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ANALYSING THE SOLUTION OF PRODUCTION-INVENTORY OPTIMAL
CONTROL SYSTEMS BY NEURAL NETWORKS ∗
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Abstract. In this paper, a general production-inventory optimal control system is proposed which
can be used in most cases that might arise in the theory of production-inventory control. The proposed
general form is considered and approximately solved using neural networks. Since the obtained solutions
are achieved based on neural networks, they have several advantages in practice. One of the important
advantages is that the solutions can be easily used for post optimality and sensitivity analyses. The
solutions of this model are compared with those of other existing methods and some illustrating notes
are presented.
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1. Introduction

The management of production-inventory systems and solving production planning problems have received
considerable attention in the literature. Most of the available studies have considered a constant demand rate,
while the demand is time variant and time in reality is not discrete. This concept can be more serious while
facing several dynamic aspects like trends, seasonal behavior, life cycle patterns in demand for products, returns
and global multiple sales opportunities. Many mathematical models of (continuous time) production planning
problems can be posed as optimal control problems. In last decades, the use of optimal control theory in practical
problems arising in economy and management sciences had a fast growth. Some authors such as Kistner and
Dobos [10], Dobos [4], Sethi [19], etc. introduced optimal control models for the primal problems of inventory and
production planning. In recent years, the control of production inventories of deteriorating items has attracted
a lot of attention in inventory analysis. This is due to this fact that most of the physical goods deteriorate over
time (for example see [7, 8, 15, 20], etc.).

Tadj et al. [21] introduced an optimal control model for production inventory systems with deteriorating
items and proposed a closed form of optimal control problem for which they used numerical techniques to solve.
Foul et al. [7] introduced an optimal and self-tuning optimal control problem for a periodic-review hybrid pro-
duction inventory system with single reusable products. They also used recursive least-squares method to solve
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the proposed model. Li [15] introduced an optimal control model for production-inventory system with deteri-
orating items and also with tradable emission permits. He derived the optimality conditions for the proposed
optimal control problem as a two-point boundary value problem and solved it by using numerical methods. Pan
and Li [16] considered an optimal control for stochastic production-inventory system with environmental con-
straints. Benkherouf et al. [3] introduced optimal control of production planning problems with reverse logistic
in a finite planning horizon inventory system. Returned items may be classified as either remanufacturing or
refurbishing items. They solved the proposed continuous optimization problem with discretization and nonlin-
ear programming techniques. Hedjar et al. [8] developed model predictive production planning in a three-stock
reverse-logistics system with deteriorating items. They used the model predictive control method to analyze the
solution of the proposed optimal control problem. Alfares [2] considered a production-inventory system with
finite production rate, stock dependent demand and variable holding cost. He proposed two efficient algorithms
for solving the proposed model which contains of a nonlinear programming problem.

Huang and Jiang [9] proposed a neural network observer-based optimal control for unknown nonlinear systems
with control constraints. Kiumarsi et al. [11] presented a new reinforcement learning (RL) approach based on
a new neural network model to solve the optimal tracking problem of a nonlinear discrete time-varying system
via an online approach. Kmet and Kmetova [12] considered a method based on neural networks for solving
optimal control problems with discrete time delays in state and control variables subject to control and state
constraints. The proposed optimal control model was transcribed into a nonlinear programming problem that
was implemented with feed forward adaptive critic neural networks to find the optimal control and the optimal
trajectory.

Without considering optimal control theory, neural networks were applied for solving problems in the
inventory-production models. Partovi and Anandarajan [17] used the ability of artificial neural networks in
prediction for classifying inventory in pharmaceutical companies. They proposed two different learning algo-
rithms and compared their approach with the multiple discriminate analysis technique. Paul and Azeem [18]
developed an artificial neural network model in order to determine the optimum level of finished goods inven-
tory as a function of product demand, setup, holding, and material costs. Aengchuan and Phruksaphanrat [1]
considered inventory control models and compared some soft-computing techniques for the mentioned models.
They compared the abilities of fuzzy inference systems with neural networks for prediction purposes of the
inventory control problem. Thomas et al. [22] applied neural networks for the reduction of a product-driven
system emulation model. Lee et al. [14] studied production quantity allocation for order fulfilment in the supply
chain via a neural network approach.

