
RAIRO-Oper. Res. 50 (2016) 857–867 RAIRO Operations Research
DOI: 10.1051/ro/2016060 www.rairo-ro.org

AN EXACT METHOD TO GENERATE ALL NONDOMINATED SPANNING
TREES
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Abstract. We describe an exact method to generate the nondominated set of the minimum spanning
tree problem with at least two criteria. It is a separation and construction based method whose branch-
ing process is done with respect to edges belonging to at least two cycles of a given graph, inducing a
step of constructing linear constraints that progressively break cycles while respecting the connectivity
of the resulting graph. This has the effect of partitioning the initial graph into subgraphs, each of
which corresponds to a discrete multi-objective linear program allowing to find the nondominated set
of spanning trees. Randomly generated instances with more than two criteria are provided that show
the efficiency of the method.
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1. Introduction

The minimum spanning tree problem (MST problem) is to find a least-cost spanning tree in an edge-weighted
graph, it has several applications such as physical systems design, reducing data storage, cluster analysis and
it is typically used in different sorts of distribution systems such as pipelines, transmission lines or in the
design of leased-line telephone networks and other telecommunication problems. It also emerges as solutions to
subproblems of a number of problems in combinatorial optimization.

The problem of multi-objective minimum spanning tree (MOST problem) is one of the extended formulations
of the MST problem. In this study, we describe an exact method to find the nondominated set and/or the
efficient set of the MOST problem in an undirected connected graph in which a cost-vector of dimension r ≥ 2
is associated with each edge. A cost-vector Z of dimension r is said to dominate another cost-vector W of the
same dimension, if Z is at least as good as W and Z is not equal to W . A spanning tree T is said efficient if it
does not exist a spanning tree T ′ such that the cost-vector of T dominates the one of T ′. Z is a Pareto optimal
vector if it is nondominated by any other vector. The set of all nondominated spanning trees is known as the
Pareto front. For more details on the multi-objective optimization concepts, see [16].

The MOST problem is known to be NP-hard even for r = 2 [2,6] and although some methods developed for
r = 2 were theoretically generalized for r ≥ 3 [6, 14], without any computational study.
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In [15], the authors proposed an algorithm to solve the bi-objective case based on two phases. The first phase
calculates two supported efficient solutions obtained by solving the single-objective spanning tree problem for
each criterion. To generate the non-supported solutions, “k-best” algorithm [4] or the branch and bound method
are used to solve a weighted sum program.

The authors of reference [3] aim to find all the nondominated solutions of the bi-objective minimum spanning
tree problem by reducing the problem to a single-objective one. The method is based on the weighted sum
function, which uses Kruskal’s algorithm [9] to obtain the first supported spanning tree T 1. To build a new
spanning tree T 2, the edges that are not in T 1 are replaced by those which must leave T 1, while preserving the
non-dominance property.

Still in the bi-objective case, a branch and bound approach is given in reference [14]. This is mainly based on
an estimation of all nondominated points by a given subproblem that takes advantage of the two-dimensional
nature of the objective space. In fact, in this case it is easy to list the entire extreme supported points of a
subproblem.

Corley’s algorithm [5], is described to generate the efficient set of the MOST problem. However, a counter
example which shows that the algorithm is able to find spanning trees that are not efficient has been given by
Hamacher and Ruhe [6].

For the multi-objective integer linear problems (MOILP ), several methods are described to reach all non-
dominated solutions but many of them are CPU time intensive using problems with fewer objectives (see [12]).
Among these methods, three are reported, the first one [1] is an exact method to generate the nondominated
set for MOILP problems with r objective functions, r ≥ 2. It is based on a branch and cut approach and uses
a valid cut for the multi-objective case able to remove feasible solutions which are dominated. In the second
one [11], the authors proposed a recursive algorithm to generate the full set of nondominated objective functions
for the MOILP problem. For any value of the bound lr corresponding to the objective function r, r ≥ 2, each
solution to the obtained problem yields a nondominated objective vector for the original MOILP problem. In
order to generate new solutions, the bound lr decreases (for minimization problems) in relation to the current
nondominated solution until the corresponding integer linear program (ILP ) is infeasible. The main contribu-
tion of the method cited in [12] is to improve the recursive algorithm developed in [11] for generating the set of
all nondominated vectors. In fact, the new algorithm incorporates valuable informations that are not exploited
in the further algorithm. This has the effect to avoid solving an important set of intermediate ILPs. The two
methods [1, 12] are used as subroutines in our algorithm named MOST-Algorithm.

