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PRICING AND DETERMINING THE OPTIMAL DISCOUNT TIME
OF PERISHABLE GOODS WITH TIME AND PRICE DEPENDENT DEMAND
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Abstract. In the eyes of consumers, the value of perishable goods generally declines during the good’s
lifetime. In this situation a mechanism to encourage purchases, such as discounts or reduction in price
policy can be effective. In this paper, we determine the discount time and the prices for a perishable
product with a one period lifetime. Product demand is dependent on price and time. Demand function
is different after discount time to an increase in costumer. After modeling, we show that the profit
function is concave and optimal price and the discount time is unique. Due to the complexity of the
model, using a heuristic algorithm, the near optimal price and the near optimal discount time are
calculated.
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1. Introduction

The first paper that combined pricing and capacity decisions is [2], who studied a single period model. They
considered the case where capacity is fixed for both products, but the firm can set prices. They obtained the op-
timal pricing and capacity decisions for two products by assuming demand to be uniformly distributed. Maihami
and Kamalabadi [7] and Avinadav et al. [1] also considered a single period problem. Maihami and Kamalabadi
(2012) assumed that demand is price and time sensitive and developed an optimization model to determine
the optimal price, the optimal order quantity and the optimal replenishment schedule for non-instantaneously
deteriorating items. Avinadav et al. [1] also employed a price and time dependent demand function and devel-
oped a mathematical model to calculate the optimal price, the order quantity and the replenishment period for
perishable items. Chew et al. [4] assumed that demand for perishable products is price sensitive, and developed
an optimization model to determine the price and the inventory allocation for a perishable product with pre-
determined multiple lifetimes. In addition, Chew et al. [3] considered a pricing and inventory problem with a
perishable product of multiple-periods lifetime. However, the demand for products of different age is assumed
to be independent from each other, and they failed to consider demand transfers among products of different
ages. We consider a single period problem with a demand function that differs in the time horizon.

Commodities, which lose their value over time are called “perishable products”. Medicines, fruits and veg-
etables, seasonal and fashion goods, electronics, etc. are considered as perishable products. Due to technological

Keywords. Pricing, perishable product, price discount, demand function.

1 Department of Industrial Engineering, Technology Development Institute (ACECR), Tehran, Iran.
khakzar@jdsharif.ac.ir; fatemehzabihy@yahoo.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2017

https://doi.org/10.1051/ro/2016040
http://www.rairo-ro.org
http://www.edpsciences.org


510 F. ZABIHI AND M. KHAKZAR BAFRUEI

advances, competitive markets, and the value of providing fresh products for customers, sales management and
pricing of these goods are important. The significant issues for customers are the lifetime of goods and their
expiry date, so marking down the price at the time horizon is an incentive approach to sell more goods. In
many businesses, dynamic pricing is considered as a mechanism to attract more customers. Diaz [5] argued that
the impact of price on consumer decisions depends on how products are evaluated. Particularly in the case of
perishable food products, many consumers believe that new products have a higher value than the products
whose dates have expired. Supermarket customers prefer to buy fresh products, not those close to the expiry
date. When the prices are the same, they prefer newer products. To encourage customers to buy perishable
products close to their expiry date, the use of price discounts is an effective approach. Tajbakhsh et al. [8]
designed an inventory model with stochastic price discount, and presented a numerical analysis, which showed
cost savings through discount offer. Li et al. [6] introduced a dynamic pricing approach to optimize profits for
supply chain partners, and showed that price change cost and uncertainty in consumer behavior make difficult
the implementation of the dynamic pricing model.

In this paper, pricing of perishable goods in extenuating circumstances is considered. Due to the importance
of selling those products in their life cycle and their freshness in the customers view, policies that encourage
customers to buy more are essential. We propose a rebate policy with synchronizing the demand rate function
during the discount interval. The demand rate is a function of the price and time, and due to the discounts
offered during the related interval, a different demand rate function is considered based on the discount time.
It should be pointed out that a price discount policy effectively produces an initially demand rate increase, but
it is reduced over time. The main contribution of the paper is an algorithm for determining the discount time
and the prices for a perishable product with a one period lifetime.

