventory system at the beginning of
each cycle. Based on the values of td and T , two cases are possible (td � T and td � T ) which are shown in
Figure 2. Each case is discussed in details as follows:

Case 1. td � T . In this case, during the interval [0, td], the inventory system exhibits no deterioration and the
inventory level decreases owing to demand only. Subsequently the inventory level declines due to demand and
deterioration during time interval [td, T ]. Based on this description during time interval [0, T ] the inventory
status is represented by the following differential equations:

dI1(t)
dt

= −D(s(t), A) = −D(s0, A) 0 � t � td (4.3)

dI2(t)
dt

= −D(s(t), A) − θ(t) I2(t) td � t � T. (4.4)
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With boundary conditions I1(0) = I0 and I2(T ) = 0 solving equations (4.3) and (4.4) yields:

I1(t) = −D(s0, A) t + I0 (4.5)

I2(t) = e−αt2
T∫

t

D(s(u), A) eαu2
du. (4.6)

As shown in Figure 2, I1(td) = I2(td). Then the maximum inventory level (I0) is obtained as:

I0 = e−αt2d

T∫
td

D(s(u), A) eαu2
du + D(s(td), A)td. (4.7)

Substituting (4.7) into (4.5) gives:

I1(t) = e−αt2d

T∫
td

D(s(u), A) eαu2
du − D(s(t), A)t + D(s(td), A)td. (4.8)

The order quantity is equal to I0 i.e.

Q = I0 = e−αt2d

T∫
td

D(s(u), A) eαu2
du + D(s(td), A)td. (4.9)

The total profit of the inventory system involves the following components:

1. SR: the sales revenue

SR =

T∫
0

s(t)D(s(t), A) dt. (4.10)

2. Oc: the ordering cost
OC = O. (4.11)

3. HC: the inventory holding cost

HC = h

⎛
⎝ td∫

0

I1(t)dt +

T∫
td

I2(t)dt

⎞
⎠

= h

td∫
0

e−αt2d

⎡
⎣ T∫

td

D(s(u), A) eαu2
du − D(s(t), A)t + D(s(td), A)td

⎤
⎦dt

+ h

T∫
td

e−αt2

⎡
⎣ T∫

t

D(s(u), A) eαu2
du

⎤
⎦dt. (4.12)
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4. PC: the purchasing cost

PC = cQ = c

⎛
⎝e−αt2d

T∫
td

D(s(u), A) eαu2
du + D(s(td), A)td

⎞
⎠ . (4.13)

5. AC: the advertisement cost

AC = B · A. (4.14)

Therefore, the total profit per unit time (TP (s(t), A, T )) is given by:

TP1(s(t), A, T ) =
1
T

(SR − OC − HC − PC − AC). (4.15)

Case 2. td � T . In this case, the model turns into the traditional inventory model and the total profit of the
system is given by:

TP2(s(t), A, T ) =

(
D0 − μs0 +

∑
s∈Ω

γs ps

)
(1 + A)λ

[
s0 − hT

2
− c

]
− B · A + O

T
· (4.16)

Then, the total profit of the system is given by:

TP (s(t), A, T ) =

⎧⎨
⎩

TP1(s(t), A, T ) td � T

TP2(s(t), A, T ) td � T .

(4.17)

It should be noted that, the function TP (s(t), A, T ) is continuous at T = td. Next section provides theoretical
results and solution methodology to determine the optimal solution.

5. Solution methodology

Due to high complexity of the formulated equations, the concavity of the total profit per unit time cannot
be proved by using Hessian matrix. Therefore, the problem is solved applying the following search procedure a
similar form of which has been used in Wu et al. [25] and Shah et al. [13] as well. We first prove that for given
values of η, s0 and T there exist a unique optimal value of A. Then for known values of η, s0 and A, a unique
optimal value of T is obtained and finally, for given η, A and T , a unique optimal value of s0 is determined
which maximizes the total profit per unit time. Since the discount fraction is defined as a discrete variable, the
above mentioned procedure is applied for different values of η and finally the optimal solution is obtained by
comparing the results.