The aim of the present work is to provide a branch and bound based method to deal with the MOST problem
able to find the nondominated set with the criteria number r ≥ 2. It is based on a two-step procedure starting
by a separation step with respect to edges in common to at least two cycles of the given graph, yielding the step
of constructing the problem constraints in the form of linear equalities and subcycle-elimination inequalities
to ensure the non-existence of cycles. Each branch of the search tree induces a multi-objective linear program
with binary variables (MOLBP ) modeling the problem of the corresponding MOST throughout this branch.
Hence, the obtained MOLBP programs can be solved by one of the two methods described in [1, 12]. The
rest of the paper is organized as follows: we present in Section 1 the basic concepts and notations used in the
document. In Section 2, the exact method to solve the MOST problem is detailed, we describe the procedures
of the algorithm in Section 3, and the main results are proved in Section 4. Then, the Section 5 is devoted to
numerical experimentations performed on randomly generated instances using Matlab 2014a on an hp laptop,
Intel (R) core (TM) i5-4200M CPU@ 2.50GHz, 8 GB Ram. Finally, Section 6 points out the conclusion of this
study.

2. Definitions and notations

Given a connected and undirected simple graph G = (V, E) of order n, where V = {v1, v2, . . . , vn} is a set of
vertices and E = {e1, e2, . . . , em} is a set of edges and each edge ei ∈ E, i = 1, m, is valued by a cost-vector
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ci = (cik), k = 1, r, r ≥ 2. Let T ⊂ E a spanning tree of G, the cost-vector of T is given by Ck(T ) =∑
ei∈T cik, k = 1, r. We note C(T ) = (Ck(T ))k=1,r (see [5]).
We say that the vector C(T ) dominates another vector C(T ′) if Ck(T ) ≤ Ck(T ′) ∀k = 1, r and Ck(T ) <

Ck(T ′) for at least one index k ∈ {1, . . . , r}. A spanning tree T of G is efficient if there is no spanning tree T ′

of G such that C(T ′) dominates C(T ).
In the multi-objective optimization programming, the ideal point is found by collecting each optimal objective

values [16].
For the MOST problem, the ideal point I has coordinates Ik such that:

Ik = Ck(T ) = min {Ck(T ) : T spanning tree of G} , k = 1, r.

Throughout this paper e2c denotes the edges type of the graph G belonging to at least two cycles.
Note the set T = {e ∈ E : e /∈ T }. Then, for each edge e ∈ T , T ∪ {e} contains a unique cycle μe and

B = {μe, e ∈ T} is a cycle-basis of G. This means that the representative vectors V (μe) of edges of cycles
μe ∈ B form a basis of the vector subspace of dimension (m−n+ 1) of R

m, where the coordinates of V (μe) are
given by Vj(μe) = 1 if edge ej ∈ μe and 0 otherwise, for all j = 1, m. For more details see [10].

The mathematical model associated with the MOST problem is written as follows [6]:

xi =

{
1 if the edge ei ∈ T, i = 1, m

0 otherwise

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MinZ1 =
m∑

i =1

ci1xi

MinZ2 =
m∑

i =1

ci2xi

...

MinZr =
m∑

i = 1

cirxi

m∑
i =1

xi = n − 1 (2.1)

∑
ei∈E(S)

xi ≤ |S| − 1, ∀S ⊂ V, S �= ∅ (2.2)

xi ∈ {0, 1} ∀i = 1, m

where E(S) is the set of edges of the subgraph induced by S, S ⊂ V [10].
Note that, in the model (P ), the number of constraints (2.2) of subcycle-elimination inequalities is exponential

and any attempt to solve it with an exact method is already useless in the single-objective case.

3. Principle of the method

We first start by recalling an important property in the graphs, namely an edge of a graph G = (V, E) is
either an isthmus (an edge whose deletion increases the number of connected components of G), or it belongs
to a cycle of G [10]. Our method is based on this property in the sense that obtaining all the spanning trees of
G is done by dissecting the edges of cycles of G, particularly those of type e2c. Indeed, the belonging or not
of such edges to a spanning tree T prevents the creation of cycles in T . The proposed approach is a separation
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and construction type in a structured search tree constructed and passed in depth-first approach. The separation
is done on the e2c-edges of G and induces the construction step to describe constraints (2.2) of the program (P )
which ensures the elimination of cycles relatively to e2c-edges. Each branch of the search tree is constructed by
acting alternately on both separation and construction steps, which terminates at a leaf f without e2c-edges.

