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COMPETITIVE VERSUS COOPERATIVE PERFORMANCES
OF A STACKELBERG GAME BETWEEN TWO SUPPLIERS
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Abstract. We investigate the competitive and cooperative performances of a supply chain with two
capacitated suppliers solicited by a customer who offers a new product procurement suggestion. Suppli-
ers have the option to accept or reject the new product offer according to its profitability. In addition,
suppliers have to decide on their base stock levels. We classify suppliers as principal and secondary.
The customer usually addresses demand to the principal supplier at first. We consider two schemes:
in the first scheme, the principal supplier informs the customer about the demand ratio he wants to
be allocated. The customer allocates the remaining quantity to the secondary supplier. In the second
scheme, the principal supplier decides to respond to the entire demand and to subcontract a part of it
to the secondary supplier. In the competitive situation, we give conditions that allow principal supplier
to select the best scheme. We show that the new product offer can be refused while it is accepted when
suppliers cooperate. We present a profit allocation policy under which collaboration is beneficial for
the two suppliers.
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1. Introduction

Several works highlighted the inefficiency resulting from decentralization of decisions within a supply chain.
In fact, the obvious behavior of each agent is to optimize his individual profit. Yet, agents’ objectives are often
antagonistic and can lead to irrational choices with regard to the whole system. In order to succeed in overcoming
this loss, companies have to network by coordinating their actions.

In this paper, we underline the wastefulness due to decentralization within a supply chain. Thus, we prove
that the system can significantly perform better if agents decide to cooperate. In particular, we consider a
supply chain formed with two different suppliers and a customer. The first supplier is considered as a principal
supplier for the customer and often receives suggestions of new products deals. We suppose that he faces the offer
of a new product contract and we consider two plausible schemes: in the first scheme, the principal supplier
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allocates himself the demand amount that he wishes to get. The customer allocates the remaining quantity
to the secondary supplier. In the second scheme, the principal supplier gets the total demand volume, and
subcontracts a part of it to the second supplier. Suppliers operate in a make to stock manner and choose base
stock control policy for their inventories replenishment. In addition, each supplier has to decide on accepting
or refusing the offer according to its profitability. We analyze both competitive and cooperative systems under
each scheme. We derive analytical/numerical solutions for the different decision variables. Then we draw some
comparisons between schemes from the principal supplier perspectives. We study the optimal centralized system
performances and propose that suppliers cooperate by sharing the resulting profit among them according to the
equal allocation policy [16]. We prove that thanks to this profit allocation rule, both suppliers improve their
profits. Through numerical examples, we show that decentralization of decisions can lead to the loss of the offer,
nevertheless, it is accepted if the system is managed in a cooperative manner.

Our model may be useful for studying many real situations in the B to B context. In this context, the
decision-making process generally occurs in two stages: firstly, the customer selects a short list of suppliers from
existing suppliers based on various factors such as price, capacity, quality and service level. It is a process of
supplier selection (see for example [20]). The second stage is a demand allocation process where the customer
splits the demand between selected suppliers. In this work, we assume that the suppliers-selection step was
already established, so we focus on the demand allocation step.

The retail sector is a good example for the problem studied in this paper. In fact, it is well known that a
leading retailer (like WALMART or CARREFOUR, etc.) has various suppliers that provide him with a very
large number of products. It is true that for some products (namely the most important ones) such a company
must use a suitable policy where demand allocation between the suppliers is optimized. But, given the huge
number of products and suppliers to be managed, these companies usually handle the most of the products by
just using simple policies. One of such policies is to classify suppliers as principal, secondary, etc. The leading
retailer addresses its demand to the principal supplier at first. If the principal supplier has not enough capacity,
the leading retailer purchases the shortfall from the other suppliers. Moreover, it often happens that a supplier
subcontracts a part of the demand from other suppliers. This does not matter for the leading retailer. In fact,
the principle supplier is responsible to meeting the total demand by providing the total volume of the same
product and with the same quality.

The remaining of this paper is structured as follows: in Section 2, we present related literature review. In
Section 3, we introduce the studied model and give notations. In Section 4, we focus on the competitive system.
Section 5 is devoted to the analysis of the cooperative system. In Section 6, we expose numerical examples.
Finally, in Section 7, we give conclusions and research perspectives.

2. Literature review

Literature which is related to the problem considered here can be divided into four categories.
The first stream of papers dealt with centralized performances optimization in supply chains. Example

are [2, 4, 5]. In [2], the authors analyzed a model where a producer allocates demand to several facilities where
make to order policy is employed. In [4], the authors gave a procedure solution to obtain optimal demand al-
location parameters and optimal base stock levels in a multiple manufacturing facilities system. [5] treated the
case of multiple demand sources and multiple distribution centers and analyzes how to allocate each demand
source volume to the distribution centers.

The second stream of papers dealt with the interaction between one supplier and a downstream customer.
See for example [11, 12, 18, 19]. These papers investigated the effect of decentralization of decisions on the
performances of a supply chain and provide coordination mechanisms to improve them.

The third stream of papers treated competition between actors in the same stage of the supply chain. In [17]
the authors presented a model with two competing suppliers serving one buyer. This latter allocates demand
according to suppliers’ delivery mean time in deterministic environment. [10] investigated a model in which a
buyer has to split demand volume between two make to order suppliers who are competing on their capacities.
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They exposed some demand allocation policies that exist in literature and studied suppliers responses for each
one. In [3] the authors presented a way of stressing competition between identical suppliers by means of the
proportional demand allocation policy. According to this policy each supplier gets more demand volume if he
offers better service level. [6] studied a system which includes two suppliers and two buyers. Each buyer offers a
new item contract and allocates all its demand volume to the supplier who offers the higher backorder penalty.
Later, [14] generalized the model presented in [3] by including penalties for the suppliers who don’t respect
promised sojourn time. For identical supply chain structure, [15] compares service level and inventory level
competitions and shows that the latter creates a higher service level for the buyer.

The last stream of these works dealt with cooperation between actors in the same stage and its benefits for
the whole supply chain. These benefits result from decisions centralization and from pooling cooperating actors’
efforts. Particularly in [22], the authors highlighted the benefit of cooperation among suppliers that decide to
pool a single facility instead of operating standalone. They showed that cooperation leads to interesting savings
that can be divided between suppliers. [1] dealt with a model where a number of suppliers pool their service
capacities to serve the totality of customer orders.