Most techniques used for solving the above mentioned optimal control problems are a type of discretization
of the continuous model. On the other hand, it is well-known that neural networks are universal approximators.
They can estimate a nonlinear function with an arbitrary degree of accuracy. For example, Lagaris et al. [13] pro-
posed a neural network method to solve both ordinary and partial differential equations. Effati and Pakdaman [5]
used the artificial neural networks for estimating the solution of fuzzy differential equations. In the case of opti-
mal control theory, Effati and Pakdaman [6] used the ability of neural networks for approximating the solution
of mathematical models of optimal control problems.

The aim of this paper is to propose a neural network model that is capable of solving optimal control
models arising in the theory of inventory systems and production planning. The proposed solution in neural
network methodology has many advantages. Since the solutions for state and control variables are presented as
differentiable functions of time (unlike other existing methods), the solution can be calculated at each arbitrary
point in the time horizon. Also the proposed approximate solution is a differentiable function. Thus it can be
used for other applications such as post optimality analysis. In Section 2 we mention the mathematical models
of optimal control problems for inventory control. In this section we introduce the models proposed by Hedjar
et al. [8] and also Sethi [19] and derive the optimality conditions for the inventory control models and present
them as a system of differential equations. Section 3 contains the proposed approximation techniques for solving
the optimal control models via the neural network method. To illustrate the proposed approximate algorithm,
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two problems are solved in Section 4 along with a comparison and analysis. Some remarks about the proposed
method are presented in Section 5 and finally, Section 6 contains conclusions.

2. Problem formulation

A general form of an optimal control problem can be defined as follows:

min J = Ψ(x(T ), T ) +

T∫
t0

F (x(t), u(t), t)dt

s.t. ẋ = f(x(t), u(t), t), x(t0) = x0. (P1)

where T > 0 is time horizon and t ∈ [t0, T ], x ∈ Rn is the vector of state variables, u ∈ Rm is the vector of control
variables and the functions f : Rn×Rm×R→ Rn, F : Rn×Rm×R → R and Ψ : Rn×R → R are continuously
differentiable. Here ẋ is used for dx/dt. Other constraints may be considered for the control function u(t) or the
state function x(t). If for (P1) we define the Hamiltonian function as H(x, u, t) = F (x, u, t) +λf(x, u, t) (where
λ ∈ Rn is the co-state vector), then the necessary optimality conditions for u∗(t) to be an optimal control
for (P1) are: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = ∂H
∂λ ⇒ ẋ = f(x∗, u∗, t), x∗(t0) = x0

λ̇ = −∂H
∂x , λ(T ) = ∂Ψ

∂x (x∗(T ), T )
∂H
∂u∗ = 0

(2.1)

Equations in (2.1) form a system of ordinary differential equations which show the necessary conditions for
optimality.

In practical models of optimal control problems in production management and inventory control, the state
function x(t) and control function u(t) may have several descriptions based on the dynamics of the real world
models. From the inventory point of view, suppose that Im(t), Ir(t) and It(t) denote the inventory of manu-
facturing, remanufacturing and returned items at time t, respectively and their initial values are I0

m(t), I0
r (t)

and I0
t (t). Also um, ur and ud denote the rate of manufacturing, remanufacturing and disposal at time t. In

this case, we set x(t) = [Im(t) Ir(t) It(t)]T and u(t) = [um(t) ur(t) ud(t)]T as the state and control variables,
respectively. Thus, problem (P1) can be rewritten as follows:

min J = Ψ(Im(T ), Ir(T ), It(T ), T ) +

T∫
t0

F (Im(T ), Ir(T ), It(T ), um(t), ur(t), ud(t), t)dt

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

İm(t) = f1(Im(T ), Ir(T ), It(T ), um(t), ur(t), ud(t), t), Im(t0) = I0
m,

İr(t) = f2(Im(T ), Ir(T ), It(T ), um(t), ur(t), ud(t), t), Ir(t0) = I0
r ,

İt(t) = f3(Im(T ), Ir(T ), It(T ), um(t), ur(t), ud(t), t), It(t0) = I0
t ,

(P2)

where f1, f2 and f3 determine the dynamics of the system and they can be linear or non-linear. Problem (P2) is
a general form of most problems in inventory control theory. Several researchers have determined the structure
of functions f1, f2 and f3 for their proposed new inventory models (e.g. [10, 15]). We can derive the necessary
optimality conditions (2.1) for (P2). In some cases, system (2.1) can be solved analytically. However, when the
system is complicated, some approximate methods must be applied. In Table 1, the notations of variables in
model (P2) and their descriptions are listed. Note that model (P2) does not restrict us in selecting a larger
number of state and control variables. We can use fewer or more number of state and control variables with
different descriptions.
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Table 1. List of variables and their notations in proposed model (P2).