Hence, at each of such leaves f , we obtain a subgraph H with two possibilities. In the first one, the edges of H
constitute a spanning tree reduced to the unique solution of the corresponding branch. The second possibility
is that H contains only edge-disjoint cycles in which case the constraints eliminating all these cycles are added
to the system of constraints previously established. The obtained set of constraints with binary variables and
the criteria of program (P ), constitutes a multi-objective linear program (Pf ) that can be solved using any
of the existing methods to generate the set SMSTf of the efficient spanning trees and/or the SNDf set of
nondominated cost-vectors associated with the leaf f . To provide computer simulation experiments, it is worth
considering to adapt the faster of the two methods described in [1,12] to generate the SND set of nondominated
solutions of the MOST problem. We recall that the aim of this work is not to solve a MOLBP program but
to describe a general approach for the MOST problem applying simultaneously properties of graph theory and
linear programming.

To make faster our branch and bound based algorithm, an upper bound dominated set, SUB, is used. It
contains some nondominated solutions found by optimizing weighted sums of the criteria (supported efficient
solutions [16]) and potentially nondominated solutions, i.e., solutions that are not dominated by any solution
already known, are generated by an adapted Variable Neighborhood Search (VNS) algorithm [7]. Basically
the VNS algorithm is based on systematically changing the neighborhood of generated solutions to avoid local
minima and escape from the valleys which contain them. To adapt this idea to the MOST problem, we consider
a population of solutions, where the first population is randomly listed using Kruskal’s algorithm. VNS is applied
to each solution of the current potentially nondominated solutions in SUB set. Moreover, it is easy to calculate
the mono-objective minimum spanning tree allowing to get the ideal point coordinates, which is used as a lower
bound in the algorithm to fathom nodes of the search tree.

4. Procedures of the algorithm

In this section, the MOST-Algorithm steps are presented in details.

4.1. SUB Procedure

Input G = (V, E): connected graph, costs of edges of G.
Output The initial SUB set of potentially nondominated solutions.
Step 1.1. Generate Ψ1 a set of some supported spanning trees using a scalarization function.
Step 1.2. Generate Ψ2 a set of potentially nondominated solutions using the adapted VNS algorithm. To do
this, we consider only two types of neighborhood structures such that the neighbors of a given spanning tree T
are obtained by changing k edges of T which do not belong to a same cycle of G, considering k = 1 or k = 2.
Step 1.3. The initial SUB set contains the nondominated solutions of the set Ψ1 ∪ Ψ2.

4.2. Reduction Procedure

Input G = (V, E): connected graph, costs of edges of G.
Output G′: a partial graph of graph G, B: a cycle-basis of G′, F : a set of e2c-edges of G′.
Step 2.1. Find a cycle-basis B = {μ1, μ2, . . . , μm−n+1}.
Step 2.1.1. If it exists an edge e belonging to a cycle μ of the basis B such that the cost-vector of e is dominated
by all those of the edges of μ, then delete e from the graph G to obtain a partial graph G′ (see Prop. 5.1).
Step 2.1.2. If it exists an edge e belonging to a set Δ of cycles of B such that the cost-vector of e dominates
all those of the edges of Δ, then the edge e belongs to all nondominated spanning trees of MOST problem (see
Prop. 5.2).
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Step 2.2. Determine a new basis B.
Step 2.3. Find the set F = {e0 ∈ E/∃μl and μl′ ∈ B; e0 ∈ μl ∩ μl′}.

4.3. Separation and Construction Procedure

Input G′, B, F and SUB.
Output A set of linear constraints modeling the spanning trees of the branch that terminates at the current
leaf f .
Step 3.1.
a- If B = {μ1, μ2, . . . , μm−n+1} and F = ∅, we are in presence of a leaf f , then add the set of constraints to
break all edges-disjoints cycles in B:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∑
ej∈µi

xj ≤ |μi| − 1, ∀i = 1, m− n + 1 (4.1)

