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UNIT COMMITMENT UNDER UNCERTAINTY IN AC TRANSMISSION
SYSTEMS VIA RISK AVERSE SEMIDEFINITE STOCHASTIC PROGRAMS
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Abstract. This paper addresses unit commitment under uncertainty of load and power infeed from
renewables in alternating current (AC) power systems. Beside traditional unit-commitment constraints,
the physics of power flow are included. To gain globally optimal solutions a recent semidefinite program-
ming approach is used, which leads us to risk averse two-stage stochastic mixed integer semidefinite
programs for which a decomposition algorithm is presented.
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1. Introduction

In recent years, research in stochastic programming has moved into various new directions. This concerns
both theory and applications. Without aiming at completeness one could mention on the theory side: risk
aversion with risk measures or stochastic orders, stochastic programs in mixed-integer, semidefinite, bilevel, or
PDE constrained optimization as well as scenario tree construction and reduction. Fields of applications include
finance, logistics, and energy optimization in the broadest sense.

The present paper shall contribute to this development by bringing together stochastic programming, semidef-
inite optimization, risk aversion, and optimal power flow in AC networks. In doing so, the paper draws on
seminal work in risk neutral semidefinite stochastic programming [3,31], on recent progress in power flow opti-
mization [24], and on risk aversion by forming objective functions involving risk measures [39, 44].

To capture risk aversion in a minimization context we resort to an intuitive measure which is the probability of
a random quantity to exceed a preassigned critical level. This measure, called excess or exceedance probability
has been analysed in two-stage stochastic linear mixed-integer stochastic programming in [44]. In reliability
analysis it has a role in various fields of engineering of which a more recent one is seismic risk analysis [18].
Here the total cost of damage and retrofit caused by an earthquake is the random quantity of interest, and risk
is measured by the probability of this quantity to exceed a threshold value.

Our motivation to investigate risk aversion from the viewpoint of excess probabilities comes from the simul-
taneous treatment of unit commitment and AC load flow under uncertainty of power demand and infeed from
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renewables in power management. The “geographic split of the two”, meaning that the locations where elec-
tricity is produced from renewables and the locations where electricity is consumed are distant apart, has given
transportation via the electric grid increased importance. Therefore it is reasonable to expect that previous unit
commitment models neglecting the grid at all or using DC approximations of the AC load flow are too coarse.

Another recent development, this time in power flow methodology, has spurred our interest in incorporating
risk aversion into power flow optimization models. In [24] the authors formulate AC load flow by means of convex
semidefinite constraints and some rank condition (semidefinite programming for optimal power flow problems
was first presented in [4]). With a fixed commitment of generating units and for a fixed point in time, they
solve the dual to the mentioned convex program. When heading for a primal solution, a good many times, their
proposed solution approach has the ability to retrieve the relaxed rank-one condition, such that it enables the
opportunity to solve (nonconvex) power flow problems to global optimality.

Motivated by the uncertain parameters typically developing in time, we study unit commitment over some
time horizon. We extend existing unit commitment models by putting simultaneous consideration of AC load
flow and stochastic uncertainty on top of the model. Together with the semidefinite programming approach
in [24] this will lead to two-stage mixed-integer stochastic semidefinite programs, for which a decomposition
algorithm will be presented.

Our work is organized as follows. First, in Section 2, our basic deterministic unit commitment problem is
formulated. An efficient solution approach, based on a combination of the semidefinite reformulation [24] and
a Benders decomposition approach [1], is presented in Section 3. Inclusion of uncertainties is considered in
Section 4. This especially implies introduction of risk aversion via excess probabilities in two-stage stochastic
semidefinite programs. We discuss particularities of these stochastic programs and present a decomposition
algorithm for their solution. Finally, computational results and concluding remarks are given in Section 5.

2. Formulating the basic problem

We consider an AC power system that interconnects various power production units (such as coal fired blocks,
gas turbines, pumped-storage units, and wind parks) to consumers. For some preassigned planning horizon, the
challenge is to provide “optimal service” to the consumers in economically efficient, technologically feasible, and
operationally reliable manner.

From the mathematical-optimization perspective, these three targets concern main branches of current re-
search. Economic aspects, usually addressed under the key words of power dispatch and unit commitment, lead
into large scale mixed-integer (linear) optimization. While here linearity often provides an acceptable compro-
mise for model precision, this no longer holds for the technological aspects capturing generation and transmission
of electricity subject to the physical laws and engineering constraints. Jointly, these features are addressed as
optimal power flow. As an additional difficulty one faces the nonlinearity inevitably arising in its nonconvex
fashion. Finally, the reliability issue, in the widest sense, leads into optimization under uncertainty with robust
and stochastic optimization as major lines of development.

Given the breadth of topics with seminal contributions dating back for 50 years and more, e.g. the first model
for optimal power flow due to [11], there is a vast literature on the above themes. Therefore, we here confine
ourselves to refer to the recent very useful primer [14] and the excellent bibliographical review in [15] and [16].
Although all three papers mainly circle around different aspects of optimal power flow, coverage of the economic
aspects and the uncertainty issue is substantial as well.

2.1. Basic traditional UC model

To begin with, we introduce principal characteristics of the unit commitment part of our full model. Drawing
on [9] and [17] the presentation is fairly detailed, mainly to be self-contained, but also to introduce the quite
complex notation needed subsequently.

Throughout, boldfaced symbols in mathematical formulas stand for variables, symbols in normal font for
problem data.
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Consider a power gird with the set of buses N := {1, . . . , n}, the set of generators G ⊆ V , and the set of
flow lines L ⊆ N × N . Assume that for (l,m) ∈ L, we also have (m, l) ∈ L. The set of all generator buses
G decomposes into coal fired blocks, attached gas turbines, and installed pumped-storage units, denoted by
i = 1, . . . , I, r = 1, . . . , R, and h = 1, . . . , H, respectively. Wind power is modeled by positive infeed at wind
farm buses, such that these units are not considered as controllable production devices. We will optimize over a
time horizon which is discretized into finitely many hourly planning intervals t = 1, . . . , T . The boolean decision
variables:

ut
i ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T,

then indicate whether the coal fired block i is on- or off-line during time interval t. Analogously, there are
the variables ut

r ∈ {0, 1}, r = 1, . . . , R; t = 1, . . . , T for the gas turbines as well as the nonnegative continuous
variables:

pt
i,q

t
i, pt

r,q
t
r, pt

h,q
t
h,w

t
h,w

t
h, i = 1, . . . , I, r = 1, . . . , R, h = 1, . . . , H, t = 1, . . . , T,

representing the output levels, in both active and reactive power, for the coal fired thermal units, the gas
turbines, the pumped-storage units in generation and in pumping modes. For each of the coal fired units and
gas turbines we assume a quadratic cost function with given nonnegative coefficients accounting for the fuel
cost in terms of active power generation, i.e. the fuel costs and thus the objective to be minimized is given by:

∑T

t=1

(∑
k∈I∪R

fk(pt
k,u

t
k, r

t
k)
)
, (2.1)

with

fk(pt
k,u

t
k, r

t
k) = ck2

(
pt

k

)2 + ck1pt
k + ck0rt

k,

where rt
k = max{ut−1

k − ut
k, 0}. Further, we denote by Pmin

i , Pmax
i , Qmin

i , Qmax
i , Pmax

r , Qmax
r , Pmax

h , Qmax
h ,

Wmax
h , W

max

h , the minimal and maximal outputs of the particular power production units. All outputs have
to be within these bounds, where the natural lower bound for gas turbines, and pumped-storage units (in
generation and pumping mode) is zero. This yields for all t = 1, . . . , T :

Pmin
k · ut

k ≤ pt
k ≤ Pmax

k · ut
k, Qmin

k · ut
k ≤ qt

k ≤ Qmax
k · ut

k, ∀k ∈ I ∪R, (2.2)

−Wmin
h ≤ pt

h − wt
h ≤ Pmax

h , −Wmin

h ≤ qt
h − wt

h ≤ Qmax
h , ∀h ∈ H. (2.3)

Beside these production bounds, the coal fired blocks must adhere to minimum down times to avoid excessive
thermal strains. These are expressed by the following inequalities:

ut−1
i − ut

i ≤ 1 − ul
i, i = 1, . . . , I, t = 2, . . . , T − 1,

l = t+ 1, . . . ,min{t+ τi − 1, T },
(2.4)

where the τi represent the required down times. Furthermore, there are variables lth, h = 1, . . . , H; t = 1, . . . , T ,
specifying the fill (in active power) of the upper dam at pumped-storage unit h at the end of time interval t.
At all times, the (nonnegative) fill levels must not exceed the maximum fills lmax

h and, together with generation
and pumping, the fill has to meet the following balances:

l0h = linh , lTh = lend
h , lth = lt−1

h − (pt
h − ηhwt

h) , h = 1, . . . , H, t = 1, . . . , T, (2.5)

where linh , lend
h are the initial and final fills, respectively, and 0 ≤ ηh < 1 indicates the pumping efficiency.
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2.2. AC load flow extension

Turning attention to AC load flow, for every network bus k ∈ N , we consider its apparent power2 st
k = pt

k+jqt
k

at time t = 1, . . . , T , where pt
k denotes its active and qt

k its reactive power, respectively. The apparent power is
subject to Kirchhoff’s first law, i.e. at any node in an electrical network, the sum of currents flowing into that
node is equal to the sum of currents flowing out of it:

pt
k =

∑
l∈N (k)

pt
kl, ∀k ∈ N , t = 1, . . . , T, (2.6)

qt
k =

∑
l∈N (k)

qt
kl, ∀k ∈ N , t = 1, . . . , T, (2.7)

where pt
kl and qt

kl are the active and reactive power, respectively, transferred from k to the rest of the network
through line (k, l) ∈ L, and N (k) denotes the set of all buses directly connected to k. The apparent power st

k can
also be written as the difference between complex infeed st

Gk
:= pt

Gk
+jqt

Gk
and complex load st

Dk
:= pt

Dk
+jqt

Dk
,

such that together with (2.6) and (2.7) we arrive at the following power balance equations:

pt
Gk

−
∑

l∈N (k)
pt

kl = pt
Dk
, ∀k ∈ G, t = 1, . . . , T, (2.8)

qt
Gk

−
∑

l∈N (k)
qt

kl = qt
Dk
, ∀k ∈ G, t = 1, . . . , T, (2.9)

−
∑

l∈N (k)
pt

kl = pt
Dk
, ∀k ∈ N\G, t = 1, . . . , T, (2.10)

−
∑

l∈N (k)
qt

kl = qt
Dk
, ∀k ∈ N\G, t = 1, . . . , T, (2.11)

where, the active and reactive electrical load {(pt
D, q

t
D) : t = 1, . . . , T} in terms of demand and infeed of

renewables is given in advance and has to be covered (exactly).
To represent the energy flows, one possibility, for others see [14], is to select as variables the voltage angle θt

k

and the voltage magnitude Ut
k at every bus k ∈ N . Then, there needs to be at least one slack bus with

specified voltage magnitude and angle. It is used to balance apparent power, in such a way that it compensates
system losses by emitting and absorbing active power and reactive power to and from the system, respectively. In
selecting the slack bus, it is important to ensure that a powerful bus3 is chosen, which can absorb all uncertainties
arising from the system. Here, we pick bus 1 ∈ N as slack bus and additionally demand θ1 = 0. Furthermore,
to represent the energy flows along the lines, we introduce the complex voltages:

Vt
k := Ut

ke
jθt

k ∈ C, ∀k ∈ N ,

with variable voltage magnitudes U t
k ∈ R+ and voltage angles θt

k, respectively. Moreover, we establish the
variables θt

lm ∈ R as the difference in voltage angle between the lth and mth bus, i.e. θt
lm := θt

l − θt
m. Without

going into detail, using the above notations, a fairly accurate approximation of the steady-state behavior of
the energy flows along the lines (l,m) ∈ L can be modeled by the following trigonometric expressions (cf. [51]
and [14]):

pt
lm = (Ut

l)
2glm − Ut

lU
t
mglm cosθt

lm − Ut
lU

t
mblm sin θt

lm, (2.12)
qt

lm = Ut
lU

t
mblm cosθt

lm − Ut
lU

t
mglm sin θt

lm − (Ut
l)

2(blm + b0lm), (2.13)

where the given conductances glm ∈ R+, susceptances blm ∈ R−, and shunts b0lm specify the line transmission
capabilities. In doing so, the existing transformers are implicitly taken into account, since due to their existence,
transmission capabilities (conductances, susceptances, and shunts) will be improved, such that the corresponding
parameters can be readjusted.