State variables Control variables
Im(t) Ir(t) It(t) um ur ud

inventory of inventory inventory rate of rate of rate of
Description manufacturing of remanufacturing of returned manufacturing remanufacturing disposal

items at time t items at time t items at time t at timet at time t at timet

To show the advantages and contributions of the proposed model and algorithm, a short review on existing
methods for modelling and solving optimal control problems in the theory of production-inventory control is
presented in Table 2. As it can be seen from Table 2, most of the previously proposed algorithms have presented
a point to point solution and have not proposed the solution as a differentiable function of time, while the neural
network approach does.

3. Approximation method

In the theory of neural networks, a basic perceptron has an architecture as presented in Figure 1.
In Figure 1, t and out are the input and output of the network, w and v are the weights of input and output

respectively and b is the bias weight and z = wt + b. Here Sigmoid is the activation function of the neural
network with the following structure:

Sigmoid (z) =
1

1 + e−z
·

Figure 1. Basic structure of a perceptron neural network.

Instead of the Sigmoid activation function, we may use any other activation functions. Considering
problem (P2), to approximate the state function x(t) = [Im(t) Ir(t) It(t)]T , control function u(t) =
[um(t) ur(t) ud(t)]T and the co-state functionλ(t) = [λ1(t) λ2(t) λ3(t)]T , first we propose their corresponding
approximated functions respectively as follows:⎧⎪⎪⎨

⎪⎪⎩

xA(t, φi) = [IA
m(t, φim) IA

r (t, φir) IA
t (t, φit)]T ,

uA(t, φu) = [uA
m(t, φum) uA

r (t, φur) uA
d (t, φud)]T ,

λA(t, φl) = [λA
1 (t, φ1) λA

2 (t, φ2) λA
3 (t, φ3)]T .

(3.1)

Each of the nine functions IA
m, I

A
r , I

A
t , uA

m , uA
r , u

A
d , λ

A
1 , λ

A
2 and λA

3 contains a neural network with its special
weights (special weights for each approximate function are contained in the vector variables φ). The notations
of the weights for each approximate function are illustrated in Table 3.

To illustrate the structure of approximate functions, we describe for example, the formulation of approximate
function IA

m(t) as follows:
IA
m(t, φim) = Im0 + (t− t0)Nim(t, φim)

where Nim(t, φim) =
∑N

j=1 v
im
j s(wim

j t+ bimj ), s is sigmoid transfer function and φim = [vim wim bim]. It is easy
to check that IA

m(t) (which is the approximation of Im(t)), satisfies the initial condition IA
m(t0, φim) = Im0.

Other approximate functions have the same structure (similar to Fig. 1).
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Table 3. Notations of weights for each approximate function for j = 1, 2, . . . , N .

Title State variables Control variables Co-state variables

Variables in original model (P2) Im Ir It um ur ud λ1 λ2 λ3

Approximate variables IA
m IA

r IA
t uA

m uA
r uA

d λA
1 λA

2 λA
3

Corresponding neural network Nim Nir Nit Num Nur Nud N1 N2 N3

Weights of input layer wim
j wir

j wit
j wum

j wur
j wud

j w1
j w2

j w3
j

Bias weights bim
j bir

j bit
j bum

j bur
j bud

j b1
j b2

j b3
j

Weights of output layer vim
j vir

j vit
j vum

j vur
j vud

j v1
j v2

j v3
j

Based on the structures of approximate functions, we can define an approximate Hamiltonian function as
follows:

HA(xA, uA, t) = F (xA, uA, t) + λAf(xA, uA, t). (3.2)