∑
ei∈E

xi = n − 1 (4.2)

b- If B = ∅, F = ∅ and (
∑

ei∈E xi = n − 1), we are in presence of a leaf f , then a spanning tree is obtained.
Fathom this leaf.
c- If F �= ∅ then, go to Step 3.2.
Step 3.2. Select an edge ei ∈ F and create two new nodes.
Step 3.2.1. In the first node, add the following constraint to the set of constraints previously imposed at the
parent node:

xi = 1 (4.3)

a- If the edge ei creates a cycle with the set of already fixed edges, then this node is fathomed.
b- Else, add the following constraints to break cycles μl and μl′ containing the edge ei:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
ej∈µl

xj ≤ |μl| − 1 (4.4)

∑
ej∈µl′

xj ≤ |μl′| − 1 (4.5)

xj ∈ {0, 1} j = 1, |μl| + |μl′| − 1

Step 3.2.2. In the second node, add the constraint to the set of constraints previously imposed at the parent
node:

xi = 0 (4.6)

Consider the graph G′ = G \ {ei} and go to Reduction Procedure.
Go to Step 3.1.

The next step corresponds to a leaf f involving a multi-objective linear program with binary variables (Pf )
written in the general form as given below.

4.4. Evaluation Procedure

Input A linear binary variables program with multiple objectives.
Output SNDf the set of the nondominated cost-vectors and/or SMSTf the associated efficient spanning trees
set.
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Step 4.1 Solve the following (Pf ) program. This is done using the method [12] for the programs with number
of criteria less or equal to four. For a greater criteria number, the method cited in [1] is used.

(Pf )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MinZi =
∑m

j=1 cjixj ; i = 1, r∑
ej∈µl

xj ≤ |μl| − 1; l ∈ L∑
ej∈E xj = n − 1

xp = 1; p ∈ M
xq = 0; q ∈ N

where along the branch of leaf f , M denotes the set of indices of edges belonging to all efficient trees, N
denotes the set of indices of edges excluded from all efficient trees and L is the set of indices of cycles of the
constructed basis.
Step 4.2. Return SNDf and/or SMSTf sets.

In the following, we present the MOST-Algorithm to solve the MOST problem. This main algorithm calls
all the procedures presented earlier to obtain the set of all nondominnated spanning trees.

MOST-Algorithm
Input G = (V, E): connected graph, C: cost-vector of edges of G.
Output SND: list of the nondominated solutions of MOST problem.
Step 5.1. Execute SUB Procedure
Step 5.2. Execute Reduction Procedure
Step 5.3. While there still exist unfathomed nodes in the search tree, do:
Step 5.3.1. Choose a node according to the depth-first strategy.
Step 5.3.2 Determine the coordinates of the ideal point I corresponding to this node.
Step 5.3.3. Compare I with the elements of the SUB set:
Step 5.3.3.1. If I is dominated by an element z of the SUB set then fathom this node and go to Step 5.3.
Step 5.3.3.2. Else, go to Step 5.3.4.
Step 5.3.4. Execute Separation and Constuction Procedure
Step 5.3.4.1. If at the current leaf f a spanning tree Tf is obtained, then: SNDf := C(Tf ). Fathom this node
and go to Step 5.3.
Step 5.3.4.2. Evaluation Procedure
For all costs-vector CT in SNDf , do:
a- If CT is not dominated by z, ∀z ∈ SUB, then SUB := SUB ∪ {CT }.
b- If ∃z ∈ SUB/z is dominated by CT , then SUB := SUB \ {z}∪ {CT }. Fathom this node and go to Step 5.3.
Step 5.4. Terminate, SND := SUB.

5. Main results

In this section the following results are proved to justify the convergence of the MOST-Algorithm.
Let G = (V, E) be a connected and undirected graph of order n and size m. The following propositions allow

to highlight particular edges of the graph G whose the belonging or not to nondominated spanning trees is
proved according to the Reduction Procedure of the MOST-Algorithm. Note that the following Proposition 5.1
has been already used in [14].

Proposition 5.1. Let μ be a cycle of G and e an edge of G, e ∈ μ. If all cost-vectors of other edges of the cycle
μ dominate the one of the edge e, then e can not belong to any nondominated spanning tree.