First, for fixed η, s0 and T , the second order derivative of TP (s(t), A, T ) is obtained as follows:

∂2TP

∂A2
=

λ(λ − 1)(1 + A)λ−2

T
(Expression i) i = 1, 2, (5.1)
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where:

Expression 1 = Expression a − Expression b − Expression c (5.2)

Expression a =

td∫
0

(
D0 +

∑
s∈ Ω

γs ps − μs0

)
p0dt

+

T∫
td

(
D0 +

∑
s∈ Ω

γs ps + s0(εη − μ)
(
e−η(t−td)

))
s0(e−η(t−td))dt (5.3)

Expression b = h

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

td∫
0

(
e−αt2d

) T∫
td

(
D0 +

∑
s∈ Ω

γs ps + s0(εη − μ)(e−η(u−td))
)(

eαu2
)

du dt

T∫
td

(
e−αt2

) T∫
t

(
D0 +

∑
s∈ Ω

γs ps + s0(εη − μ)(e−η(u−td))
)

(eαu2
)du dt

td∫
0

−
(

D0 +
∑

s∈Ω

γs ps − μs0

)
(t − td)dt

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

Expression c = c

⎡
⎣(e−αt2d

) T∫
td

(
D0 +

∑
s∈Ω

γs ps + s0(εη − μ)
(
e−η(t−td)

)(
eαt2

))
dt + (D0 − μp0)td

⎤
⎦ (5.5)

Expression 2 = s0

(
D0 +

∑
s∈Ω

γs ps − μs0

)
T − h

2
(D0 + γsps − μs0)T 2 − c (D0 + γsps − μs0)T. (5.6)

Since λ < 1 it is obvious that ∂2TP
∂A2 < 0, therefore TP (s(t), A, T ) is a concave function of A and the search to

find the optimal frequency of advertisement is restricted to find a local optimum. Now we provide some useful
theoretical results in order to find the optimal length of replenishment (T ∗) and the optimal initial price (s∗0)
for two aforementioned possible cases.

For notational simplicity set:

Δ(A, s(t)) = O + B · A − h

2
((D0 − μs0)td +

∑
s∈ Ω

γs ps − μs0)(1 + A)λt2d. (5.7)

Case 1. td � T .

Lemma 5.1. For fixed η and A and known s0 we have

(a) If Δ(A, s(t)) � 0 then TP1(s(t), A, T ) is concave and has a unique global optimum value at T ∗
1 = T1 where

∂TP1(s(t), A, T )
∂T |T=T1 = 0 (see Eq. (A.1) in Appendix A).

(b) If Δ(A, s(t)) < 0 then TP1(s(t), A, T ) has a maximum value at T ∗
1 = td.

Proof. See Appendix A. �

Therefore, For given s0 and fixed η and A, T ∗
1 is given by:

T ∗
1 =

{
T1 Δ(A, s(t)) � 0

td Δ(A, s(t)) < 0.
(5.8)

Lemma 5.2. For fixed A, η and given T1 ∈ [td,∞) there exists a unique s1∗
0 which maximizes TP1(s(t), A, T )

where ∂TP1(s(t), A, T )
∂s0

|s0=s1∗
0

= 0 (see Eq. (B.2) in Appendix B).
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Proof. See Appendix B. �

Case 2. td � T .

Lemma 5.3. For known s0 and fixed η and A, we have

(a) If Δ(A, s(t)) � 0 then TP2(s(t), A, T ) is concave and has a unique global optimum value at T ∗
2 = T2 where

∂TP2(s(t), A, T )
∂T |T=T2 = 0 (see Eq. (C.1) in Appendix C).

(b) If Δ(A, s(t)) > 0 then TP2(s(t), A, T ) has a maximum value at T ∗
2 = td.

Proof. See Appendix C. �

Therefore, for fixed and given η, s0 and A, T ∗
2 is given by:

T ∗
2 =

{
T2 Δ(A, s(t)) � 0

td Δ(A, s(t)) > 0
(5.9)

Lemma 5.4. For fixed A and η and Known T2 ∈ (0, td] there exists a unique s2∗
0 which maximizes

∂TP2(s(t), A, T )
∂s0

|s0=s2∗
0

= 0 (see Eq. (D.2) in Appendix D).

Proof. See Appendix D. �

Combining Lemmas 5.1 and 5.3, we have the following theorem

Theorem 5.5. For given A and known s0 we have:

1. If Δ(A, s(t)) > 0 the optimal replenishment cycle is T ∗ = T1.
2. If Δ(A, s(t)) < 0 the optimal replenishment cycle is T ∗ = T2.
3. If Δ(A, s(t)) = 0 the optimal replenishment cycle is T ∗ = td.