The rest of this paper is organized as follows. In Section 2 the model assumptions and notations are defined
and the demand rate function depending on the time is introduced. Section 3 presents the demand, revenue
and profit functions. In Section 5 numerical examples are considered and the related optimal price and discount
time are obtained. Finally, some conclusions and future research are presented in Section 6.

2. Notations and assumptions

The following notations and assumption are used throughout the paper.

2.1. Notation

Demand functions
D1(p, t) demand rate function before discount time, which depends on the time period and the selling price.
D2(p, t) demand rate function after discount time, which depends on the time period and the selling price.

Parameters
ED t total demand quantity at time interval [0, t]
c constant purchasing cost per unit
T time horizon for selling product
Q order quantity in the time horizon of selling product
α percentage of discount that is considered 0< α < 1
I0 maximum inventory level in the first of time horizon, it is the order quantity

Variables
p selling price per unit, where p > c

t discount time in which the firm announces the purchasing off to the customers
TP total profit per time unit of the inventory system
Note: The optimal value of the variables is denoted with the superindex *.
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2.2. Assumptions

Consider an inventory system where a firm purchases a perishable item at initial sales period T , and sells it
over that season. Other assumptions are as follows:

(i) A single perishable item is assumed.
(ii) The lead time is zero.
(iii) All of the parameters are deterministic.
(iv) Shortages are not allowed.
(v) The time horizon is finite.

2.3. Demand function

The basic demand rate is a function of time and price during the time horizon of product selling. Due to
the importance of time in buying and selling perishable products, the demand change over time is considered
exponential. Price is a necessary factor on buying perishable products, so that the demand function is considered
as a linear function of price [9]. In this paper, we assumed that the demand rate before discount can be expressed
as follows,

D1 (p, t) = (a − bp) e−λt, b > 0, a > 0, λ > 0, (2.1)

where, a and b are constant parameters such that a can guarantee the demand is positive at the beginning and,
afterwards, it decreases by changes in p and b is the importance coefficient of p in the demand function. Also,
a different λ, can be used in most cases where the demand rate varies over time. The consideration of time and
price dependent demand is useful for deteriorate items, such as fashion goods, high-tech product, fruits and
vegetables [9].

Let EDt be the total demand of a product at the time period [0, t] be expressed as follows,

EDt =
∫ t

0

D (p, t)dt (2.2)

The firm can offer a lower price in a mark-down period to attract customers to purchase products approaching
their expiry date. As a result, the two following different prices are set in the time horizon for product selling,

p (t) =
{

p [0, t1]
p (1 − α) [t1, T ] (2.3)

where, t1 is the price mark-down time after which a discount price α, (0 < α < 1) is deployed for a given
product.

During the discount interval, the demand rate has an ascending trend and gradually starts to descend. This
function can be expressed as follows,

D2 (p, t) = (a − bp(1 − α)) tβe−λt, b > 0, a > 0, > 0, β > 1. (2.4)

Note: After interviewing several salesmen who had discount policies in their stores, we found that after the
discount announcement, the demand rate, starting with a positive jump, increased in a short time and then
decreased. We asked them about of the quantification of the demand increase and it was estimated a suitable
curve for demand rate by using simulation. It is the approximation that we use and it is represented as follows,
D2 (p, t) is used in the example worked out in Section 5.

D2 (p, t) = (a − bp(1 − α)) t3e−λt, b > 0, a > 0, λ > 0.
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3. Demand, revenue and profit functions

It is assumed that the maximum inventory in the first period (I0) is the order quantity, and its decreasing is
only affected by demand. As a price mark-down should always be applied before the expiry date of the product,
the time horizon for product selling can be divided into two intervals: [0, t] and [t, T ].

Notice that due to the discount after the price mark-down, the demand rate function during the time intervals
[0, t] and [t, T ] is different.