Our paper is in the field of the two last categories and treats competition and cooperation between two
suppliers who faced a downstream customer demand. Our contributions consist of two parts:

− Presented papers focus either on the entire supply chain performances or on downstream customers’ ones.
Nash equilibrium is generally used to model suppliers’ competition. We consider one supplier perspectives
(supplier-1 without loss of generality), who acts as a Stackelberg leader compared to supplier-2. In order to
respond to the customer demand, we investigate two schemes. Under the first scheme supplier-1 decides on
demand ratio he wants to be allocated knowing that supplier-2 accepts the remaining part of demand. Under
the second scheme supplier-1 accepts the entire demand and subcontracts a part of it to supplier-2.

− Earlier mentioned papers consider that suppliers accept the demand volume they are allocated and don’t
discuss about the refusal possibility. We introduce the acceptation variable as a decision parameter in our
model. Literature that studied the problem of admitting or rejecting a new item is limited. We note the
model of [13] that gives the supplier the possibility to accept or to reject orders. Their problem is rather
a scheduling one. Our paper is different in that we treat the possibilities of acceptation or rejection of a
stationary stochastic demand.

3. Model and notations

We consider a supply chain with two capacitated suppliers faced with the suggestion of a new product
procurement contract. Demand is stochastic according to a Poisson process with rate λ. We denote by ∝iλ the
demand rate allocated to supplier-i, where αi ∈ [0, 1].

Processing time for supplier-i is stochastic, independent and exponentially distributed with average
1
μi

∀i ∈

{1, 2} . Supplier-i utilization rate is denoted by ρi where ρi =
αiλ

μi
, ∀i ∈ {1, 2}.

Supplier-i incurs a unit production cost ci, a holding cost hi per item per unit time and a backorder penalty
bi per item per unit time. Supplier-i earns a sale price pi for each product unit sold.

Suppliers adopt base stock control policy for their inventories replenishment, we denote by si the new product
base stock level of supplier-i. Each supplier decides to accept or refuse the new product offer according to its
profitability. We assume that supplier-i accepts the offer if the resulting profit is higher than or equal to a
fixed threshold π0

i . We denote by Ai a binary variable which expresses supplier-i acceptance (Ai = 1) or refusal
(Ai = 0) of the new product offer. Supplier-i gets no demand volume if he refuses the offer, consequently
ai � Ai∀i ∈ {1, 2}. In addition, all demand volume must be produced in case of acceptance, so α1 + α2 = 1 if
A1 + A2 � 1.
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As the arrival of demand is a Poisson process and service time has exponential distribution, the production
system can be modeled as an M/M/ 1 queue. The average inventory and backorder levels were established by [7]
in such case. Let’s denote by Xi and by Yi the average inventory and the average backorder at supplier-i, then:

Xi (si,ρi) = si − ρi

1 − ρi
(1 − ρsi

i ) , (3.1)

Y i (si,ρi) =
ρ

si+1
i

1 − ρi
· (3.2)

Stability condition of each supplier production system requires that ρi < 1. In addition, the whole system

stability requires that system load ρ =
λ

μ1 + μ2
verifies ρ < 1. We can resume all these constraints as follows:

α1 ∈ [0, 1] ∩
]
1 − μ2

λ ,
μ1

λ

]
, we denote this interval by J .

Without loss of generality we suppose that supplier-1 is the principal supplier, and that supplier-2 is the
secondary one. We assume that both suppliers are risk neutral. As stated in [3], actors are assumed to be risk
neutral when some system parameters are random variables. This assumption is widely adopted in the literature
related to our paper (see for example [3, 9, 15]). Furthermore, we suppose that suppliers have full information.
In fact suppliers belong to the same manufacturing sector so they are able to obtain reliable information about
different operational costs of their competitors and subcontractors. This assumption is used for example in [3,8].
In Addition, we assume that suppliers’ prices do not affect the volume of the customer demand. Indeed, we are
interested in the B to B context where the dependence between demands and prices is generally low and not
prevalent compared to the B to C environment.

Supplier-1 seeks to get the demand amount that maximizes his own profit. We investigate two schemes that
suppliers could use: in the first scheme, supplier-1 decides on demand ratio he wants to be allocated knowing
that supplier-2 accepts the remaining portion of demand. In this case, both suppliers are charged the backorder
penalty from the customer. In the second scheme, supplier-1 gets the entire demand, and subcontracts a part of
it to supplier-2. Thus, supplier-1 pays the totality of suppliers’ backorder penalties to the customer. Supplier-2
pays its backorder penalty to supplier-1.

4. Competitive system performances

Since supplier-1 is principal, we define a Stackelberg game between the two suppliers where supplier-1 is
the leader. In the case of scheme-j, j ∈ {1, 2}, supplier-1 decides first by choosing

(
Aj

1 , sj
1, αj

1

)
. Afterward,

supplier-2 decides on
(
Aj

2, s
j
2

)
.

Let’s denote by π1
i supplier-i profit in the case of scheme-1 then:

π1
1

(
A1

1, s
1
1, α

1
1, A

1
2

)
=

{
A1

1A1
2((p1−c1)α

1
1λ−b1Y

1
1)−h1X

1
1 if α1

1 < 1

A1
1((p1−c1)λ−b1Y

1
1)−h1X

1
1 if α1

1 = 1
(4.1)

π1
2

(
A1

2, s
1
2, α

1
1, A

1
1

)
=

{
A1

1A1
2((p2−c1)(1−α1

1)λ−b2Y
1
2)−h2X

1
2 if α1

1 > 0.

A1
2((p2−c2)λ−b2Y

1
2)−h2X

1
2 if α1

1 =0
(4.2)

By the same way, let’s denote by π2
i supplier-i profit in the case of scheme-2 then:

π2
1

(
A2

1, s
2
1, α

2
1, A

2
2

)
=

{
A2

1A2
2(p1λ−p2(1−α2

1)λ−c1α2
1λ−b1(Y

2
1+Y

2
2)+b2Y

2
2)−h1X

2
1 if α2

1<1

A2
1((p1−c1)λ−b1Y

2
1)−h1X

2
1 if α2

1=1
(4.3)

π2
2

(
A2

2, s
2
2, α

2
1, A

2
1

)
= A2

1A
2
2

(
(p2 − c2)

(
1 − α2

1

)
λ − b2Y

2

2

)
− h2X

2

2, (4.4)
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where ∀i ∈{1, 2} and ∀j ∈{1, 2}, X
j

i = Xi

(
sj

i , ρ
j
i

)
and Y

j

i = Y i

(
sj

i , ρ
j
i

)
, where X i and Y i are given by

expressions (3.1), (3.2); ρj
1 = αj

1λ

μ1
and ρj

2 =
(1−αj

1)λ

μ2
.