Proof. Let T be a spanning tree and e ∈ μ, μ a cycle of G such that all cost-vectors of the other edges of cycle
μ dominate the one of the edge e and assume that e ∈ T . Let f ∈ μ and f /∈ T , then T ′ = T ∪ {f} \ {e} is
a spanning tree since e ∈ T ∪ μ and f ∈ μ but f /∈ T . Then, Ck(T ′) = Ck(T ) + cfk − cek, ∀k = 1, r. Hence,
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Ck(T ′) ≤ Ck(T ), ∀k = 1, r, with at least one strict inequality, because cfk − cek ≤ 0, ∀k = 1, r, with at least
one strict inequality as the cost-vector of f dominates that of e. Then the cost-vector of T ′ dominates the one
of T . �

Proposition 5.2. Let e be an edge of G common to a set Δ of cycles of G, and assume that the cost-vector
of e dominates all other cost-vectors of the edges of cycles in Δ, then the edge e belongs to all nondominated
spanning trees of G.

Proof. We denote E(Δ) the set of all edges in Δ. If there exists a nondominated spanning tree T which does
not contain the edge e, then T ′ = T ∪ {e} \ {f}, ∀f ∈ E(Δ) is a spanning tree whose cost-vector dominates the
one of the spanning tree T because the edge e dominates the edge f, ∀f ∈ E(Δ). �

Let B a basis of cycles of a given graph, the way to breaking the cycles of B depends on the existence or not
of e2c-edges in order to associate the specific linear constraints in the Separation and Construction Procedure.
To justify the non existence of e2c-edges, we prove the following theorem.

Theorem 5.3. If G admits a cycle-basis B such that all cycles are edge-disjoint, then there is no other basis
of cycles B′ whose two cycles have common edges.

Proof. Suppose that there is a cycle basis B′ such that there exist two cycles μ1 and μ2 in B′, with μ1 and μ2

having at least one common edge and μ1 �= μ2.
Let B = {σi, i = 1, m − n + 1} another cycle-basis of G.
As μ1 ∩ μ2 �= ∅, then ∃ej ∈ E such that ej ∈ μ1 ∩ μ2. Otherwise, in the basis B the representative vectors of
cycles μ1 and μ2 are written in a unique way according to those of cycles of B:{

V (μ1) =
∑m−n+1

i =1 αiV (σi)
V (μ2) =

∑m−n+1
i =1 βiV (σi)

such that: Vj(μk) = 1 if ej ∈ μk, 0 otherwise, k = 1, 2 and αi, βi ∈ {−1, 0, 1}.
On the other hand, as the cycles σi, i = 1, m − n + 1 are elementary edge-disjoint, there is only one cycle σi0

containing the edge ej proving that σi0 = μ1 and σi0 = μ2. Contradiction with μ1 �= μ2. �

The following theorem proves the convergence of the MOST-Algorithm.

Theorem 5.4. The MOST-Algorithm is able to construct all nondominated spanning trees in a finite number
of iterations.

Proof. It is obvious that the separation step of the Separation and Construction Procedure ensures the indepen-
dence of the problems obtained at the nodes of the search tree and hence, the non-redundancy of the spanning
trees found, while the construction step puts in evidence the constraints that the edges of a given cycle μ of G
should not all together be taken, otherwise the obtained solutions would not be spanning trees. This leads to
find all linear constraints of the MOST problem at each leaf f of the search tree, allowing to the Evaluation
Procedure to determine the nondominated set SNDf , then the set of potentially nondominated spanning trees
SUB is updated accordingly. The number of created leaves being finished, therefore the set of all nondominated
spanning trees SND is obtained in a finite number of iterations. �

Example
Consider the graph G = (V, E) where V = {1, 2, 3, 4, 5, 6} and E = {12, 13, 15, 23, 34, 36, 45, 56}. With each

edge is associated three costs as shown in the following matrix of costs:

C =

⎛
⎝ 0 2 1 2 4 0 1 3

3 3 2 2 3 2 1 1
1 0 3 2 4 0 1 2

⎞
⎠
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SUB Procedure

ST1 = {12, 13, 15, 45, 36}, Z(ST1) = (4, 11, 5).

ST2 = {12, 13, 45, 65, 36}, Z(ST2) = (6, 10, 4),
ST3 = {12, 15, 45, 65, 36}, Z(ST3) = (5, 9, 7),
ST4 = {15, 23, 45, 56, 36}, Z(ST4) = (7, 8, 8).

SUB = {Z(ST1), Z(ST2), Z(ST3), Z(ST4)}.

Reduction Procedure
Let the cycle-basis B = {μ1, μ2, μ3} with μ1 = {13, 36, 65, 51}, μ2 = {12, 23, 31} and μ3 = {43, 36, 65, 54}.
– In the cycle μ3 the cost-vector of the edge 34 is dominated by the other costs-vectors of all edges in μ3.