2 Here, j denotes the imaginary unit. This is to avoid confusion with the unit for electrical current.
3 Normally, a load bus or the most powerful generator bus is chosen as slack bus.
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For the grid, we claim that voltage magnitudes |Vt
k| (= Ut

k) have to be within particular bounds

V min
k ≤ |Vt

k| ≤ V max
k , ∀k ∈ N , (2.14)

where we have V min
1 = V max

1 at the slack bus, and that lines (l,m) ∈ L may not be overstrained, i.e. power flow
is limited by the maximum transmission capacities Smax

lm , Pmax
lm , ΔV max

lm ∈ R+:

(pt
lm)2 + (qt

lm)2 ≤ (Smax
lm )2, ∀(l,m) ∈ L, (2.15)

(pt
lm)2 ≤ (Pmax

lm )2, ∀(l,m) ∈ L, (2.16)
|Vt

l − Vt
m| ≤ ΔV max

lm , ∀(l,m) ∈ L. (2.17)

It may happen that some of the constraints (2.14)–(2.17) are not needed in certain modeling situations. Then
the vacuous constraints can be removed by setting their lower/upper bounds to ±∞.

3. Deterministic solution approach

The nonconvex AC power flow constraints (2.8)–(2.17) have been intensively studied in the literature and
a multitude of algorithms have been proposed for solving optimization problems, taking into account these
nonlinear restrictions [36, 37]. Most of these solution methods are based on solving the corresponding Karush–
Kuhn–Tucker (KKT) conditions and thus at best guarantee local optimality.

Rather than to work with equations (2.12) and (2.13) directly, these are relaxed and approximated, respec-
tively. The DC (direct current) power flow model, for instance, assumes that the difference of voltage angles is
zero, that all voltage magnitudes are equal to one, and that the reactive power may be neglected (cf. Sect. 4.3
of [14] and [5]).

The DC power flow model being lossless, including these losses at least approximately will improve the model.
In [42,43], and [23], the DC model is refined by inclusion of Ohmic losses. These are modeled by trigonometric
equations becoming relaxed to inequalities for computations. The relaxation is such that it overestimates losses
and leads to convexity of the constraint set. Numerical optimization procedures heading for the minimization
of losses then have the tendency to drive the overestimation back to zero, thus fulfilling the inequality as an
equation.

In recent years, several convex relaxations were proposed, which are tight under certain conditions and thus
provide a significantly better approximation of AC power flow than the DC approach and its extensions. These
include Second Order Cone (SOC) [22], SDP [24], Convex-DistFlow (CDF) [13], and Quadratic Convex (QC) [21]
relaxations. A comprehensive comparison of these relaxations is presented by Coffrin, Hijazi, and Hentenryck
in [12]. There, it has been confirmed that the SDP relaxation is the tightest among the mentioned relaxations.

A wide class (2.12) of AC power flow models is presented in [24], where a convexification via a semidefinite
programming relaxation may lead to globally optimal solutions. It is noted that this approach works for all
IEEE benchmark systems (cf. [47]), provided a small resistance (10−5 per unit) is added to every transformer
that originally is assumed to have zero resistance. This convexification does not work for all power grids – its
limitations are examined in [26] as well as in [8].

For semidefinite programming, an accessible introduction is Chapter 2 of [20] as well as [48]. The recent
state-of-the-art can be obtained from [2].

To solve the introduced deterministic unit commitment problem, we suggest a combination of the semidefinite
programming (SDP) based algorithm by Lavaei and Low with a traditional Benders decomposition (tackling
these programs by a form of a Benders algorithm can also be found in a recent work by Amjady and Ansari [1]).
The basic idea is to separate the restrictions to the generators from the nonlinear conditions to the power grid,
such that the latter can be tackled by the mentioned semidefinite approach.
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3.1. Benders decomposition

The transformation of the above unit commitment problem into the required SDP format is outlined in
Appendix A. Let us denote by W the set of those matrices W ∈ Sn

+ (where, Sn
+ denotes the set of symmetric

and positive semidefinite matrices in Rn×n) fulfilling (A.4)–(A.7). This set describes the physical limits of the
underlying grid with respect to voltage magnitude bounds (2.14) as well as line limitations (2.15)–(2.17) provided
one claims in addition that W ∈ W has rank-one. Using this notation, our basic unit commitment problem can
be equivalently expressed as:

min
∑T

t=1

(∑
k∈G\H ck2(Yk • Wt + pt

Dk
)2 + ck1(Yk • Wt + pt

Dk
) + ck0 · rt

k

)
s.t. ut

kP
min
k ≤ Yk • Wt + pt

Dk
≤ ut

kP
max
k , ∀k ∈ G\H,

ut
kQ

min
k ≤ Y k • Wt + qt

Dk
≤ ut

kQ
max
k , ∀k ∈ G\H,

} output bounds
and load coverage
at nonrenewables

−Wmax
h ≤ Yh • Wt + pt

Dh
≤ Pmax

h , ∀h ∈ H,

−Wmax

h ≤ Y h • Wt + qt
Dh

≤ Qmax
h , ∀h ∈ H,

} output bounds and
satisfaction of load at
pumped-storage plants

Yn • Wt + pt
Dn

= 0, ∀n ∈ N\G,
Y n • Wt + qt

Dn
= 0, ∀n ∈ N\G,

}
load coverage at wind farms
and non-generator buses (3.1)

ut−1
i − ut

i ≤ 1 − ul
i, ∀i ∈ I, t = 2, . . . , T − 1,

l = t+ 1, . . . ,min{t+ τi − 1, T },

} min down
times for coal
fired blocks

l0h = linh , lTh = lend
h , ∀h ∈ H,

lth = lt−1
h − (pt

h − ηjwt
h) ≤ lmax

h , ∀h ∈ H,

pt
h − wt

h = Yh • Wt + pt
Dh
, ∀h ∈ H,

pt
h ≥ 0, wt

h ≥ 0, , ∀h ∈ H,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
holding of max dam fills
plus considering of inter-
connections in pumped-
storage units

rt
k = max{ut−1

k − ut
k, 0}, ut

k ∈ {0, 1}, ∀k ∈ G\H,
Wt ∈ W, rank(Wt) = 1, ∀t ∈ {1, . . . , T}.