Since IA
m, IA

r , IA
t , uA

m, uA
r , uA

d , λA
1 , λA

2 and λA
3 are approximate solutions of the optimal control problem (P1),

they must satisfy the necessary conditions (2.1) while considering the approximate Hamiltonian function (3.2)
as follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋA = ∂HA

∂λA
⇒ ẋA = f(xA, uA, t), xA(t0) = x0

λ̇A = −∂HA

∂xA
, λA(T ) = ∂Ψ

∂xA
(xA(T ), T )

∂HA

∂uA
= 0

(3.3)

Since λAmust satisfy a final condition in (3.3), we can choose:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λA
1 (t, φ1) = ∂Ψ

∂IA
m

(IA
m(T ), T ) + (t− T )N1(t, ϕ1),

λA
2 (t, φ2) = ∂Ψ

∂IA
r

(IA
r (T ), T ) + (t− T )N2(t, ϕ2),

λA
3 (t, φ3) = ∂Ψ

∂IA
t

(IA
t (T ), T ) + (t− T )N3(t, ϕ3).

To solve (3.3) for t ∈ [t0, T ], we use a discretization of interval [t0, T ] and define the following error minimization
problem:

minimize
Φ

N∑
k=1

[
ẋA(Φ, tk) − ∂HA(Φ, tk)

∂λA

]2

+
[
λ̇A(Φ, tk) +

∂HA(Φ, tk)
∂xA

]2

+
[
∂HA(Φ, tk)

∂uA

]2

, (3.4)

where Φ is a weight vector containing all weights of all approximate functions. Indeed Φcontains the weight
vectors of approximate state functions (weights of inventory functions i.e. φim, ϕir and φit), the weight vectors
of the control functions (weights of production functions i.e. φum, φur and φud) and the weight vectors of
the approximate co-state functions (φ1, φ2 and φ3). Problem (3.4) is an unconstrained optimization problem.
This problem can be solved with heuristic methods such as Genetic algorithm or with classical mathematical
optimization methods. By terminating the optimization step, we can replace the optimal weights Φ∗ into the
corresponding approximate functions (3.1).

4. Numerical examples

In this section, to show the flexibility of the proposed method, two different numerical examples are presented.
As the first example, we solve a model from Sethi and Thompson [19] which has an analytical solution to verify
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Table 4. Notations for Example 1 in comparison with notations in (P2).

Notations in Example 1. Corresponding notation
Sethi [19] in our model (P2)

I Im

P um

P (t) − S(t) f1

e−ρt
[

h
2
(I − Î)2 + c

2
(P − P̂ )2

]
F

the method’s reliability. For the second example, based on continuous review policy of a plant and following
Hedjar et al. [8], we solve their proposed model. Both problems are solved in Matlab 2013Rb. The number of
weights for all neural network parameters is considered to be 3. Also for both problems, the time horizon is
discretized into 10 equal sub-intervals.

Example 1. As the first example, we solve the problem from Sethi and Thompson [19]. Consider a factory
which produces a single homogeneous good with a finished goods warehouse. The mathematical model is as
follows:

minimize
P�0

J =

T∫
0

e−ρt

[
h

2
(I − Î)2 +

c

2
(P − P̂ )2

]
dt

s.t.
dI
dt

= P (t) − S(t), I(0) = I0,

where P̂ = 30, Î = 15, T = 8, ρ = 0, I(0) = 10 and h = c = 1. Here, Î and P̂ are the goal of inventory
and production levels, ρ � 0 is the discount rate, h > 0 is the inventory holding cost coefficient, c � 0 is the
production cost coefficient and S(t) = t3 − 12t2 + 32t+ 30 is the sales rate. The optimality conditions lead to
the following two-point boundary value problem:

⎧⎨
⎩

dI
dt = P̂ + λ

c − S(t), I(0) = I0

dλ
dt = ρλ+ h(I − Î), λ(T ) = 0.

This problem has an analytical solution which is solved in [19]. In comparison with our notations (see prob-
lem P2), we can introduce the proposed notations in Table 4. This table shows that how the variables in this
problem correspond with the ones in our model. Note that in this model we just have one type of inventory (I
or Im) for manufacturing items. Thus, we do not have functions f2 and f3.