Expressions (4.1)−(4.4) show that suppliers’ profits are interdependent. In fact, under scheme-j (j ∈{1, 2}),
supplier-1 profit depends on supplier-2 acceptation parameter Aj

2. On the other hand, supplier-2 profit depends
on the acceptation parameter Aj

1 and the demand allocation decision αj
1 that are chosen by supplier-1.

Note that, under scheme-2, supplier-2 gets no demand volume if supplier-1 refuses the offer.

Let αj
1 ∈ J . We denote by s̃j

i

(
αj

1

)
the following expressions where j ∈{1, 2} and i ∈{1, 2}:

s̃j
1

(
αj

1

)
=

⎢⎢⎢⎣Log
(

h1
h1+b1

)
Log

(
ρj
1

)
⎥⎥⎥⎦ if αj

1 �= 0 and s̃j
1 (0) = 0,

s̃j
2

(
αj

1

)
=

⎢⎢⎢⎣Log
(

h2
h2+b2

)
Log

(
ρj
2

)
⎥⎥⎥⎦ if αj

1 �= 1 and s̃j
2 (1) = 0, (4.5)

where �x� denotes the largest integer less than or equal to x.

In the case of scheme-j, j ∈{1, 2}, we define Ãj
1

(
αj

1

)
as follows:

− If πj
2

(
1, s̃j

2

(
αj

1

)
, αj

1, 1
)

� π0
2 then Ãj

2

(
αj

1

)
= 1, otherwise, Ãj

2

(
αj

1

)
= 0. (4.6)

− If πj
1

(
1, s̃j

1

(
αj

1

)
, αj

1, Ã
j
2

(
αj

1

))
� π0

1 then Ãj
1

(
αj

1

)
= 1, otherwise, Ãj

1

(
αj

1

)
= 0. (4.7)

Let Ωj =
{

α̃j
1/α̃j

1 ∈ ArgMaxαj
1∈Jπj

1

(
Ãj

1

(
αj

1

)
, s̃j

1

(
αj

1

)
, αj

1, Ãj
2

(
αj

1

))}
, j ∈ {1, 2}. (4.8)

Let Ej be the set of Stackelberg equilibriums when scheme-j is adopted ∀j ∈{1, 2}.

Proposition 4.1. Ej =
{
ξj

(
α̃j

1

)
/α̃j

1 ∈ Ωj
}
, where:

− ξj
(
α̃j

1

)
=

(
A∗j

1 , α∗j
1 , s∗j

1 , A∗j
2 , s∗j

2

)
,

− A∗j
1 = Ãj

1

(
α̃j

1

)
,

− α∗j
1 = A∗j

1 α̃j
1,

− s∗j
1 = A∗j

1 s̃j
1

(
α̃j

1

)
,

− A∗j
2 = A∗j

1 Ãj
2

(
α̃j

1

)
if α̃j

1 �= 0, otherwise
{

A∗1
2 =Ã1

2(0)

A∗2
2 =A∗2

1
,

− s∗j
2 = A∗j

2 s̃j
2

(
α̃j

1

)
.

Proof. According to expressions (4.1)−(4.4), each supplier-i profit is concave with respect to sj
i if Aj

i = 1. When
0 < αj

1 < 1, expressions (4.5) represent the optimal base stock levels which are obtained via the classical method
presented by [7]. If αj

1 = 0 then according to (4.1) and (4.3) supplier-1 would rather not to set inventory, so
s̃j
1 = 0. Analogously, if αj

1 = 1 then according to (4.2) and (4.4) supplier-2 would rather not to set inventory, so
s̃j
1 (1) = 0.
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According to (4.6), Ãj
2 is the best supplier-2 choice if we suppose that supplier-1 accepted the offer. According

to (4.7), Ãj
1 is the best supplier-1 choice knowing that such that supplier-2 has chosen Ãj

2.

• Supplier-1 decides on (Aj
1, αj

1, sj
1). As α̃j

1 ∈ Ωj , then it corresponds to the best supplier-1 choice in the
case of scheme-j when he accepts the offer. In addition, since α∗j

1 ≤ A∗j
1 then α∗j

1 = 0 if A∗j
1 = 0, otherwise

α∗j
1 = α̃j

1. We resume these results in the expression: α∗j
1 = A∗j

1 α̃j
1.

According to (4.7), Ãj
1 takes into consideration the value of Ãj

2 which is given by (4.5), then A∗j
1 = Ãj

1

(
α̃j

1

)
corresponds to supplier-1 best acceptance decision.
According to expressions (4.1) and (4.3), if A∗j

1 = 0 then πj
1 = −h1X1 so s∗j

1 = 0. If A∗j
1 = 1, then

s∗j
1 corresponds to its optimal expression provided by (4.5). We resume these results by letting: s∗j

1 =
A∗j

1 S̃j
1

(
α̃j

1

)
.

Therefore
(
A∗j

1 , S∗j
1 , α∗j

1

)
is the best supplier-1 strategy.

• Supplier-2 decides on
(
Aj

2, s
j
2

)
. Consider the case where α̃j

1 �= 0. If A∗j
1 = 0, then according to expres-

sions (4.2) and (4.4), πj
2 ≤ 0. It leads to A∗j

2 = 0 by definition of the acceptation parameter. If A∗j
1 = 1,

then Ãj
2

(
α̃j

1

)
is the best supplier-2 choice as it is given by (4.6). To resume these constraints we let

A∗j
2 = Ãj

1

(
α̃j

1

)
Ãj

2

(
α̃j

1

)
. When α̃j

1 = 0, this corresponds to allocating all demand volume to supplier-2.
In the first scheme, supplier-2 can get the whole demand volume regardless of supplier-1 acceptance decision
as shown in (4.2). So A∗1

2 = Ã1
2 (0). In the second scheme, as shown by expression (4.4), if A∗2

1 then π2
2 ≤ 0.