Relaxing the rank-one conditions and linearizing the conditions to the grid in W as well as its objective
(cf. Appendix A), this model becomes a mixed-integer linear semidefinite program.

The rank relaxation in (3.1) permits overload any time at any network bus (cf. [46]). This may be beneficial
in stressed network situations, and therefore could result in an infeasible commitment/dispatch decision. Still,
it has been shown to be tight for tree networks [7,49] and for cyclic networks if every cycle contains a line with
a controllable phase shifter [46].

By fixing all switching states together with the pumped-storage operation, coupling over time disappears,
and (3.1) decomposes into T independent problems which are closely related to the continuous optimal power
flow (OPF) problem.

Now, as in [1], the first step of our Benders decomposition algorithm treats the following mixed-integer linear
programming (MILP) master problem:

μM := min
∑T

t=1

(∑
k∈G\H ck0 · rt

k + ηt
Obj

)
s.t. (2.3), (2.4), and (2.5),

(3.2)

where G\H is the set of all thermal generators, and ηt
Obj are additional nonnegative variables introduced for the

objective cuts (measuring the power production costs for a feasible binary on/off assignment of the online thermal
units). Note that (3.2) takes into account all constraints regarding unit commitment switching decisions as well
as active power generation at pumped-storage units. The model relaxes the nonlinear conditions to the grid.
After solving this master problem, its solution forms the input to a first set of subproblems. These subproblems
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emerge from fixing the solution to (3.2) in (3.1). This implies decoupling of time intervals and decomposition
into the following t = 1, . . . , T SDP subproblems:

μt
Obj := min

Wt∈W

∑
k∈G\H

ck2(Yk • Wt + pt
Dk

)2 + ck1(Yk • Wt + pt
Dk

)

s.t. ut
k · Pmin

k ≤ Yk • Wt + pt
Dk

≤ ut
k · Pmax

k , ∀k ∈ G\H,

ut
k ·Qmin

k ≤ Y k • Wt + qt
Dk

≤ ut
k ·Qmax

k , ∀k ∈ G\H,

Yh • Wt + pt
Dh

= pt
h − wt

h, ∀h ∈ H,

−Wmax
h ≤ pt

h − wt
h ≤ Pmax

h , ∀h ∈ H,

−Wmax

h ≤ Yh • Wt + qt
Dh

≤ Qmax
h , ∀h ∈ H,

Yn • Wt + pt
Dn

= 0, ∀n ∈ N\G,

Y n • Wt + qt
Dn

= 0, ∀n ∈ N\G,

(3.3)

ut
k = ũt

k, ∀k ∈ G\H, pt
h − wt

h = p̃t
Dh
, pt

h,w
t
h ≥ 0, ∀h ∈ H,

where ũt
k and p̃t

Dh
:= p̃t

h−w̃t
h denote the optimal solution to (3.2) delivering switching decisions for the installed

thermal units and power output/consumption at pumped-storage units, respectively (here, the nonlinear objec-
tive once again can be linearized as described in (A.9)). If for t ∈ {1, . . . , T} its corresponding first subproblem
becomes feasible, the following objective cut is added to (3.2):

ηt
Obj ≥ μt

Obj +
∑

k∈G
λt

Obj,k(ut
k − ũt

k) +
∑

h∈H
λt

Obj,h(pt
h − wt

h − p̃t
Dh

), (3.4)

where λt
Obj,k and λt

Obj,h are the optimal dual variables with respect to the inserted constraints ut
k = ũt

k, ∀k ∈
G\H and Yh • Wt + dt

Dh
= p̃t

Dh
, ∀h ∈ H , respectively.

If otherwise, for t ∈ T its associated first subproblem is infeasible, its infeasibility in terms of active power
bounds at generator buses, voltage restrictions at net nodes, and network line limitations is measured by an
appropriate second subproblem. To this end, the nonnegative auxiliary variables zt

k,v
t
n,p

t
lm,m

t
lm, as well as

st
lm are introduced, to reflect the violation of active power production bounds in (2.2) as well as the failure of

the network limitations in (2.14), (2.15), (2.16), and (2.17) by means of the inequalities:

zt
k ≥ ut

kP
min
k − (Yk • Wt + dt

Dk
), ∀k ∈ G\H, (3.5)

zt
k ≥ (Yk • Wt + dt

Dk
) − ut

kP
max
k , ∀k ∈ G\H, (3.6)

vt
n ≥ (V min

n )2 −Mk • Wt, vt
n ≥Mk • Wt − (V max

n )2, ∀n ∈ N , (3.7)

pt
lm ≥ Ylm • Wt − Pmax

lm , mt
lm ≥Mlm • Wt − (ΔV max

lm )2, ∀(l,m) ∈ L, (3.8)

st
lm ≥ (Ylm • W)2 +

(
Y lm • W

)2 − (Smax
lm )2, ∀(l,m) ∈ L, (3.9)
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where once again (3.9) could be linearized (cf. (A.8)). This leads to the following set of second subproblems:

μt
Feas := min

∑
i∈I

zt
k +

∑
n∈N

vt
n +

∑
(l,m)∈L

(pt
lm + mt

lm + st
lm)

s.t. (3.5), (3.6), (3.7), (3.8), and (3.9),

ut
k ·Qmin

k ≤ Y k • Wt + qt
Dk

≤ ut
k ·Qmax

k , ∀k ∈ G\H,
−Wmax

h ≤ Y h • Wt + qt
Dh

≤ Qmax
h , ∀h ∈ H,

Yn • Wt + pt
Dn

= 0, ∀n ∈ N\(G ∪H),

Y n • Wt + qt
Dn

= 0, ∀n ∈ N\(G ∪H),

(3.10)

ut
k = ũt

k, ∀k ∈ G, Yh • Wt + pt
Dh

= p̃t
Dh
, ∀h ∈ H,

zt
k, vt

n, pt
lm, mt

lm, st
lm ≥ 0, Wt 	 0.

After solving this linear SDP, the subsequent feasibility cut (which will guarantee that the current commitment
will be cut off from the feasible region of our master problem) is added to (3.2):

0 ≥ μt
Feas +

∑
k∈G

λt
Feas,k(ut

k − ũt
k) +

∑
h∈H

λt
Feas,h(pt

h − wt
h − p̃t

h). (3.11)

The suggested solution procedure can now be summarized by the following algorithm framework.

Algorithm framework for unit commitment in AC grids.