Proof. Regarding the fact that TP1(s(t), A, td) = TP2(s(t), A, td), the proof follows from Lemmas 5.1
and 5.3. �

For fixed A and σ the unique optimal solution for (T, s0) which maximizes TP (s(t), A, T ) exists. The optimal
solution can be obtained through some iterative numerical procedure the convergence of which can be easily
proved by adopting a similar graphical technique used in Hadley and Whitin [26]. The following algorithm which
is similar to the one proposed by Wu et al. [25] and Shah et al. [13] is developed to identify global optimal
solution for (A, s0, η, T ). As the algorithm is based upon proven lemmas, it ensures that the obtained solutions
are optimal.

Algorithm

Step 1: Set j = 1 and η = 0.2.
Step 2: Set Aj = 0.
Step 3: Set k = 1 and initialize the value of sk,j

0 = c.
Step 4: Calculate Δ(Aj , sk,j(t)).

4.1: If Δ(Aj , sk,j(t)) > 0, obtain the value of T k,j
1 by solving ∂TP1(s(t),A,T )

∂T = 0. Substitute T k,j
1 into

equation (B.2) in order to calculate sk,j
0(1). Set sk+1,j

0 = sk,j
0(1) and T k,j = T k,j

1 .

4.2 : If Δ(Aj , sk,j(t)) < 0, obtain the value of T k,j
2 by solving ∂TP2(s(t),A,T )

∂T = 0. Substitute T k,j
2 into

Equation (D.2) in order to calculate sk,j
0(2). Set sk+1,j

0 = sk,j
0(2) and T k,j = T k,j

2 .

4.3 : If Δ(Aj , sk,j(t)) = 0, set T k,j
1 = T k,j

2 = td. Substitute T k,j
2 into equations (B.2) or (D.2) in order

to calculate sk,j
0 . Set sk+1,j

0 = sk,j
0 and T k,j = td.
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Step 5: If |sk+1,j
0 − sk,j

0 | < Epsilon (Epsilon is considered to be a very small value), then set (sj∗
0 , T j∗) =

(s(k+1,j)∗
0 , T (k,j)∗) and go to Step 6. Otherwise, k = k + 1 and go back to Step 4.

Step 6: Calculate TP (s(t)j∗, Aj , T j∗), then (sj∗
0 , T j∗) is the optimal solution and TP (s(t)j∗, Aj , T j∗) is the

maximum value of the objective function for fixed Aj and σ.
Step 7: Set A

′j = Aj + 1 and repeat Step 3 to Step 6 to obtain TP (s(t)j∗, A
′j , T j∗).

Step 8: If TP (s(t)j∗, A
′j , T j∗) > TP (s(t)j∗, Aj , T j∗), then Aj = A

′j and go back to Step 7. Otherwise go
to Step 9.

Step 9: Set (sj∗
0 , Aj∗, T j∗) = (sj∗

0 , Aj , T j∗) which is the optimal solution for fixed σ.
Step 10: Set j = j + 1 and η = η + 0.1. If η � 0.9 go back to Step 2; otherwise go to Step 11.
Step 11: Set TP (p(t)p∗, Ap, T p∗) = maxj{TP (p(t)j∗, Aj , T j∗)} and

(s∗0, η∗, A∗, T ∗) = (sp∗
0 , ηp∗, Ap∗, T p∗).

Step 12: End.

6. Experimental results

In this section, the developed algorithm is applied to solve the following problem in order to show validity of
the proposed model and applicability of the developed algorithm. The values of the parameters of the problem
are defined in Table 2. Identical parameters of model are taken from Shah et al. [13] and adopted to our
model. In order to show the effect of related deterioration and advertisement parameters, Table 3 provides the
computational results for different values of α, td and λ.

Based on the computational results, the following managerial insights are obtained about deterioration and
advertisement factors which are analogous to Shah et al. [13]:

1. For fixed α and td, increasing λ results in increasing optimal replenishment cycle (T ∗), optimal order quantity
(Q∗), optimal advertisement frequency (A∗), optimal initial price (s∗0) and total profit per unit time of the
inventory system (TP ). In fact, changes in the shape of advertisement (λ) increase A∗ and therefore, result in
an increase in demand and the total profit of the system. The optimal discount fraction (η∗) is not sensitive
to changes in λ. This shows that if the retailer could sell the products in a market which is highly influenced
by promotional activities, she will be able to earn more profits.