It turns out that A∗2
2 = 0. Suppose that A∗2

1 , then Ã2
1 (0) = 1 a sA∗2

1 = Ã2
1 (0). According to (4.6) and (4.7),

Ã2
1 (0) = 1 means that Ã∗2

2 (0) = 1. So A∗2
2 = 1. We let A∗2

2 = A∗2
1 in an attempt to resume these results.

According to expressions (4.2) and (4.4), if A∗j
2 = 0 then π1

2 = −h2X2 so s∗j
2 = 0. If A∗j

2 = 1, then
s∗j
2 corresponds to its optimal expression provided by (4.5). We resume these results by letting: s∗j

3 =
A∗j

2 S̃j
2

(
α̃j

1

)
.

Therefore
(
A∗j

2 , s∗j
2

)
is the best supplier-2 strategy. �

α̃j
1 is computed numerically according to an iterative algorithm for each scheme-j ∈{1, 2}. We know that

α̃j
1 belongs to the interval J = [0, 1]∩]1 − μ2

λ , μ1
λ [ which is bounded. So we constructed an iterative algorithm

which tests profit values by means of a small increment and saves the optimal one. As we look for demand
allocation scheme between suppliers we need not to be accurate to more than three decimals. A dichotomy
search algorithm will also work.

A closer examination of (4.8) shows that several Stackelberg equilibriums may exist. This is the case when
function πj

1

(
Ãj

1

(
αj

1

)
, s̃j

1

(
αj

1

)
, αj

1, Ã
j
2

(
αj

1

))
achieves the same maximum for different αj

1 values. In this case, all
Stackelberg equilibriums are identical from supplier-1 view point. In fact, they contribute to the same supplier-1
equilibrium profit. So supplier-1 has the liberty to choose one among them.

In addition, we note that, at least, one Stackelberg equilibrium exists. If no demand allocation policy leads
to the acceptance of the offer

(
A∗j

1 = A∗j
2 = 0

)
, then, according to Proposition 4.1, the resulting Stackelberg

equilibrium is ξj = (0, 0, 0, 0, 0) .
In the next two properties, we draw some comparisons between schemes-1 and 2.

Property 4.2. If p1 = p2 and b1 = b2 then:

• If E1 =
{(

0, 0, 0, 1, s∗12

)}
then E2 = {(0, 0, 0, 0, 0)} otherwise E2 = E1.

• If E2 = {(0, 0, 0, 0, 0)} then E1 =
{
(0, 0, 0, 1, s∗12 )

}
or E1 = {(0, 0, 0, 0, 0)} otherwise E1 = E2.

This property shows that, when p1 = p2 and b1 = b2, then scheme-1 and scheme-2 lead to the same
set of Stackelberg equilibriums, except if E1 =

{(
0, 0, 0, 1, s∗12

)}
or if E2 = {(0, 0, 0, 0, 0)}. In fact,
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E1 =
{(

0, 0, 0, 1, s∗12

)}
means that supplier-2 accepts the totality of demand volume despite supplier-1 refusal

of the offer. This cannot occur under scheme-2 as supplier-2 cannot get any part of demand volume if supplier-1
refuses the offer. Analogously, E2 = {(0, 0, 0, 0, 0)} doesn’t imply necessarily that E1 = {(0, 0, 0, 0, 0)} because
under scheme-1, supplier-2 can accept the totality of demand volume provided that the offer is profitable (despite
supplier-1 refusal).

Proof.

− E1 = {(0, 0, 0, 0, 0)} or E1 =
{(

0, 0, 0, 1, s∗12

)}
mean that � α̃1

1 ∈ Ω1 leading to π1
1 � π0

1 . If p1 = p2 and b1 = b2

then we notice from (4.1)–(4.4) that π1
2 (A2, s2, α1, 1) = π2

2 (A2, s2, α1, 1)∀α1 ∈ J, A2, s2. Thus according to
(4.6) we have Ã1

2 (α1) = Ã2
2 (α1)∀α1 ∈ J . In particular π1

1

(
1, s1, α1, Ã

1
2(α1)

)
= π2

1

(
1, s1, α1, Ã

2
2(α1)

)
∀α1 ∈

J, s1. So � α̃2
1 ∈ Ω2 such that π2

1 � π0
1 . Consequently A∗2

1 = 0. According to Proposition 4.1, it leads to E2 =
{(0, 0, 0, 0, 0)}. Suppose that E1 �= {(0, 0, 0, 0, 0)} and E1 �= {(

0, 0, 0, 1, s∗12

)}
. By looking at Proposition 4.1, it

is clear that if A∗1
1 = 0 then E1 = {(0, 0, 0, 0, 0)} or E1 =

{(
0, 0, 0, 1, s∗12

)}
. Consequently, we have necessarily

A∗1
1 = 1. If p1 = p2 and b1 = b2 then we notice from (4.1)–(4.4) that π1

1 (1, s1, α1, A2) = π2
1 (1, s1, α1, A2)

and that π1
2 (A2, s2, α1, 1) = π2

2 (A2, s2, α1, 1)∀α1 ∈ J, s1, A2, s2. As A∗1
1 = 1 then ∃ α̃1

1 ∈ Ω1 leading to
π1

1 � π0
1 so ∃ α̃2

1 ∈ Ω2 leading to π2
1 � π0

1 and as a result A∗2
1 = 1. It results also in α̃2

1 = α̃1
1. In addition,

if p1 = p2 and b1 = b2 then ∀α1 ∈ Js̃1
1 (α1) = s̃2

1 (α1) , Ã1
2 (α1) = Ã2

2 (α1) and s̃1
2 (α1) = s̃2

2 (α1). So by
looking at Proposition 4.1, ∀ξ1 ∈ E1 we have ξ1 ∈ E2 and ∀ξ2 ∈ E2 we have ξ2 ∈ E1. Consequently, if
E1 �= {(0, 0, 0, 0, 0)} and E1 �={(

0, 0, 0, 1, s∗12

)}
then E1 = E2.