Initialize: Accuracy parameter ε > 0; set ϕUB := ∞, and ϕLB := 0; solve (3.2)
with ηt

Obj = 0 and obtain ũ as well as p̃H from its solution.

Step 1. Update lower bound ϕLB := μM −
∑T

t=1 η̃
t
Obj ;

solve (for t = 1, . . . , T ) the first set of subproblems (3.3);
if subproblem t becomes feasible, keep μt

Obj , λ
t
Obj,k, λt

Obj,h;
else, solve second subproblem (3.10) and keep μt

Feas, λ
t
Feas,k, λt

Feas,h.
Step 2. If all first set subproblems become feasible, update upper bound:

ϕUB := μM +
∑T

t=1 μ
t
Obj −

∑T
t=1 η̃

t
Obj ;

if |ϕUB−ϕLB|
|ϕLB| < ε GOTO Step 4;

Step 3. Add all generated cuts to the master problem; solve this new master
problem and update μM , η̃Obj , ũ plus p̃H ; GOTO Step 1.

Step 4. Try to recover the rank-one conditions (see Appendix B).

4. Inclusion of uncertainties

In this section we will focus on planning a unit commitment schedule under uncertainty of both power demand
and output of renewables. Hence, the uncertainties, at time interval t occur at the nodes (buses) and concern
the active and reactive (apparent) power, denoted by pt(ω) and qt(ω) for t = 1, . . . , T , respectively.

We assume that z(ω) = (pt(ω), qt(ω)) is a random variable whose probability distribution is known at
the beginning of the optimization horizon. The latter, alone, already is non-trivial, and obtaining meaningful
probability distributions from statistical data is a field of active research in stochastic programming and beyond,
see [19], for instance. In our case we will adopt a finite event space where the realizations and their probabilities
are obtained from recorded load profiles of the past.

For modeling and tackling programs involving uncertain data, stochastic programming provides several ap-
proaches. Moreover, it is a useful tool for making discrete decisions under uncertainty. For an introduction into
basic aspects of stochastic programming, we refer to the books [6, 45], and [41].
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In power planning, multi-stage stochastic programming, [45], became more and more established in recent
years. For the scope adopted in the present paper with its elaborate model of power flow, however, the multi-
stage approach still seems premature, at least computationally. Here, two-stage models still pose challenging
research questions.

Concerning their operational flexibility the on/off decisions of the coal fired thermal units are the most inertial
ones. Even when making decisions with respect to a rather coarse, hourly time discretization, for instance, it is
not possible to follow a random load-and-renewables profile by on/off determinations of thermal blocks alone.
This observation leads to modeling the switching decisions of the coal fired thermal units as first-stage variables.
The second-stage is formed by the remaining short term on/off decision for gas turbines and by the operation
levels of the on-line thermal and pumped-storage units.

Denoting then by uI = {ui}i∈I and uR = {ur}i∈R the boolean vectors for switching decisions of coal fired
blocks as well as gas turbines, and in addition by UI and UR their feasible sets, this leads to a random two-stage
optimization problem of the following principal shape:

min
{
cTI uI + H(uR,W) : TuI + W(uR,W) = z(ω), uI ∈ UI ,

(uR,W) ∈ UR × W, rank(W) = 1

}
. (4.1)

Here T,W , and H are the appropriate linear operators, describing the conditions and the objective in (3.1),
respectively. At this point, it is emphasized that the above program is not well-posed. Namely, as long as the
realizations of the random variable z(ω) are unknown, it exhibits for every fixed first-stage determination uI

another random variable. Hence, “minimization” in (4.1) can be seen as selecting the “best” member among the
resulting family of random variables, and this in turn raises the question of how to rank this random variables.
The stochastic literature offers several different possibilities of ranking or comparing of random variables (for
deeper insights into comparison methods for random variables, we refer to the book by Müller and Stoyan [38]).
Beneath this ranking opportunities we will pick up ranking by statistical parameters in terms of risk aversion
via excess probabilities in mean-risk models.

4.1. Risk aversion via excess probabilities in two-stage stochastic semidefinite programs

Relaxing the nonlinear rank constraint in the stochastic program (4.1), we arrive at the following general
two-stage stochastic (mixed integer) linear semidefinite program:

min
{
C • X +H • Y : T X + WY = z(ω), X ∈ X , Y ∈ Y

}
, (4.2)

where X ⊆ Sm1
+ , Y ⊆ Sm2

+ are nonempty spectrahedra (intersections of solution sets of affine matrix inequalities
with the cone of positive semidefinite matrices) with possibly additional integer requirements to some or all
matrix entries. Moreover, T : Sm1 → Rs as well as W : Sm2 → Rs are linear operators, and the right-hand side
z(ω) is a random vector on some probability space (Ω,F ,P) with values in R

s. The distribution of z(ω) does
not depend on the first-stage decisions X . Here, the second-stage variable Y can be interpreted as compensating
or recourse action, which, in the seminal stochastic programming literature, led to the notion of a stochastic
program with recourse. To emphasize the two-stage character of decision making we rewrite program (4.2) as:

min
X

{
C • X + min

Y

{
H • Y : WY = z(ω) − T X, Y ∈ Y

}
︸ ︷︷ ︸

=:Φ(z(ω)−T X)

: X ∈ X
}
. (4.3)

Here, the function
Φ : R

s → R, t �→ min {H • Y : WY = t,Y ∈ Y} (4.4)

is the optimal-value function of the inner semidefinite program seen as a parametric optimization problem with
parameter t.
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Defining random variables f(X, ω) := C • X + Φ(z(ω) − T X), X ∈ X , the random program in (4.3) turns
into a minimization problem over a family of random variables.

In the present paper, we address this minimization by the mean-risk model

min{QE(X) + ρ · QPη(X) : X ∈ X}, (4.5)

where QE denotes the mean value and QPη stands for the risk measure

QPη(X) := P[{ω : f(X, ω) > η}], (4.6)

i.e., the probability of exceeding a prescribed target level η ∈ R.
As in stochastic programming, we have basic assumptions ensuring that model ingredients are well-defined.

More specifically, let Y = Sm2
+ , and assume what is called complete recourse in stochastic programming

W(Sm2
+ ) = R

s.