3. For fixed α and λ, it is observed when value of td increases, optimal replenishment cycle (T ∗), optimal order
quantity (Q∗) and total profit per unit time of the inventory system (TP ) increase, whereas optimal initial
price (s∗0) decreases slightly and optimal advertisement frequency (A∗) and optimal discount fraction (η∗)
remain unchanged. As deterioration imposes excess costs on the inventory system and lowers the value of
the total profit of the inventory system, the later the inventory starts to deteriorate (i.e. td has higher value)
the higher profit is obtained. This also conveys a significant idea. Investing on advanced inventory holding
technologies increases the functional costs of the firms. On the other hand, it can efficiently reduce the costs
by delaying the time that the items start to deteriorate. Therefore, a balance between these two costs can
raise the profits.

3. For fixed λ and td, with an increase in the value of α, optimal advertisement frequency (A∗) and optimal
discount fraction (η∗) remain unchanged, while increasing α results in a decrease in the value of optimal
order quantity (Q∗) and total profit per unit time of the inventory system (TP ). In comparison to the other
variables, changes in the value of optimal initial price (s∗0) is imperceptible. Similarly it can be concluded
that, better inventory holding technologies can lower the deterioration rate and increase the firm’s profit.

Table 2. The value of the parameters of the problem.

Parameter D0 γs ps ε μ O B h c
Value 4000 30 5 60 200 250 80 0.4 3
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Table 3. Computational results for different values of α, td and λ.

α td λ η A s0 T Q TP
0.03 0.9 2 6.7522 0.4926 2041.122 10 957.22

0.02 0.04 0.9 5 6.8648 0.5203 2475.439 12 232.42
0.05 0.9 11 7.0055 0.5556 3068.948 14 487.91
0.03 0.9 2 5.9734 0.5109 2274.018 11 011.31

0.08 0.04 0.04 0.9 5 6.0501 05332 2705.243 12 942.44
0.05 0.9 11 6.1501 0.5829 3301.836 15 107.45
0.03 0.9 2 5.5348 0.5395 2577.558 11 729.42

0.06 0.04 0.9 5 5.5908 0.5554 3051.005 13 320.61
0.05 0.9 11 5.6643 0.6112 3714.032 15 993.74
0.03 0.9 2 6.7051 0.4819 1976.374 9351.24

0.02 0.04 0.9 5 6.8174 0.5091 2401.511 10 994.73
0.05 0.9 11 6.9572 0.5437 2969.921 12 821.55
0.03 0.9 2 5.9378 0.5033 2175.734 9992.21

0.1 0.04 0.04 0.9 5 6.0131 0.5149 2589.127 11 425.32
0.05 0.9 11 6.1114 0.5538 3154.404 13 450.76
0.03 0.9 2 5.5186 0.5158 2350.814 10 321.31

0.06 0.04 0.9 5 5.5717 0.5439 2758.733 11 952.73
0.05 0.9 11 5.6435 0.6089 3416.241 13 980.43
0.03 0.9 2 6.6641 0.4731 1915.872 8251.11

0.02 0.04 0.9 5 6.7759 0.4997 2331.834 9336.14
0.05 0.9 11 6.9154 0.5337 2904.595 11 221.33
0.03 0.9 2 5.9111 0.4987 2081.684 8865.74

0.12 0.04 0.04 0.9 5 5.9848 0.5098 2477.244 9931.01
0.05 0.9 11 6.0816 0.5381 3011.036 11 784.99
0.03 0.9 2 5.5145 0.5002 2219.547 9119.21

0.06 0.04 0.9 5 5.5656 0.5378 2601.115 10 241.33
0.05 0.9 11 5.6351 0.5522 3310.714 12 179.95

Table 4. Computational results for different values of μ and ε.

μ ε η A s0 T Q TP

8

4 0.5 11 7.6652 0.7102 3398.620 18 111.2545
6 0.5 16 8.7175 0.8003 4259.057 21 335.5333
8 0.6 20 11.1641 0.8643 5224.991 29 714.1003

10

4 0.6 6 6.0912 0.6191 2623.942 11 456.9989
6 0.7 8 7.1216 0.6715 3097.803 14 569.8085
8 0.7 12 8.2852 0.7435 3838.153 18 107.8556

12

4 0.8 4 5.2034 0.4527 2168.825 7606.0712
6 0.9 5 5.9843 0.5098 2477.244 9931.0119
8 0.9 7 6.9047 0.5830 2958.286 12 688.6746

As observed, the optimal discount fraction (η∗) is insensitive to the changes in the value of α, td and λ. Hence,
it seems necessary to evaluate the effect of changes of other parameters in the value of the optimal discount
fraction. Table 4 provides computational results for different value of μ and ε when α = 0.75, td = 0.04 and
λ = 0.04.