According to Proposition 5.1, this edge is removed from the graph and E := E \ {34}.
– Determine then a new cycle-basis and find the set F = {ij ∈ E \ ∃ μl and μl′ ∈ B; ij ∈ μl ∩ μl′}.
Let B = {μ1, μ2} with F = {13}.
Separation and Construction Procedure

xij =

{
1 if the edge ij ∈ T, i, j = 1, n

0 otherwise

The separation is done with respect to the edge 13 creating two nodes. At the node 1 we deduce the following
system:

(S1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x13 = 1
x36 + x65 + x15 ≤ 2
x32 + x21 ≤ 1
x12 + x15 + x23 + x36 + x45 + x65 = 4
x12, x13, x15, x23, x36, x45, x65 ∈ {0, 1}

Evaluation Procedure (at node 1)
F := ∅, then the node 1 is a leaf. By using the method described in [12] for the resolution of multi-objective
linear program with binary variables (P1) whose systems of constraints is (S1), it returns all efficient spanning
trees associated with this branch of the search tree:

T1 = {12, 13, 45, 65, 36}, Z(T1) = (6, 10, 4),
T2 = {13, 23, 45, 65, 36}, Z(T2) = (8, 9, 5),
T3 = {12, 13, 15, 45, 36}, Z(T3) = (4, 11, 5).

SNDf1 = {Z(T1), Z(T2), Z(T3)}.
SUB = SUB ∪ Z(ST2).

Reduction Procedure
At the node 2 of the search tree, the edge 13 is deleted and the graph E := E \{13}. The coordinates of the ideal
point I corresponding to this node: Z(I) = (4, 8, 6) which is not dominated by any solutions found previously
in the first node, therefore the second node is not fathomed.
The new basis B = μ4 was obtained with μ4 = {12, 23, 36, 65, 51}.
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Separation and Construction Procedure
The corresponding system of linear constraints is:

(S2)

⎧⎪⎨
⎪⎩

x13 = 0
x12 + x23 + x36 + x65 + x51 ≤ 4
x12 + x15 + x23 + x36 + x45 + x65 = 5
x12, x13, x15, x23, x36, x45, x65 ∈ {0, 1}

Evaluation Procedure (at node 2)
In this leaf, The method described in [12] is used to solve the multi-objective linear program with binary
variables (P2) associated with (S2), all efficient spanning trees associated with this branch are:

T4 = {12, 23, 45, 65, 36}, Z(T4) = (6, 9, 6),
T5 = {12, 15, 45, 65, 36}, Z(T5) = (5, 9, 7),
T6 = {12, 23, 15, 45, 36}, Z(T6) = (4, 10, 7),
T7 = {15, 23, 45, 56, 36}, Z(T7) = (7, 8, 8).

SNDf2 = {Z(T4), Z(T5), Z(T6), Z(T7)}.
SUB = SUB ∪ {Z(T4), Z(T6)}.

Thus, the final efficient set of spanning trees of G is: SMST = {ST1, ST2, ST3, ST4, T2, T4, T6} and the associated
set of nondominated solutions is: SND/SND := SUB.

6. Experiment results

The experimental study is performed under Matlab 2014a on an hp laptop, Intel core i5, 8GB of Ram, on
randomly generated instances. In this case, all the generated instances consider the cost-vectors of dimensions 3,
4, 5, which are uniformly distributed in the interval [−10, 50]. The graphs are randomly generated as described
by Erdos−Renyi in [8] who proposed to the user to fix the number of vertices of the graph and the probability
that an edge exists between two vertices. For this fact, we have found useful to group in each line of the Table 1
the average results for twenty (20) graphs for which the number of edges ranges in a same interval of length not
exceeding ten (10).

In Table 1, we recorded the average, the minimum and the maximum number of nondominated solutions
nbSND, as well as the CPU time in seconds, the Cub number which represents the run time spent to generate
the initial set SUB and the average number of leaves (nbL).
For instances with three and four criteria, the best results are obtained using the method in [12] at each leave,
whereas all the other results are from the method in [1] which is faster with increasing number of criteria.

The results clearly show the increase of the CPU time in relation to the number of edges and that of leaves
(nbL). However, the number of criteria does not seem greatly act on this CPU time and the exact evaluation
of the ideal point in each node of the search tree brought an improvement to the method since the number of
fathomed nodes represents an average of 55.63 % of the total number of created leaves (nbL).