This serves the purpose to have a non-empty feasible set for the second-stage optimization problem for any
right-hand side. If, furthermore

MD := {u ∈ R
s : WTu ≺ H} 
= ∅,

then, by duality the second-stage problem is always solvable.
Assume that the underlying random variable z(ω) follows a finite discrete probability distribution with

realizations zω and probabilities πω , ω = 1, . . . , S. Then (4.5) adopts a block structure unveiled in the following
theorem.

Theorem 4.1. Assume W(Sm2
+ ) = Rs, MD := {u ∈ Rs : WTu ≺ H} 
= ∅, and that X is compact. Then there

exists a constant M > 0 such that the Excess Probability mean-risk model (4.5) is equivalent to

min C • X +
∑S

ω=1
πωH • Y ω + ρ ·

∑S

ω=1
πωθω

s.t. T • X + W • Y ω = zω, (4.7)

C • X +H • Y ω −Mθω ≤ η,

X ∈ X , Y ω 	 0, θω ∈ {0, 1}, ω = 1, . . . , S.

Proof. Before showing the equivalence of the mentioned models, let us confirm that compactness of X yields
existence of the required constant M . Indeed, let

M > sup{C • X + Φ(zω − T X) : X ∈ X , ω = 1, . . . , S} − η. (4.8)

To see that the supremum on the right is bounded consider for each ω = 1, . . . , S the estimate

sup
X∈X

C • X + Φ(zω − T X) ≤ sup
X∈X

‖C‖ · ‖X‖ + sup
X∈X

max
u∈M�

D

(zω − T X)T u, (4.9)

here M�
D denotes the set {u ∈ Rs : WTu � H}, which is closed due to the continuity of the eigenvalue and

the fact, that a matrix is positive semidefinite if and only if all its eigenvalues are non-negative. If now M�
D

were compact, so were X ×M�
D . Since both ‖C‖ · ‖X‖ and (zω − T X)T u are continuous functions in (X,u),

finiteness in (4.8) would follow via (4.9) from Weierstrass theorem.
In order to show that M�

D is bounded, let us assume that there exists a sequence (vn)n∈N ∈ M�
D with

‖vn‖ → ∞. If we further define ũn := vn/‖vn‖, then ‖ũn‖ → 1, such that there is a subsequence converging to
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some ũ 
= 0. The latter limit satisfies WT ũ � 0 which is seen as follows: By vn ∈ M�
D we have H − WT vn 	

0, ∀n ∈ N. Dividing by ‖vn‖ yields

lim
n→∞

1
‖vn‖

H −WT vn

‖vn‖︸ ︷︷ ︸
=−WT ũ

	 0.

Now, u ∈M�
D implies u+ αũ ∈M�

D for α ≥ 0. Therefore,

ũT (u+ αũ) = ũTu+ α‖ũ‖2 → ∞, for α→ ∞,

verifying

sup
{
ũTu : WTu � H

}
= ∞.

By duality, the primal feasible set
{
Y ∈ Sm2

+ : WY = ũ
}

then has to be empty which contradicts our
assumption W(Sm2

+ ) = Rs.

Now let us turn to the equivalence of the models (4.5) and (4.7). Let X be an optimal solution to (4.5) and
assume there is a feasible (X∗, Y ∗, θ∗) to (4.7) whose objective value in (4.5) is less than QE(X) + ρ · QPη(X).

By the definition of Φ, see (4.4), it holds Φ(zω − T X∗) ≤ H • Y ∗
ω , ∀ω. This yields

QE(X∗) = C •X∗ +
∑S

ω=1 πωΦ(zω − T X∗) ≤ C •X∗ +
∑S

ω=1 πωH • Y ∗
ω

and, moreover, the following implication holds:

θ∗ω = 0 ⇒ C •X∗ + Φ(zω − T X∗) ≤ η.

Thus, we obtain the inclusion

{ω : C •X∗ + Φ(zω − T X∗) > η} ⊆ {ω : θ∗ω = 1},

which yields QPη(X∗) ≤
∑S

ω=1 πωθ
∗
ω. Altogether, we get

QE(X∗) + ρ · QPη(X∗) ≤ C •X∗ +
∑S

ω=1
πωH • Y ∗

ω +
∑S

ω=1
πωθ

∗
ω

< QE(X) + ρ · QPη(X),

contradicting the optimality of X in (4.5), i.e. the optimal value of (4.7) is, in any case, an upper bound.
Furthermore, to see equality, let vice versa X be optimal in (4.5). Set

Y ω ∈ argmin{H • Y ω : WY ω = zω − T X, Y ω 	 0},

and

θω =

{
0 if C •X +H • Y ω − η ≤ 0,
1 otherwise,

for ω = 1, . . . , S. Then

QE(X) + ρ · QPη(X) = C •X +
∑S

ω=1 πωH • Y ω + ρ ·
∑S

ω=1 πωθω,

where in addition (X,Y , θ) is feasible to (4.7). This completes the proof. �
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Note that the above proposition remains valid in case of additional integer requirements to second stage
variables. Indeed, by passing to its SDP relaxation, estimation (4.9) and compactness of the dual feasible set
M�

D hold true as well, whereas the rest of the proof continues completely analogously.
The structure of (4.7) has similarity to two-stage chance-constrained models. While (4.7) penalizes the vi-

olation of f(X, ω) > η by a multiple of its probability, chance-constrained models limit the choice of X ∈ X
by postulating that the probability P[{ω : f(X, ω) > η}] is less or equal to a given threshold. A recent work
considering two-stage chance-constrained models is [27].

4.2. Algorithmic treatment: Lagrangean relaxation of nonanticipativity

For simplicity, let us first neglect the risk measure functional QPη in (4.5) and consider the risk neutral model

min
X∈X

QE(X). (4.10)

According to Theorem 4.1, (4.10) can be equivalently expressed by:

min C • X +
∑S

ω=1Hω • Y ω

s.t. T • X + W • Y 1 = z1,
...

. . .
...

T • X +W • Y S = zS,
X ∈ X , Y 1 	 0, . . . , Y S 	 0.

(4.11)

Here, we have tacitly denoted Hω := πωH . Since, with growing number of scenarios, the dimension of (4.11)
quickly becomes too large for being handled in all-at-once manner by general SDP solvers, decomposition
methods come to the fore. Mehrotra and Özevin [30] propose an extension of [50] to semidefinite programs,
leading to a Benders decomposition based interior point method. While the latter works well if there are no
integer variables, it fails with integer requirements to second-stage variables. The problems studied in the present
paper, however, contain substantial numbers of Boolean decision variables in the second stage.