Observe that in the interval the inventory descends over time, and the product is sold out at the price p.
On the other hand, in the interval [t, T ], the product is sold out at the discount price p (1 − α). Due to the

discount, a moderate growth in the demand initially occurs; however, it reduces gradually (see Fig. 1).
There is no shortage, nor surplus in the end of the time horizon, i.e., period T , so the inventory level is the

demand in that period. On the other hand, the demand in the time interval [0, t] can be expressed as follows,

EDt =
∫ t

0

D (p, t)dt =
∫ t

0

(a − bp) e−λtdt =
(a − bp)

λ

[
1 − e−λt

]
(3.1)

and the demand quantity in time interval [t, T ] can be expressed,

EDT =
∫ T

t

D (p, t) dt =
∫ T

t

(a − bp) t3e−λtdt

=
1
λ4

(a + bp(−1 +α))(e−tλ(6+tλ(6+tλ(3+tλ)))+e−Tλ(−6−Tλ(6+Tλ(3+Tλ))). (3.2)

The revenue by selling up with price p in the interval [0, t] and with price p(1 − α) in the interval [t, T ] can be
expressed as follows,

SR = p

∫ t

0

D (p, t) dt + p (1 − α)
∫ T

t

D (p, t)dt

= p

[
(a − bp)

λ

(
1 − e−λt

)]
+ p (1 − α)

[
1
λ4

(a − bp(1−α))(e−tλ(6+tλ(6+tλ(3+tλ)))

+ e−Tλ(−6−Tλ(6+Tλ(3+Tλ))))
]
, (3.3)

Discount 
time (t) 

T 

Q=I0 

Figure 1. Inventory level in period T .
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and the profit can be expressed,

TP = (p − c)
∫ t

0

D (p, t) dt + (p (1 − α) − c)
∫ T

t

D (p, t) dt

= (p − c)
[
(a − bp)

λ

(
1 − e−λt

)]
+ (p (1 − α) − c)

×
[

1
λ4

(a − bp(1−α))(e−tλ(6+tλ(6+tλ(3+tλ)))+e−Tλ(−6−Tλ(6+Tλ(3+Tλ))))
]

. (3.4)

4. Optimal price p∗ and discount time t∗

We consider a problem with retailers making important decision related to pricing for maximizing their own
profit. Optimally, partial derivatives of the profit function with respect to p and t must be equal to zero (Eqs. (9)
and (10)). For solving the problem, the following equations must be simultaneously considered:

∂TP

∂p
= − b

(
1 − e−tλ

)
(−c + p)

λ
+

(
1 − e−tλ

)
(a − bp)

λ

− b (c + p (−1 + α)) (−1 + α)
(
e−tλ (6 + tλ (6 + tλ (3 + tλ))) + e−Tλ (−6 − Tλ (6 + Tλ (3 + Tλ)))

)
λ4

− (a + bp(−1 + α))(−1 + α)(e−tλ(6 + tλ(6 + tλ(3 + tλ))) + e−Tλ(−6 − Tλ(6 + Tλ(3 + Tλ))))
λ4

= 0.

(4.1)
∂TP

∂t
=e−tλ(−c + p)(a − bp) − 1

λ4
(c + p(−1 + α))(a + bp(−1 + α))

× (e−tλ(tλ(tλ2 + λ(3 + tλ)) + λ(6 + tλ(3 + tλ))) − e−tλλ(6 + tλ(6 + tλ(3 + tλ)))) = 0. (4.2)

As a result the discount time t∗ and selling price p∗ are:

t∗=
(−1)2/3(c − p)1/3(a − bp)1/3

((c + p(−1 + α))(a + bp(−1 + α)))1/3
, (4.3)

and,

p∗ =

(
− a

(
1 − e−tλ

)
λ

− bc
(
1 − e−tλ

)
λ

+
a (−1 + α)

(
e−tλ (6 + tλ (6 + tλ (3 + tλ))) + e−Tλ (−6 − Tλ (6 + Tλ (3 + Tλ)))