− E2 = {(0, 0, 0, 0, 0)} means that � α̃2
1 ∈ Ω2 leading to π2

1 � π0
1 . If p1 = p2 and b1 = b2 then we notice from (4.1)

and (4.3) that π1
2 (A2, s2, α1, 1) = π2

2 (A2, s2, α1, 1)∀α1 ∈ J, A2, s2. Thus according to (4.6) we have Ã1
2 (α1) =

Ã2
2 (α1)∀α1 ∈ J . In particular π1

1

(
1, s1, α1, Ã

1
2 (α1)

)
= π2

1

(
1, s1, α1, Ã

2
2 (α1)

)
∀α1 ∈ J, s1. So � α̃1

1 ∈ Ω1 such

that π1
1 � π0

1 . Consequently A∗1
1 = 0. According to Proposition 4.1, E1 = {(0, 0, 0, 0, 0)} if Ã1

2 (0) = 0 and
E1 =

{(
0, 0, 0, 1, s∗12

)}
otherwise. Suppose that E2 �= {(0, 0, 0, 0, 0)}. By looking at Proposition 4.1, it is clear

that if A∗2
1 = 0 then α∗2

1 = s∗21 = A∗2
2 = s∗22 = 0. Consequently, E2 �= {(0, 0, 0, 0, 0)} requires necessarily that

A∗2
1 = 1. If p1 = p2 and b1 = b2 then we notice from (4.1)–(4.4) that π1

1 (1, s1, α1, A2) = π2
1 (1, s1, α1, A2)

and that π1
2 (A2, s2, α1, 1) = π2

2 (A2, s2, α1, 1)∀α1 ∈ J, s1, A2, s2. As A∗2
1 = 1 then ∃ α̃2

1 ∈ Ω2 leading to
π2

1 � π0
1 so ∃ α̃1

1 ∈ Ω1 leading to π1
1 � π0

1 and as a result A∗1
1 = 1. It results also to α̃2

1 = α̃1
1. In addition, if

p1 = p2 and b1 = b2 then ∀α1 ∈ Js̃1
1 (α1) = s̃2

1 (α1) , Ã1
2 (α1) = Ã2

2 (α1) and s̃1
2 (α1) = s̃2

2 (α1). So by looking at
Proposition 4.1, ∀ξ1 ∈ E1 we have ξ1 ∈ E2 and ∀ξ2 ∈ E2 we have ξ2 ∈ E1. Consequently, if E2 �= {(0, 0, 0, 0, 0)}
then E1 = E2.

Property 4.3 Let
(
A∗1

1 , α∗1
1 , s∗11 , A∗1

2 , s∗12

)
be a Stackelberg equilibrium in the case of scheme-1, and(

A∗2
1 , α∗2

1 , s∗21 , A∗2
2 , s∗22

)
be a Stackelberg equilibrium for scheme-2, then:

− If p1 � p2 and b1 � b2 then π1
1

(
A∗1

1 , s∗11 , α∗1
1 , A∗1

2

)
� π2

1

(
A∗1

1 , s∗11 , α∗1
1 , A∗1

2

)
.

− If p1 � p2 and b1 � b2 then π1
1

(
A∗1

1 , s∗11 , α∗1
1 , A∗1

2

)
� π2

1

(
A∗1

1 , s∗11 , α∗1
1 , A∗1

2

)
.

This property shows that, if p1 � p2 and b1 � b2, then supplier-1 would rather adopt scheme-2. In fact, he takes
advantage of supplier-2 lower sale price and higher unit backorder penalty. If however, p1 � p2 and b1 � b2it is
better for supplier-1 to choose scheme-1. �

Proof. Let’s note that π2
1(A∗1

1 , s∗11 , α∗1
1 , A∗1

2 )−π1
1(A∗1

1 , s∗11 , α∗1
1 , A∗1

2 ) = A∗1
1 A∗1

2 ((p1 − p2)(1 − α∗1
1 )λ + (b2 − b1)Y 2).

If p1 � p2 and b1 � b2 then π2
1(A∗1

1 , s∗11 , α∗1
1 , A∗1

2 ) � π1
1(A∗1

1 , s∗11 , α∗1
1 , A∗1

2 ).
We know that (A∗2

1 , α∗2
1 , s∗21 , A∗2

2 ) corresponds to the best supplier-1 profit in the case of scheme-2. So,
π2

1(A∗1
1 , s∗11 , α∗1

1 , A∗1
2 ) � π2

1(A∗2
1 , s∗21 , α∗2

1 , A∗2
2 ). This implies that π1

1(A∗1
1 , s∗11 , α∗1

1 , A∗1
2 ) � π2

1(A∗2
1 , s∗21 , α∗2

1 , A∗2
2 ).

By the same way, we can show that π1
1(A∗1

1 , s∗11 , α∗1
1 , A∗1

2 ) � π2
1(A

∗2
1 , s∗21 , α∗2

1 , A∗2
2 ) if p1 � p2 and b1 � b2. �
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5. Cooperative system performances

To achieve the centralized performances with independent decision-making suppliers, there are two streams
that are proposed in the literature. In the first stream, authors study competitive games (see for example [2,3,6]).
To coordinate the supply chain authors design contract arrangement between actors, nevertheless, each player
manage its system in a local manner. The second stream treated in literature concerns cooperative games.
According to this perspective, players who decide to cooperate no longer have a competitive behavior. They
act as if they belong to a same parent company (see for example [1, 16, 21]). Our paper belongs to the second
category of literature.

In order to introduce the cooperation procedure that we suggest, let’s consider first a fictive sub-problem
where suppliers look for maximizing the sum of their profits without considering their acceptation thresholds.
This sub-problem can then be formulated as follows:

max
α1,s1,s2

π̃j
c = πj

1 (1, s1, α1, 1) + πj
2 (1, s2, α1, 1) (5.1)

π̃j
c is the total profit corresponding to the fictive sub-problem described above when scheme-j is used ∀j ∈{1, 2}.
Let’s denote by s̃j

ic, i ∈{1, 2}and j ∈{1, 2}, the following expressions:

s̃j
1c (α1) =

⎢⎢⎢⎣Log
(

h1
h1+b1

)
Log

(
ρj
1

)
⎥⎥⎥⎦ if α1 �= 0 and s̃j

1c (0) = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s̃1
2c (α1) =

⎢⎢⎢⎣Log
(

h2
h2+b2

)
Log (ρ2)

⎥⎥⎥⎦ if α1 �= 1 and s̃1
2c (1) = 0.

s̃2
2c (α1) =

⎢⎢⎢⎣Log
(

h2
h2+b1

)
Log (ρ2)

⎥⎥⎥⎦ if α1 �= 1 and s̃2
2c (1) = 0.