To solve problem (4.11), we will pursue the concept of Carøe and Schultz (see [10]). Here, Lagrangean relax-
ation (cf. [25]) of the nonanticipative first-stage decision is recommended, which then leads to decomposition
into smaller subproblems of tractable dimensions. In implementing this idea, we will closely follow [28]. To this
end, we introduce an additional matrix variable X∗ plus copies Xω, ω = 1, . . . , S of the first-stage variable X,
and add the requirements

Xω − X∗ = 0, ω = 1, . . . , S. (4.12)

In doing so, we obtain the following equivalent reformulation of (4.11):

min
∑S

ω=1 C • Xω +Hω • Y ω

s.t. T • X1 + W • Y 1 = zω,
. . .

...
T • XS + W • Y S = zS ,

Xω − X∗ = 0, ω = 1, . . . , S,
X1 ∈ X , Y 1 	 0, . . . , XS ∈ X , Y S 	 0.

Relaxing nonanticipativity (4.12) leads to S independent subproblems, each corresponding to a particular sce-
nario. In context of semidefinite programming, we arrive at the following Lagrangean function:

L
(
X1, . . . ,XS ,X

∗,Y 1, . . . ,Y S

)
:=

∑S

ω=1
Lω

(
Xω,X

∗,Y ω

)
, (4.13)

with Lω

(
Xω,X

∗,Y ω

)
:= C • Xω +Hω • Y ω + Λω •

(
Xω − X∗). Thus, with the dual function

D
(
Λ) := min

{∑S
ω=1 Lω

(
Xω,X

∗,Y ω

)
: T Xω + WY ω = zω, ω = 1, . . . , S
Xω ∈ X , Y ω 	 0, ω = 1, . . . , S

}
,
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we obtain the associated Lagrangean dual:

max
{
D
(
Λ1, . . . ,ΛS

)
: Λω ∈ Sm1

}
.

Now, as the auxiliary variable X∗ is unconstrained, its coefficients must cancel out when forming the sum for
ω = 1, . . . S, i.e.

∑S
ω=1 Λω = 0. We further mention that the dual function is separable, i.e. by determining

Dω

(
Λω

)
:= min

Xω,Y ω

{C • Xω +Hω • Y ω + Λω • Xω : T Xω + WY ω = zω,

Xω ∈ X , Y ω 	 0

}
, (4.14)

for ω = 1, . . . , S, we obtain D
(
Λ1, . . . ,ΛS

)
=
∑S

ω=1Dω

(
Λω

)
. Using this notation, the Lagrangean dual, arising

by Lagrangean relaxation of the nonanticipativity condition (4.12), can be expressed by

max
{∑S

ω=1
Dω

(
Λω

)
:
∑S

ω=1
Λω = 0

}
,

and this in turn is equivalent to

max
θ,Λ

{∑S

ω=1
θω :

∑S

ω=1
Λω = 0, θω ≤ Dω

(
Λω

)
, ω = 1, . . . , S

}
. (4.15)

In order to solve the above problem, we will apply proximal bundle methods (cf. [40]). The basic idea is to
approximate the constraints in (4.15) by cutting planes and adding a regularization term to the objective. At
each iteration K, this leads to:

max
θ,Λ

∑S

ω=1
θω − 1

2
τ
∑S

ω=1

∥∥Λω − Λ+
ω

∥∥2

F

s.t.
∑S

ω=1
Λω = 0, (4.16)

θω ≤ Dω

(
Λ(k)

ω

)
+X(k)

ω •
(
Λω − Λ(k)

ω

)
, ω = 1, . . . , S, k = 1, . . . ,K.

Taking into account that −Dω is convex for all ω = 1, . . . , S, −X(k)
ω is selected as a member of the subdifferential

∂[−Dω](Λ(k)
ω ), given by

{
X ∈ Sm1 : Dω(Λ) −Dω(Λ(k)

ω ) + X • (Λ − Λ
(k)
ω ) ≤ 0, ∀Λ ∈ Sm1

}
,

where (−1)∂[−Dω](Λ(k)
ω ) coincides with the Xω-part of the optimal solution set to program (4.14). The Point

(Λ+
ω , . . . , Λ

+
ω ) is the current proximal center, fulfilling

∑S
ω=1 Λ

+
ω = 0, and τ is some regularization parameter

which is normally adjusted at each iteration.
Converting the arising matrices into vector form by the so called vec operator that stacks the matrix columns

on top of each other, (4.16) becomes a quadratic program (QP), i.e. it can be tackled by well-established
algorithms (here, one could briefly mention active set strategies, trust region methods, conjugate gradient
methods, and interior point methods).
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Finally, we arrive at the following decomposition method:

Decomposition based proximal bundle method

Initialize: Accuracy parameter ε > 0; m = 0.1; K := 1;
set for ω = 1, . . . , S, Λ+

ω := 0 as well as Λ(K)
ω := 0;

solve Dω(Λ(K)
ω ), ω = 1, . . . , S, save optimal solution X(K)

ω ;
and put curObj :=

∑S
ω=1Dω(Λ(K)

ω ).
Step 1. Solve (4.16), obtaining optimal θ∗ω and Λ∗

ω, for ω = 1, . . . , S.
Step 2. Let v =

(∑S
ω θ

∗
ω

)
− curObj.

If v/(1 + |curObj|) < ε terminate; else continue.
Step 3. K := K + 1; solve Dω(Λ∗

ω), ω = 1, . . . , S, save its optimal value
Dω(Λ(K)

ω ) and its corresponding solution X(K)
ω ;

newObj :=
∑S

ω=1Dω(Λ(K)
ω ); u := 2τ(1 − (newObj − curObj)/v),

τ := min(max(u, τ/10, 10−4), 10τ);
if (newObj − curObj > m · v), then update Λ+

ω := Λ∗
ω and

curObj := newObj; GOTO Step 1.

4.3. Embedding into branch-and-bound - Enhanced by heuristics

At first, it is shown that the risk averse program (4.7) can be equivalently transformed into (4.11) with
the exception that it contains additional integer requirements to some second-stage variables. To this end, we
introduce for ω = 1, . . . , S the second-stage variables

Y EPω := diag(Y ω,θω, sω),

and extend the linear matrix operator T to the linear operator TEP : Sm1 → Rs+1, defined by TEP X =
[(T X)T , C • X]T . Moreover, let us define the linear operator WEP : Sm2 → Rs+1, given by the following
modified recourse matrices:

WEP1 := diag(W1, 0, 0), . . . , WEPs := diag(Ws, 0, 0), WEPs+1 := diag(H,−M, 1).