The optimal solution for production P (t) is illustrated in Figure 2. The optimal inventory I(t) is plotted
and compared with the exact solution in Figure 3. As it can be observed in Figures 2 and 3, the approximated
solution with neural networks is very near the analytical solution with very good accuracy. The structure of the
obtained inventory function is similar to (3.1).

As it can be observed in Figures 2 and 3, the proposed approximate inventory and production functions are
differentiable. Also we can calculate the level of inventory as well as the level of production continuously at each
arbitrary point in the time horizon [0,8]. Based on Figure 2, the final value of the production is equal to its goal
level of 30.

Example 2. To illustrate the proposed method and validate it, we applied the neural network methodology to
solve a numerical example from [8]. Based on the parameter selection in Hedjar et al. [8], suppose that Im(t),
Ir(t) and It(t) denote the inventory of manufacturing, remanufacturing and returned items at time t, respectively
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Figure 2. Comparison results for approximating production in Example 1.

Figure 3. Comparison results for approximating inventory in Example 1.

and assume that their initial values are I0
m(t), I0

r (t) and I0
t (t). In addition, their goal level are denoted by Îm(t),

Îr(t) and Ît(t), respectively. um, ur and ud denote the rate of manufacturing, remanufacturing and disposal at
timet, with goal rates ûm, ûr and ûd, respectively. To attain the goals of the problem, Hedjar et al. [8] proposed
the following control and state functions:

⎧⎨
⎩
x(t) = [ΔIm(t) ΔIr(t) ΔIt(t)]T = [Im(t) − Îm(t) Ir(t) − Îr(t) It(t) − Ît(t)]T ,

u(t) = [Δum(t) Δur(t) Δud(t)]T = [um(t) − ûm(t) ur(t) − ûr(t) ud(t) − ûd(t)]T
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Table 5. Notations for Example 2 in comparison with notations in (P2).

Notations in Example 2 Corresponding notation in our model (P2)
ΔIm(t) Im

ΔIr(t) Ir

ΔIt(t) It

Δum um

Δur ur

Δud ud

Hedjar et al. [8] proposed the following optimal control problem:

min
1
2

T∫
0

[xT (t)Qx(t) + uT (t)Ru(t)] dt

s.t.
d(ΔIm(t))

dt
= Δum(t) − θmΔIm(t)

d(ΔIr(t))
dt

= Δur(t) − θrΔIr(t)

d(ΔIt(t))
dt

= −Δur(t) −Δud(t)

ΔIm(0) = 15, ΔIr(0) = 10, ΔIt(t) = 5.

where

Q =

⎡
⎢⎢⎣
qm 0 0

0 qr 0

0 0 qt

⎤
⎥⎥⎦ and R =

⎡
⎢⎢⎣
rm 0 0

0 rr 0

0 0 rd

⎤
⎥⎥⎦ .

This problem also agrees with our proposed model. It is enough to define the variables as shown in Table 5.
Here x(t) = [ΔIm(t) ΔIr(t) ΔIt(t)]T and u(t) = [Δum(t) Δur(t) Δud(t)]T . In matrix notation, this prob-

lem has a linear form as follows:

min
1
2

T∫
0

[xT (t)Qx(t) + uT (t)Ru(t)] dt

s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0

where

A =

⎡
⎣−θm 0 0

0 −θr 0
0 0 0

⎤
⎦ , B =

⎡
⎣1 0 0

0 1 0
0 −1 −1

⎤
⎦ and x0 =

⎡
⎣ΔIm(0)
ΔIr(0)
ΔIt(0)

⎤
⎦ .

Also qm, qr, qt, rm, rr and rd are the penalty parameters (see [8]). Based on Hedjar et al. [8], consider the initial
conditions: ΔI0

m = 15, ΔI0
r = 10, ΔI0

t = 5 and the following parameters:

T = 0.4, θm = 0.01, θr = 0.02, qm = 1, qr = 2, qt = 3, rm = 0.1, rr = 0.2, rd = 0.3.
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Figure 4. Optimal inventory functions for Example 2.

Figure 5. Optimal control functions for Example 2.

With these parameters in hand, we solve the optimization problem (3.4). Based on the initial conditions the
proposed approximate state functions (for inventory functions) we can have the following structures:⎧⎪⎨

⎪⎩
ΔIA

m(t, φim) = 15 + t×Nim(t, φim),

ΔIA
r (t, φir) = 10 + t×Nir(t, φir),

ΔIA
t (t, φiR) = 5 + t×Nit(t, φit).