(5.2)

Let Ωj
c =

{
α̃j

1c/α̃j
1c ∈ Arg maxα1∈J π̃j

c

(
α1, s̃

j
1c (α1) , s̃j

2c (α1)
)}

.

Let Ẽj
c be the set of optimal solutions of the sub-problem (5.1).

Proposition 5.1. ∀j ∈{1, 2}Ẽj
c =

{
ξj
c

(
α̃j

1c

)
/α̃j

1c ∈ Ωj
c

}
where

− ξ̃j
c

(
α̃j

1c

)
=

(
1, α̃∗j

1c, s̃
∗j
1c, 1, s̃∗j

2c

)
− α̃∗j

1c = α̃j
1c

− s̃∗j
1c = s̃j

1c

(
α̃j

1c

)
− s̃∗j

2c = s̃j
2c

(
α̃j

1c

)
.

Proof. For each scheme-j, expression (5.1) is formulated as follows:

max π̃1
c = (p1−c1)α1λ+ (p2−c2) (1−α1)λ−h1X1−h2X2−b1Y 1−b2Y 2

max π̃2
c = p1λ−c1α1λ−c2 (1−α1) λ−h1X1−h2X2−b1

(
Y 1+Y 2

)
where Xi and Y i are given respectively by expressions (3.1) and (3.2), ∀i ∈{1, 2}.

A closer examination of π̃j
c ∀j ∈{1, 2}shows that it is concave with respect to base stock levels. When

0 < α1 < 1, (5.2) represent the optimal base stock expressions which are obtained via the classical method
presented by [7]. If α1 = 0 then it is clear that s̃j

1c (0) = 0. Analogously, if α1 =1 then s̃j
2c (1) = 0. As α̃j

1c ∈ Ωj
c ,

it corresponds to the optimal demand allocation policy. �
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Let’s note that the optimal strategies’ set is not necessarily a singleton as function π̃j
c may achieve the same

optimum for several different αj
1c values. The different α̃∗j

1c values are computed numerically according to an
iterative algorithm. We denote by π̃∗j

c the optimal π̃j
c value resulting from solving problem (5.1).

Remark 5.2. Let π∗j
i be supplier-i profit corresponding to the Stackelberg equilibrium ξj then ∀j ∈{1, 2}

and ∀ξj ∈ Ej we have: π̃∗j
c � π∗j

1 + π∗j
2 . In fact given that π̃∗j

c is the optimal solution of (5.1), then
π̃∗j

c �πj
1 (1, s1, α1, 1) + πj

2 (1, s2, α1, 1)∀ (α1, s1, s2), particularly π̃∗j
c � π∗j

1 + π∗j
2 .

According to Remark 5.2, if the two suppliers adopt the optimal sub-problem parameters, they will generate
a total profit which is higher than the sum of their Stackeleberg equilibrium profits. However, these optimal
sub-problem parameters will not be optimal for each supplier if he is considered alone. For example, supplier-1
profit corresponding to the sub-problem parameters can be less than his profit resulting from the Stackelberg
game as he is the leader in this latter case. On the other hand, as we don’t consider the acceptation constraint in
the maximization problem (5.1), suppliers can be involved in the new product offer while their resulting profits
are less than their acceptation thresholds.

In order to take advantage of the sub-problem results and to cope with the aforementioned problems, we
propose a cooperation procedure. We suggest that suppliers’ profits are allocated according to the equal al-
location rule that divides the benefit of the collaboration equally between the two suppliers (see [16]). Other
allocations are proposed in the literature (see [16]). Since in this paper our aim is not to discuss allocation rules,
we considered the equal allocation rule because it is a simple and practical rule for suppliers. It is possible,
however, to use other allocation rules in our model.

Let ξj
c =

(
Aj

1c, α
j
1c, s

j
1c, A

j
2c, s

j
2c

)
the parameters vector that suppliers have to adopt under cooperation and

πj
ic supplier-i corresponding profit where i ∈{1, 2}and j ∈{1, 2}. We denote by Ej

c the set of cooperative system
vectors when scheme-j is adopted j ∈{1, 2}.

Then, ∀ξj ∈ Ej, we suggest that:

− If ∃ ξ̃j
c ∈ Ẽj

c such that π̃∗j
c �

2∑
i=1

max
(
π∗j

i ; π0
i

)
then

ξj
c = ξ̃j

c andπj
ic

(
ξj
c

)
= max

(
π∗j

i ; π0
i

)
+

π̃∗j
c −

2∑
i=1

max
(
π∗j

i ; π0
i

)
2

∀i ∈ {1, 2}, ∀ j ∈ {1, 2}. (5.3)

− Otherwise, ξj
c = ξj and πj

ic

(
ξj
c

)
= π∗j

i ∀i ∈{1, 2}, ∀ j ∈{1, 2}.

As shown in the following property, this cooperation procedure allows each supplier to improve his profit and to
satisfy his acceptation threshold constraint. In addition, we show through the following property that no other
cooperation procedure could more improve the suppliers’ profits.

Property 5.3. Let π∗j
i be supplier-i profit corresponding to the Stackelberg equilibrium ξjunder scheme-j, then

∀i ∈{1, 2}, ∀j ∈{1, 2} and ∀ξj ∈ Ej we have:

− πj
ic

(
ξj

)
� π∗j

i .

− If Aj
ic = 1 then πj

ic

(
ξj

)
� π0

i .

In addition, ∀j ∈{1, 2}, there is no other cooperation procedure satisfying the acceptation thresholds constraint
and leading to a profit π

′j
1c for supplier-1 and π

′j
2c for supplier-2 such that (π

′j
1c > πj

1cand π
′j
2c > πj

2c) or
(π

′j
1c = πj

1c and π
′j
2c > πj

2c) or (π
′j
1c > πj

1c and π
′j
2c = πj

2c).
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Proof.