)
λ4

+
bc (−1 + α)

(
e−tλ (6 + tλ (6 + tλ (3 + tλ))) + e−Tλ (−6 − Tλ (6 + Tλ (3 + Tλ)))

)
λ4

)/(
− 2b

(
1 − e−tλ

)
λ

− 2b (−1 + α)2
(
e−tλ (6 + tλ (6 + tλ (3 + tλ))) + e−Tλ (−6 − Tλ (6 + Tλ (3 + Tλ)))

)
λ4

)
· (4.4)

Theorem 4.1. The price p∗ and discount time t∗ obtained from expressions (11) and ((12) have absolute second
order conditions for profit objective maximization (TP).
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Proof. Let us compute the Hessian matrix of the profit function with respect to p∗ and t∗. If the determinant
of the Hessian is positive, the proof is completed, such that

∂2TP

∂p2 = −2b(1 − e−tλ)
λ

− 1
λ4

2b (−1 + α)2
(
e−tλ (6 + tλ (6 + tλ (3 + tλ))) + e−Tλ (−6 − Tλ (6 + Tλ (3 + Tλ)))

)
(4.5)

∂2TP

∂t2
= −e−tλ (−c + p) (−bp + a)λ − 1

λ4
(c + p (−1+α))(a + bp (−1 + α))

(
e−tλ

(
2tλ3 + 2λ

(
tλ2 + λ (3 + tλ)

))
− 2e−tλλ

(
tλ
(
tλ2 + λ (3 + tλ)

)
+λ (6 + tλ (3 + tλ))) + e−tλλ2 (6 + tλ (6 + tλ (3 + tλ)))

)
. (4.6)

From where,

H =

[
∂2TP
∂p2

∂2TP
∂p∂t

∂2TP
∂t∂p

∂2TP
∂t2

]
→ Det (H) =

∂2TP

∂p2 ∗ ∂2TP

∂t2
−
[
∂2TP

∂p∂t

]2
> 0 → e−2tλ

(− (b (c (1 + t3 (−1 + α)
)

+2p
(
−1 + t3 (−1 + α)2

))
+ s

(
1 + t3 (−1 + α)

))2

+ etλ

× (a (c (3t2+λ − t3λ
)−p

(−3t2 (−1 + α) + λ + t3 (−1 + α)λ
))− bp

(
c
(−3t2 (−1 + α) + λ + t3 (−1 + α) λ

)
+p
(
−3t2 (−1 + α)2 − λ + t3 (−1 + α)2 λ

)))(
− 2b

(
1 − e−tλ

)
λ

− 1
λ4

2b (−1 + α)2

(
e−tλ (6 + tλ (6 + tλ (3 + tλ))) + e−Tλ (−6 − Tλ (6 + Tλ (3 + Tλ)))

)))
> 0. (4.7)

And, by using Lemma 4.2 (see below), the proof of the theorem is made. �

Lemma 4.2. If the second derivative of function Det (H) is negative (and, so, it is concave) and if the function
Det (H) has two answers for each variable p and t, then Det (H) is positive in the interval between two responses.

Proof. The second derivative of Det (H) with respect to variables p computed, see (16). By inspection, it becomes
clear that each statement of (16) is negative, so the sum of the statements is negative.

∂2D(H)
∂p2 =4b2

(
−2
(
−1+t3 (−1+α)2

)2

− 1
λ4

etλ
(
−λ+t2 (−1+α)2 (−3+tλ)

)
×
((−1+e−tλ

)
λ3− (−1+α)2

(
e−tλ (6+tλ (6+tλ (3+tλ)))+e−Tλ (−6−Tλ (6+Tλ (3+Tλ)))

)))
<0

(4.8)

By solving Det (H) = 0 only two values are obtained for p (see below), and, since the second derivative of
Det (H) is negative thus the function Det (H) is positive. Notice that Det (H) is located at the top of the
vertical axis between the roots (two values) as shown in Figure 2. The two values of variable p mentioned above
are as follows:
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p 
500 600 700 800 900 1000

45000

50000

55000

60000

65000

70000

75000

80000

Figure 2. Graphical representation of Det (H) with respect to p.