Based on the computational results, following managerial insights are obtained about the effect of ω and ε:

1. For fixed ε, by increasing price sensitivity factor (μ), optimal replenishment cycle (T ∗), optimal order quan-
tity (Q∗), optimal advertisement frequency (A∗), optimal initial price (s∗0) and total profit per unit time of
the inventory system (TP ) decrease while the discount fraction (η∗) increases. When the price sensitivity



INVENTORY AND REVENUE MANAGEMENT UNDER NON-INSTANTANEOUS DETERIORATION 1263

Table 5. Computational results for different value of ps.

ps η A s0 T Q TP
4 0.9 4 5.6461 0.4418 2226.803 8704.2281
5 0.9 5 5.9848 0.5098 2477.244 9931.0119
6 0.9 5 6.3218 0.5967 2727.537 11 064.4553
7 0.9 6 6.6576 0.6026 2978.181 12 305.4629

of the market increases, a fixed selling price establishes a lower demand rate. Therefore, by demand drops the
order quantity decreases as well. The firms need to lower the initial selling price and increase the discount
rate to compensate this negative effect. These all, influentially reduce the firm’s profits.

2. For fixed μ, increasing sensitivity factor of changes in price (ε) results in an increase in optimal replenishment
cycle (T ∗), optimal order quantity (Q∗), optimal advertisement frequency (A∗) and total profit per unit time
of the inventory system (TP ). By increasingε, a fixed price reduction results in a higher demand rate. In
deterioration free period, the price is fixed. Then the firm can earn more profits by increasing the initial
selling price and increasing the discount rate slightly that can offset the initial price increase.

As mentioned before, the price of substitute product influences demand as well. Regarding the computational
results provided in Table 5 for α = 0.75, td = 0.04 and λ = 0.04, this influence is analyzed.

As it is observed, by increasing price of substitute product (ps), optimal replenishment cycle (T ∗), optimal
order quantity (Q∗), optimal advertisement frequency (A∗), optimal initial price (s∗0) and total profit per unit
time of the inventory system (TP ) gets larger due to the direct effect of ps on demand rate.

7. Conclusion

This paper provided an integrated model for dynamic pricing and inventory control of non-instantaneous
deteriorating items. The selling price was defined as a time-dependent function of the initial price and discount
rate which is one of the novel features of the proposed model. The product was sold at an initial price value
until the deterioration started; then its price was exponentially discounted to boost customer demands and
compensate the negative impact of the deterioration. Apart from the selling price, the demand rate was a
function of advertisement and changes in price over time. To the best of our knowledge, there is no research work
incorporating the effect of changes in price into the demand function. Moreover, the impact of advertisement
on stimulating sales was embedded into the demand model. An iterative algorithm was developed based on
derived theoretical results. We illustrated through the experimental results the way the optimal solution was
obtained by this simple algorithm. Computational results indicated that implementing better inventory holding
technologies can efficiently enhance the profit of the system by lowering the negative effect of the deterioration.

The proposed model can be extended by considering shortages, trade credit and time value of money. Con-
sidering variable ordering and holding costs is another future research direction. Since variable holding cost is
particularly common and practical in the storage of deteriorating items this extension seems really beneficial.

Appendix A. Proof of Lemma 5.1

The first order partial derivative of TP1(s(t), A, T ) with respect to T is given by:

∂TP1

∂T
=

(SR′ − HC′ − PC′)T − (SR − OC − HC − PC − AC)
T 2

, (A.1)
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where:

SR′ = s0(1 + A)λ(e−η(T−td))

(
D0 +

∑
s∈Ω

γs ps + s0(εη − μ)(e−η(T−td))

)
(A.2)

HC′ = h(1 + A)λ

⎡
⎢⎢⎣
(

D0 +
∑

s∈Ω

γs ps + s0(εη − μ)(e−η(T−td))
)