− If π̃∗j
c �

2∑
i=1

max
(
π∗j

i ; π0
i

)
, according to expressions (5.3) we have: πj

ic

(
ξj

)
= max

(
π∗j

i ; π0
i

)
+

π̃∗j
c −

2∑
i=1

max(π∗j
i ;π0

i )
2 ∀i ∈{1, 2}. So πj

ic

(
ξj

)
� π∗j

i ∀i ∈{1, 2}.
If π̃∗j

c <
2∑

i=1

max
(
π∗j

i ; π0
i

)
then πj

ic

(
ξj

)
= π∗j

i ∀i ∈{1, 2}.
Therefore, πj

ic

(
ξj

)
� π∗j

i ∀i ∈{1, 2}, ∀j ∈{1, 2}.

− According to expressions (5.3) either πj
ic

(
ξj

)
= max

(
π∗j

i ; π0
i

)
+

π̃∗j
c −

2∑
i=1

max(π∗j
i ;π0

i )
2 or πj

ic

(
ξj

)
= π∗j

i . In the

first case, it is clear that πj
ic

(
ξj

)
� π0

i . In the second case we have ξj
c = ξj , in this case Aj

ic = A∗j
i . So if

Aj
ic = 1 then A∗j

i = 1. According to (4.6) and (4.7), A∗j
i = 1 occurs only if π∗j

i � π0
i .

Consequently, if Aj
ic = 1 then πj

ic

(
ξj

)
� π0

i

− If π̃∗j
c �

2∑
i=1

max
(
π∗j

i ; π0
i

)
then πj

1c + πj
2c = π̃∗j

c . Yet, π̃∗j
c is the maximal value the sum of suppliers profit

can ever achieve. So there is no other possible profit allocation rule that leads to better profit for supplier-1
and 2.

Let’s consider now the case where π̃∗j
c <

2∑
i=1

max
(
π∗j

i ; π0
i

)
. In this case πj

1c = π∗j
1 and πj

2c = π∗j
2 . Suppose that

there is another cooperation procedure leading to the profit π
′j
1c for supplier-1 and π

′j
2c for supplier-2 such that

(π
′j
1c > πj

1c and π
′j
2c > πj

2c). To be accepted by suppliers we need necessarily that π
′j
1c � π0

1 and π
′j
2c � π0

2 . So
π

′j
1c � max

(
π∗j

1 ; π0
1

)
and π

′j
2c � max

(
π∗j

2 ; π0
2

)
. On the other hand, we know that π

′j
1c + π

′j
2c � π̃∗j

c as π̃∗j
c is

the maximal profit suppliers can generate. Consequently, π̃∗j
c �

2∑
i=1

max
(
π∗j

i ; π0
i

)
. This result is absurd as we

supposed that π̃∗j
c <

2∑
i=1

max
(
π∗j

i ; π0
i

)
.

Therefore, there is no other cooperation procedure satisfying the acceptation thresholds constraint and leading
to suppliers profits satisfying (π

′j
1c > πj

1c and π
′j
2c > πj

2c).
By the same way, we can easily prove that there is no other cooperation procedure satisfying the acceptation

thresholds constraint and leading to suppliers’ profits satisfying (π
′j
1c = πj

1c and π
′j
2c > πj

2c) or (π
′j
1c > πj

1c and
π

′j
2c = πj

2c). �

6. Numerical study

In this section we give numerical examples to illustrate the obtained results. We consider the case of
two suppliers who face the offer of a new product from a customer. Demand arrival rate λ is equal to
50 000 items/year. We suppose that demand occurs at units of pallets where a pallet contains 1000 items.
We consider a production cost c1 = c2 = 8 e/item and a profit rate of 25% which leads to suppliers’ sale prices
p1 = p2 = 10 e/item. The unit inventory holding costs are h1 = h2 = 38 e/Pallet/week. The unit backorder
costs are b1 = b2 = 480 e/Pallet/week. The acceptation profit thresholds are π0

1 = π0
2 = 10 thousand of euro

(10 Ke).
In Table 1 are presented suppliers’ profits under both competition and cooperation settings as functions of

the suppliers’ production capacities. In this table, the base stocks are expressed in (Pallets), the profits are
expressed in (Ke).

Note for this example that schemes 1 and 2 have reached the same Stackelberg equilibrium. This confirms
Property 4.2 since p1 = p2 and b1 = b2.
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Table 1. Suppliers profits under competition and cooperation settings as functions of their
production capacities.

Case 1 Case 2 Case 3

μ1 = 15 000 items/ year μ1 = μ2 = μ1 = 52 000 items/year

μ2 = 52 000 items/ year 52 000 items/ year μ2 = 15 000 items/year

Ej = {(A∗j
1 , α∗j

1 , s∗j
1 , A∗j

2 , s∗j
2

)} {(0, 0, 0, 0, 0)} {(1, 80%, 9, 1, 1)} {(0, 0, 0, 0, 0)}
Ej

c = {(Aj
1c, α

j
1c, s

j
1c, A

j
2c, s

j
2c

)} {(1, 18%, 10, 1, 5)} {(1, 50%, 3, 1, 3)} {(1, 18%, 5, 1, 10)}
π∗j

1 0 60 0

πj
1c 34 65 34

π∗j
2 0 17 0

S
ch

em
e-

j
∀j

∈{
1
,2
}

πj
2c 34 22 34

In Cases 1 and 3, the new product offer is lost under the competitive system however it is accepted if suppliers
cooperate. The profit of each supplier will then increase from 0 to 34 Ke. In Case 2, the new product offer will
be accepted for both competition and cooperation schemes. We note that even in this case, the cooperation
has improved both suppliers profits (from 60 to 65 Ke for supplier-1 and from 17 to 22 Ke for supplier-2). So,
although supplier-1 is the leader, it is in his advantage to cooperate with supplier-2.

To explain this, let’s analyze the curves (Fig. 1) which show the evolution of the suppliers’ profits as functions
of the demand allocation parameter α1 in the three cases considered above. Note again that, since p1 = p2 and
b1 = b2, the curves corresponding to schemes 1 and 2 are identical.

Let’s consider first μ1 = μ2 = 52 000 items/year. Under the competition case, the deal is accepted and
α∗j

1 = 80% ∀ j ∈{1, 2}. Note that although supplier-1 is the leader, and has enough capacity to be allocated the
totality of demand volume (μ1 > λ), he would rather be allocated only 80% of the total demand. In fact when
the production system is extremely charged the resulting inventory/backorder costs are excessive leading to a
decrease in the profit value. Figure 1 shows that when cooperating, the optimal proportion of demand allocated
to supplier-1 is reduced to α∗j

1c = 50%. In fact it leads to a decrease in the inventory/backorder costs compared
to the Stackelberg equilibrium. Suppliers earn then the cooperative system profit which they share among them
according to expressions (5.3).