Moreover, the set SUB considered as an upper bound for the SND set along the steps of the MOST-
Algorithm, evolves in a dynamic way and is updated in a polynomial time. Indeed, the set SND contain
potentially nondominated solutions that we update during the search. In particular, any element of this set
could be deleted if it is dominated by a new solution recently met.

The running time of MOST-Algorithm decreases with an increasing number nb e2c of edge-disjoint cycles
in G. Indeed, graphs with low number nb e2c have also been considered. In this case the results reported in
Table 2 show that the MOST-Algorithm is faster making larger dimensions of graphs tractable.

Along our experimentation, the calculation is interrupted for instances requiring more than 2 h of computing.
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Table 1. Experiment results.

r n m nbSND CPU(s) Cub nbL
Avg Min Max Avg Min Max Avg Avg

3 20 [35, 45] 38, 1 18 102 30, 7 10, 4 87, 9 0, 04 301, 2
3 20 [46, 55] 67 35 105 115, 9 45, 2 216, 8 0, 1 595, 4
3 30 [45, 55] 121, 3 51 186 337, 1 83 858, 2 0, 08 2240, 8
3 30 [56, 65] 273, 2 87 403 1203 703, 2 2301, 7 0, 5 2603
3 50 [65, 75] 881, 6 107 1025 2489, 9 1833, 2 3581, 7 1, 2 4843, 2
4 20 [35, 45] 102 66 222 44, 2 28, 2 178 1, 17 356, 4
4 20 [46, 55] 104, 3 44 130 186, 7 70, 3 227, 7 1, 3 660
4 30 [45, 55] 188, 5 63 305 557, 4 112, 2 1038, 4 2, 6 2452, 6
4 30 [56, 65] 320, 3 94 690 1723, 9 921, 1 3074 3, 02 3008, 7
4 50 [65, 75] 1060, 2 230 2003 3030, 68 2100, 4 3864 4, 6 5036, 4
5 20 [35, 45] 246 87 440 88, 2 47, 2 206 4, 8 489, 5
5 20 [46, 55] 274, 8 105 473 294, 5 161, 6 924, 9 5, 01 1090, 8
5 30 [46, 55] 758, 3 123 1053 1033, 4 452, 6 2785 5, 21 2821, 3
5 30 [55, 65] 930, 3 202 2066 2034, 7 1132, 7 3520, 3 7, 09 3140, 6
5 50 [65, 75] 1300, 4 314 2135 3423, 1 2306, 1 4037, 8 7, 9 5453, 5

Table 2. Results in average for graphs having a small number of e2c-edges.

r n m nb e2c CPU(s) nb SND
3 100 130 3 47, 3 148
3 300 340 4 956, 24 566
3 400 445 5 1030, 32 759
4 100 130 3 1404, 38 768
4 300 340 3 1521, 12 1095
4 400 445 5 2234, 81 1155

7. Conclusion

The main idea of the presented exact method is based on a branching process on common edges with at least
two cycles of a given graph. This generates a procedure of constructing constraints which break cycles while
keeping the connectivity of the graph. These constraints become easy to enumerate after the branching process.
We want to emphasize that at each leaf of the search tree the obtained graph has a particular structure; it
contains only edge-disjoint cycles, otherwise it is a spanning tree. Therefore if the first basis of the initial graph
is edge-disjoint cycles, then the algorithm creates only one leaf and only one bivalent linear multi-objective
program is solved which induces the faster execution time. Else at each leaf of an arbitrary branch of the search
tree, a bivalent linear multi-objective program of the minimum spanning tree problem is solved according to
the constraints induced along this branch. Hence, the obtained zero-one sparse matrix of constraints is much
smaller than the exponentially dimension of the initial one leading to a faster resolution. On the other hand,
computing the ideal point coordinates is an easy problem and it allowed us to not visit areas that do not
contain nondominated spanning trees. Indeed, in average more than 50 % of nodes of the search tree are
discarded and this explains why the method is able to treat thousands of leaves in an acceptable time. Only
the use of a dedicated (MOLBP ) exact method will enable the fullest implementation of computer simulations
and assessment of results deservedly. Note that the aim of this work is not to make a comparative study with
existing methods dedicated to the bi-objective spanning tree problem but rather highlight a new method able to
solve this problem with more than two objective functions. As future studies, the construction of nondominated
spanning trees based on graphs tools seems to be worth to investigate.
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