(eαT 2
)

td∫
0

(e−αt2d)dt

+
(

D0 +
∑

s∈ Ω

γs ps + s0(εη − μ)(e−η(T−td))
)

(eαT 2
)

T∫
td

(e−αt2)dt

⎤
⎥⎥⎦ (A.3)

PC′ = c(e−αt2d)

(
D0 +

∑
s∈Ω

γs ps + s0(εη − μ)(e−η(T−td))

)
(eαT 2

)(1 + A)λ. (A.4)

Motivated by equation (A.1) the auxiliary function R(T ), T ∈ [td,∞) is defined as:

R(T ) = (SR′ − HC′ − PC′)T − (SR − OC − HC − PC − AC). (A.5)

The first order derivative of R(T ) with respect to T ∈ [td,∞) gives:

dR(T )
dT

= (SR′′ − HC′′ − PC′′)T, (A.6)

where:

SR′′ = s0(1 + A)λ

⎡
⎣−ηe−η(T−td)

(
D0 +

∑
s∈Ω

γs ps + s0(εη − μ)(e−η(T−td))
)

−ηe−2η(T−td)s0(εη − μ)

⎤
⎦ (A.7)

HC′′ = h(1 + A)λ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣−ηs0(εη − μ)(e−η(T−td))(eαT 2

)

+2αT eαT 2
(D0 +

∑
s∈Ω

γs ps + s0(εη − μ)(e−η(T−td)))

⎤
⎦

[
td∫
0

(e−αt2d)dt +
T∫

td

(e−αt2)dt

]

+(D0 +
∑

s∈Ω

γs ps + s0(εη − μ)(e−η(T−td)))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.8)

PC′′ = c(e−αt2d)(1 + A)λ

⎡
⎣−ηs0(εη − μ)(e−η(T−td))(eαT 2

)

+2αT eαT 2
(D0 +

∑
s∈Ω

γs ps + s0(εη − μ)(e−η(T−td)))

⎤
⎦. (A.9)

It is shown that dR(T )
dT < 0 and hence R(T ) is a strictly decreasing function with respect to T ∈ [td,∞) (simply

if η < μ
ε which is logically true since demand should be more sensitive to price than changes in price (i.e. ε < μ)

and we have assumed η < 1), moreover

R(td) = O + B · A − h

2

(
D0 +

∑
s∈Ω

γs ps − μs0

)
(1 + A)λt2d = Δ(A, s(t)) (A.10)

and limR(T ) = −∞T→∞.

Part (a). If Δ � 0, applying the intermediate value theorem, there exist a unique value of T (say T1 ∈ [td,∞))
where R(T1) = 0 which means that T1 is the unique solution of ∂TP1(s(t), A, T )

∂T = 0.
From equations (A.1) and (A.5) we have

∂TP1(s(t), A, T )
∂T

=
R(T )
T 2

· (A.11)



INVENTORY AND REVENUE MANAGEMENT UNDER NON-INSTANTANEOUS DETERIORATION 1265

According to the condition for which R(T ) is strictly decreasing (i.e. dR(T )
dT = (SR′′ − HC′′ − PC′′)T < 0) at

point T = T1 we have:
∂2TP1(s(t), A, T )

∂T 2
|T=T1 =

(SR′′ − HC′′ − PC′′)
T

< 0. (A.12)

Therefore, T1 ∈ [td,∞) is the global maximum solution of TP1(s(t), A, T ).

Part (b). If Δ < 0, then R(td) < 0. Since R(T ) is a strictly decreasing function of T ∈ [td,∞), ∀T ∈ [td,∞),
R(T ) < 0. Then from equation (A.11), TP1(s(t), A, T ) is a strictly decreasing function of T ∈ [td,∞). Therefore,
TP1(s(t), A, T ) reaches its maximum value at T = td.