Let’s consider now μ1 = 15 000 items/year and μ2 = 52 000 items/year. In this case, supplier-1 production
capacity is small. Consequently his profit is lower than the acceptation threshold for all possible demand allo-
cations values α1. On the other hand, it is unprofitable for supplier-2 to accept the totality of demand amount
although he has enough capacity (see Fig. 1 where α1 = 0). Thus, the new product offer is lost. However, when
suppliers cooperate, supplier-1 is allocated 18% of de demand volume, in return, supplier-2 shares with him the
total profit. The deal is then accepted and suppliers earn the cooperative system profit that they share.

The same thing happens when μ1 = 52 000 items/year and μ2 = 15 000 items/year. The deal is lost under
competition. Indeed, it is not profitable for supplier-1 to get the entire offer. On the other hand, supplier-2
production capacity is so small that, he refuses to be allocated any amount of the total demand volume. When
suppliers cooperate, supplier-2 is allocated 18% of the demand volume; in return, supplier-1 shares with him
the total profit. The deal is then accepted.

In order to highlight some comparisons between schemes 1 and 2, let’s now consider some cases where
p1 �= p2. We consider the same normative example seen above (λ = 50 000 items/year; c1 = c28 e/item;
h1 = h2 = 38 e/Pallet/week; b1 = b2 = 480 e/Pallet/week; π0

1 = π0
2 = 10 Ke and p1 = 10 e/item).

We determine the profits of both suppliers 1 and 2 as functions of supplier-2 sale price p2, before and after
cooperation (see Fig. 2). In this study, we will vary p2

p1
in the range [0.8, 1.2]. We assume, in fact, that for higher

values of p2 (p2 > 1.2 p1) the new product offer is no longer interesting for the customer.
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Figure 1. Suppliers profits and cooperative system profit (in Ke) as functions of α1: (Case 1)
μ1 = 15 000 items/year and μ2 = 52 000 items/year, (Case 2) μ1 = μ2 = 52 000 items/year,
(Case 3) μ1 = 52 000 items/year and μ2 = 15 000 items/year.

In case 1, supplier-1 production capacity is small. On the other hand his profit does not depend on p2

if scheme-1 (without cooperation) is used. Under this scheme, the deal is lost for all p2 values. However, in
scheme-2 supplier-1 purchases supplier-2 products and sells them at a different price. If supplier-2 chooses p2

a little bit smaller then p1 the deal becomes profitable for supplier-1. The new product offer is then accepted.
If p2 is very small, the deal is more profitable for supplier-1 but becomes unprofitable for supplier-2 and then
again it will be lost.

Note that if supplier-2 has to choose p2 value, he would rather choose p2 = 0.9p1. In this situation, supplier-1
will be obliged to choose scheme-2 otherwise the deal will be lost. In this case, supplier-1 profit will be 25 Ke
and supplier-2 profit will be 40 Ke. If suppliers decide to cooperate, their profits will be always better regardless
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Figure 2. Suppliers profits (in Ke) as functions of p2
p1

: (Case 1) μ1 = 15 000 items/year and
μ2 = 52 000 items/year, (Case 2) μ1 = μ2 = 52 000 items/year, (Case 3) μ1 = 52 000 items/year
and μ2 = 15 000 items/year.

of the adopted scheme. In this situation the best p2 value is p2 = 1.2p1. Supplier-1 will then choose scheme-1.
The profit of each suppler will be 75 Ke.

In case 2, both suppliers have enough production capacities. Even without cooperation the deal will be
accepted regardless the adopted scheme (except for the very small values of p2 where the deal is unprofitable
for supplier-2). When p2 < p1, supplier-1 would rather choose scheme-2. When p2 > p1, supplier-1 will prefer
scheme-1. On the other hand, suppliers’ profits are better after cooperation under both schemes. Note that in
this case, if supplier-2 has to choose p2 value, his best choice will be p2 = 1.2p1 in the competition and the
cooperation cases. In this situation supplier-1 would rather choose scheme-1.

In case 3, it is not profitable for supplier-1 to get the entire offer. On the other hand, supplier-2 production
capacity is small. Without cooperation, and for low values of p2, supplier-2 refuses to be allocated any amount
of the total demand volume. Thus, the new product offer is lost regardless the adopted scheme. However, for
high values of p2, the deal becomes profitable for supplier-2. Supplier-1 will then choose scheme-1. Note, that if
supplier-2 has to choose p2 value, he would rather choose p2 = 1.2 p1. In this situation, supplier-1 is better off
under scheme-1. In opposite, if suppliers decide to cooperate, supplier-2 would choose any value of p2 such that
p2 < p1. Consequently, supplier-1 would rather choose scheme-2.

7. Conclusion

In this paper, we investigated competitive and cooperative performances of a supply chain with two capac-
itated suppliers who are faced with the offer of a new product from a customer. Suppliers have the option to
accept or reject the new product deal according to its profitability. In addition, they decide on their base stock
levels. We studied the system from the perspectives of supplier-1 who acts as a Stackelberg leader. We considered
two schemes: in the first scheme, supplier-1 gets the demand ratio he wishes to be allocated. The remaining
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quantity ratio is allocated to supplier-2. In the second scheme, supplier-1 decides to respond to the entire demand
and to subcontract a part of it to supplier-2. Under the competitive setting, we derived analytical/numerical
expressions of suppliers’ decision variables. We gave conditions that allow supplier-1 to select the best scheme.
We showed that supplier-1 would rather not get the whole demand amount although he has enough capacity.

We investigated the corresponding cooperative system. We showed that, the new product offer can be lost,
while, it is accepted if the supply chain is managed in a cooperative manner. We presented the equal allocation
rule to share the benefits of collaboration among the two suppliers. We showed that under this allocation rule,
each supplier gets a better profit and that the corresponding benefit can be important.

As perspectives of our work, it would be interesting to include the customer in the game and to examine the
interaction between the three actors of the defined supply chain. The case of multiple suppliers could be also
another interesting extension of our model.
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