Similarly, the above steps can be performed for variable t and completed the proof. In the following function
Det (H) with respect to p and t is drawn at specified intervals. As shown in Figures 2 and 3 the curve is above
the horizontal axis, and is positive. For drawing, the range of p is [400, 1000] and t is [0.5, 2].

Hence, the Hessian matrix H at point (t∗, T ∗) is negative definite. Consequently, it can be concluded that
the stationary point (t∗, T ∗) is a global maximum for the optimization problem.

4.1. Algorithm

As proved above, the profit function is concave and has a unique solution. A simple heuristic algorithm [7] is
used for obtaining the initial solution say (p1, t1) We point out that for obtaining the values of price and time
it is not necessary to go for the exact decimal, so the iterative algorithm can get the optimal value p∗ and t∗

Step 1. Let k denote a given iteration. Start by setting k := 1 and pk := p1 and tk := t1.
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t 
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Figure 3. raphical representation of Det (H) with respect to t.

Table 1. Computational results of Example 5.1.

k pk tk TPk

1 600.000 1.078 100182.512

2 690.310 1.012 104548.806

3 694.597 1.008 104558.573

4 694.813 1.008 104558.611

5 694.825 1.008 104558.612

6 694.826 1.008 104558.612

Step 2. Find the optimal value tk+1 by solving (11) for pk.
Step 3. Find the optimal value pk+1 by solving (12) for tk+1.
Step 4. If k>1 and the difference between pk and pk+1 is enough small (i.e. | pkpk+1|� ε, where ε is the quasi-

optimal tolerance), then pk := pk+1, t∗ := tk+1 is the near optimal solution, and stop. Otherwise, get
k := k + 1 and go back to Step 2.

By using the above algorithm, the near optimal solution (p∗, t∗) is obtained. With (p∗, t∗), TP∗ can be obtained
by (8).

5. Numerical examples

The proposed algorithm is used for solving the following numerical example to illustrate the solution process
and results. Mathematica 9 was used.

Example 5.1. The following parameters and functions are used.

D1 (p, t)= (500− 0.5p) e−0.98t D2 (p, t)= (500 − 0.5p) t3e−0.98tT = 2, c = 200, α = 0.3.
Table 1 show, the convergence of the algorithm, where for the quasi-optimal tolerance ε, it results p∗ =

694.826, t∗ = 1.008, TP ∗ = 104558.612, Q∗ = 293.945, and the numerical results are obtained for the price
interval [400, 1000] (see Figs. 5 and 6).

We can observe that the numerical results reveal that TP ∗ is strictly concave in p, and concave in t (see
Fig. 4). Also as shown in Figure 5, TP is concave in t. In the figure the interval of t is [0.5, 2]; the surface has



PRICING OF PERISHABLE GOODS WITH TIME AND PRICE DEPENDENT DEMAND 517

T
P

 

p 
500 600 700 800 900 1000

100000

90000

80000

70000

60000

Figure 4. Graphical representation of TP (p|t∗).
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Figure 5. Graphical representation of TP (t|p∗).

Figure 6. Graphical representation of TP (p, t).
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been obtained by using p∗. As a result, the local maximum obtained here from the heuristic algorithm is indeed
the global maximum solution.

6. Conclusion

In this paper, a model for obtaining the pricing for perishable goods in terms of discounts is presented. It
has been proven that the objective function value obtained from the optimal price and discount time is unique
and optimal. Finally, a numerical example using the proposed heuristic algorithm illustrate the results, showing
that the objective function is concave, and the optimal profit is global. The approach presented in this paper
is comprehensive and flexible to different values of the parameters of the demand function. It can be extended
in several ways; for instance, by considering a variable percentage discount. Other aspects include advertising
policies, delays in payment and models for coordinating in the system (i.e., supply chain).
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