Appendix B. Proof of Lemma 5.2

The first order derivative of TP1(s(t), A, T ) with respect to s0 gives

∂TP1

∂s0
=

(1 + A)λ

T1

{(
D0 +

∑
s∈Ω

γs ps − 2μs0

)
td +

(
D0 +

∑
s∈Ω

γs ps

)∫ T1

td

e−η(t−td)dt

+ 2s0(εη − μ)
∫ T1

td

(e−η(t−td))2dt − h

[ td∫
0

μ(t − td)dt

+ (εη − μ)
∫ td

0

(e−αt2d)

T1∫
td

(eαu2
)(e−η(u−td))dudt

+ (εη − μ)

T1∫
td

(e−αt2)

T1∫
t

(eαu2
)(e−η(u−td))dudt

]

− c(e−αt2d)(εη − μ)

T1∫
td

(eαt2)(e−η(t−td))dt

}
. (B.1)

By solving ∂TP1
∂s0

= 0, s1∗
0 yields

s1∗
0 =

{(
D0 +

∑
s∈Ω

γs ps

)⎡⎣td +

T1∫
td

e−η(t−td)dt

⎤
⎦− h

[ td∫
0

μ(t − td)dt

× (εη − μ)
∫ td

0

(e−αt2d)

T1∫
td

(eαu2
)(e−η(u−td))dudt

+ (εη − μ)
∫ T1

td

(e−αt2)
∫ T1

t

(eαu2
)(e−η(u−td))dudt

]

− c(e−αt2d)(εη − μ)

T1∫
td

(eαt2)(e−η(t−td))dt

}/⎧⎨
⎩−2(εη − μ)

T1∫
td

e−2η(t−td)dt + 2μ

⎫⎬
⎭ . (B.2)

At point s0 = s1∗
0

∂2TP1

∂s2
0

|s0=s1∗
0

= (1 + A)λ

⎧⎨
⎩−2μtd + 2(εη − μ)

T1∫
td

e−2η(t−td)dt

⎫⎬
⎭ . (B.3)
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Since we have defined (εη − μ) < 0, ∂2TP1
∂s2

0
|s0=s1∗

0
< 0. Thus s1∗

0 is the global optimum solution for fixed A and
T1 ∈ [td,∞).

Appendix C. Proof of Lemma 5.3

The first order partial derivative of TP2(s(t), A, T ) with respect to T is given by

∂TP2

∂T
= −h

2
(D0 +

∑
s∈Ω

γs ps − μs0)(1 + A)λ +
B · A + O

T 2
· (C.1)

Motivated by equation (C.1) the auxiliary function S(T ), T ∈ (0, td] is defined as:

S(T ) = −h

2
(D0 +

∑
s∈Ω

γs ps − μs0)(1 + A)λT 2 + B · A + O. (C.2)

From equation (46) it follows that:

S(0) = O + B · A > 0 (C.3)

S(td) = O + B · A − h

2

(
D0 +

∑
s∈ Ω

γs ps − μs0

)
(1 + A)λt2d = Δ(A, s(t)). (C.4)

The first order derivative of S(T ) with respect toT ∈ (0, td] gives:

dS(T )
dT

= −h(D0 +
∑
s∈ Ω

γs ps − μs0)(1 + A)λT < 0. (C.5)

Then S(T ) is a strictly decreasing function with respect to T ∈ (0, td].

Part (a). If Δ � 0, Then S(T ) is strictly decreasing function from S(0) > 0 to S(td) � 0. Thus there is a
unique value of T (say T2) where S(T2) = 0.

From equations (C.1) and (C.2) we have

∂TP2(s(t), A, T )
∂T

=
S(T )
T 2

· (C.6)

At point we T = T2 have:
∂2TP2(s(t), A, T )

∂T 2
|T=T2 = −2

B · A + O

T 3
2

< 0. (C.7)

Therefore, T2 ∈ (0, td] is the global maximum solution of TP2(s(t), A, T ).

Part (b). If Δ > 0, then S(td) > 0. Then from equation (C.3), TP2(s(t), A, T ) is a strictly increasing function
of T ∈ (0, td], therefore the value of T ∈ (0, td] and reaches its maximum value at T = td.

Appendix D. Proof of Lemma 5.4

The first order derivative of TP2(s(t), A, T ) with respect to s0 gives

∂TP2

∂s0
=

(1 + A)λ

T2
[D0 +

∑
s∈Ω

γs ps − 2μs0 +
h

2
μT2 + cμ]. (D.1)
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By solving ∂TP2
∂s0

= 0, s2∗
0 yields:

s2∗
0 =

D0 +
∑

s∈Ω

γs ps + h
2 μT2 + cμ

2μ
· (D.2)

At point s0 = s2∗
0 we have:

∂2TP2

∂s2
0

|s0=s2∗
0

= −2μ(1 + A)λ < 0. (D.3)

Thus s2∗
0 is the global optimum solution for fixed A and T2 ∈ (0, td].
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