(4.1)

Also, since Ψ(x(T ), T ) = 0, the structure of the approximate co-state functions can be considered as follows:⎧⎪⎨
⎪⎩
λA

1 (t, φ1) = (t− 0.4) ×N1(t, φ1),

λA
2 (t, φ2) = (t− 0.4) ×N2(t, φ2),

λA
3 (t, φ3) = (t− 0.4) ×N3(t, φ3).

The optimal solutions are plotted in Figures 4 and 5. Similar to the results reported in [8], the solutions converge
to zero. In [8], they used the model predictive control approach for solving the proposed optimal control model
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Figure 6. Convergence of the weights for Example 2.

which needs a discretization of the horizon interval. But, in the neural network method, we discretize the interval.
Anyway, the final solution (for both optimal control and optimal state functions) is an approximate-analytical
solution that is a differentiable function of time. The structure of the obtained inventory function is similar
to (4.1). To illustrate the convergence of the weights of the proposed neural network, in each iteration, the
values of all weights (vector Φ in optimization problem (3.4)) are plotted in Figure 6.

As it can be seen from both Figures 4 and 5, the differences between the goal levels of inventories and
productions tend to zero. Also, as it can be observed in Figures 4 and 5, the production and inventory function
are differentiable functions of time. Thus, we can calculate the difference between the goal level of inventory
(production) functions and their current values at each arbitrary point in the time horizon.

5. Remarks and discussion

Considering the proposed model (P2) and the neural network-based approach, it is necessary to mention
some remarks to illustrate the algorithm.

As the first remark, based on the proposed neural network method and in comparison with the other existing
methods, the proposed solutions have a closed form. Indeed, the control and state variables are differentiable
functions of time. Thus, we can calculate the inventory and production values at each arbitrary time in the time
horizon.

The proposed model for the optimal control problem (P2) is a general form that can be considered in most
cases in production-inventory models. For example, the dynamics of the system can be linear [8], time variant or
time invariant. In addition, the objective functional can be quadratic or any other nonlinear model. However, in
Section 4, two different problems were solved. Of course, this is not a limitation for the algorithm. Comparing
Tables 4 and 5 with Table 3 helps us to define any state and control variables with different descriptions for
any problem in the theory of production-inventory control. Also, the dynamics of the system can be determined
by f1, f2 and f3.

In comparison with Effati and Pakdaman [6], in this paper we have a different objective functional with the
considered objective in [6]. In the model (P2), ψ(x(T ), T ) denotes the salvage or scrap value which is needed so
that the solution will make “good sense” at the end of the horizon (see [19]). Effati and Pakdaman [6] did not
consider any salvage value of the ending state x(T ) at time T in their objectives. Thus, an additional condition
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for λ(T ) is needed (this condition is presented in (2.1)). Indeed, the proposed trial solution for co-state function
must be constructed such that it satisfies this condition while in [6] they do not have this condition.

Finally the number of weights and the number of points in the time horizon can be increased to have a more
precise solution. The optimization algorithm for problem (3.4) can be any mathematical optimization algorithm
or a heuristic one.

6. Conclusions

In this paper, a method based on the neural networks models was proposed for solving optimal control
problems arising in modelling the inventory-production systems. Based on the proposed method, the obtained
results (obtained functions for inventory and production) are differentiable functions from which the value of
inventory can be obtained and calculated at each point in the planning horizon. This can be important and
helpful for decision makers to determine the inventory and production quantity throughout the planning horizon.
The existing methods usually calculate the solution at discrete points in the planning horizon. In Example 2
we compared the method with the model predictive control method presented in [8].

Although only two different sample problems were solved, in general we can use the proposed method for
solving other types of inventory-production optimal control problems. In such situations, it is enough to de-
termine the control and state functions as presented in (P2). This method can have extensive applications for
solving optimal control problems arising in the theory of production planning and inventory control. As a future
work, we can apply the proposed method for solving ordinary and partial differential equations in production
management as well as for multi-objective optimal control problems for inventory systems.
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ments and suggestions. This work was supported in part by: Research Deputy of Ferdowsi University of Mashhad, under
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