Finally, by setting HEPω := diag(πωH, ρ, 0) and zEPω := (zT
ω , η)T for ω = 1, . . . , S, we obtain that (4.7) is

indeed equivalent to:

min
{
C • X +

S∑
ω=1

HEPω • Y EPω : TEP X + WEP Y EPω = zEPω, ∀ω
X ∈ X , Y EPω 	 0, ∀ω
Y EPω(m2 + 1,m2 + 1) ∈ {0, 1}, ∀ω

⎫⎪⎬⎪⎭ , (4.17)

which obviously has the same structure as the risk neutral model (4.11) in the sense that there are no constraints
involving second-stage variables from different scenarios.

Tackling the nonconvex program (4.17) by the proposed proximal bundle methods may result in a solution
that does not meet the nonanticipativity condition. If so, the solution to the Lagrangean dual (4.15) provides us
a lower bound. To measure the quality of this lower bound, upper bounds in terms of feasible points to (4.17)
are required. Since the previously relaxed constraints (4.12) are quite simple, namely, we have to make all
first-stage copies identical, ideas for heuristics come up straightforwardly. In this paper we have picked from
Xopt

ω , ω = 1, . . . , S a candidate, by averaging over them all and rounding to integers.
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If the resulting gap is unsatisfactory, we recommend the embedding into a Branch-and-Bound scheme, where
the underlying two-stage stochastic program is understood as a nonconvex global minimization problem. For
the considered unit commitment problems this results in the following algorithm framework.

Dual decomposition for unit commitment under uncertainty

Initialize: Let P be the list of current problems.
Denote for P ∈ P by ϕLD(P ) its Lagrangean lower bounda that is
obtained by the proximal bundle methods presented in Section 4.2,
where the decomposed programs Dξ

(
Λξ

)
are solved by the

Benders decomposition approach from Section 3.1.
Put ϕ = +∞ and add the underlying problem to the list P.

Step 1. If P = ∅ then u with ϕ = QE(u) + ρ · QPη(u) is optimal;
Else GOTO Step 2.

Step 2. Select and delete from the list P a problem P ∈ P and solve its
Lagrangean dual. If ϕLD(P ) is +∞, GOTO Step 1;
Otherwise GOTO Step 3.

Step 3. If ϕLD(P ) ≥ ϕ, then GOTO Step 1.
Step 3.1 The scenario solutions uopt

ξ , ξ = 1, . . . , S, gained by solving the
Lagrangean dual are identicalb, i.e. uopt

1 = . . . = uopt
S . If further

QE(uopt
1 ) + ρ · QPη(uopt

1 ) < ϕ, then ϕ := QE(uopt
1 ) + ρ · QPη(uopt

1 )
and u := uopt

1 . Delete from P all problems P ′ with ϕLD(P ′) ≥ ϕ;
GOTO Step 1.

Step 3.2 If the scenario solutions uopt
ξ , ξ = 1, . . . , S differ, then run a feasibility

heuristic. If its outcome û is feasible and QE(û) + ρ · QPη(û) < ϕ,
then ϕ := QE(û) and u := û. Delete from P all problems P ′ with
ϕLD(P ′) ≥ ϕ; GOTO Step 4.

Step 4. Select a component (uI)i of uI and add two new problems to P
which arise from P by adding the constraints (uI)i = 0 and
(uI)i = 1, respectively; GOTO Step 1.

aHere, the Lagrangean lower bound means the lower bound that is obtained by Lagrangean relaxation of the nonanticipativity
constraint (4.12).

bThis implies that uopt
1 is feasible for the SDP relaxation of (4.1).

5. Computational results

Some first computational tests have been performed using MATLAB R2013a with MILP’s and QP’s solved by
CPLEX Studio 12.51 (connector to MATLAB). For the arising SDPs we have employed SeDuMi 1.3. A simple
hardware set has been used, namely consisting of an Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz 2.80GHz
processor with 4 GB of RAM running under Windows 7 Professional.

5.1. Power system data

To exhibit the efficiency of our proposed decomposition approach, it is tested with the well-known 14-bus
IEEE network, the 30-bus IEEE network, the 39-bus New England test system, and the 57-bus IEEE network.

We adopt a daily planning horizon subdivided into 24 equidistant time intervals. Starting from the IEEE
load data as a reference we first developed a practically relevant deterministic load profile for an individual day.



406 R. SCHULTZ AND T. WOLLENBERG

Figure 1. Active load scenarios.

In order to generate scenarios for the required finite discrete probability distribution, the preassigned daily
load profile (p, q) has been perturbed as follows: with S denoting the number of realizations, scenarios

(pω, qω) = (p, q) + nω · (p, q), ω = 1, . . . , S (5.1)

are formed, where nω is a random number sampled from the standard normal distribution. Figure 1 displays
scenarios obtained in this way.

In our tests, we have started with two basic deterministic network infrastructures: power systems with purely
thermal generation and with pumped-storage plants added.

Stochastic expansions of these models were obtained by introducing random load values and assigning roles
to variables making them members of the first and second stages, respectively. In this way, decisions in the
first stage comprise on/off switching for the coal fired blocks. Variables in the second stage represent output
levels of the coal fired units, switching decisions and output levels at gas turbines, and, if present pumping and
generation modes in the pumped storage plants.

5.2. Preliminary computational results

In all numerical tests, the relaxed rank-one conditions are successfully recovered by the algorithm of Lavaei
and Low (cf. Appendix B), implying that these unit commitment problems are solved to the specified optimality
gaps.

For the considered IEEE networks, our implemented OPF solver, i.e. the solver that is used for solving the
subproblems (3.3), provides the same solution as the SDP based OPF solvers by Madani, Asharphijuo, and
Lavaei [29] and by Molzahn et al. [34, 35].

5.2.1. Computational results for the deterministic Benders approach

Table 1 reports our computational results for the deterministic Benders approach from Section 3.1. Here, the
deterministic load data equals the expected value of the random data, i.e. (p, q) = Eω[(pω , qω)]. The stopping
criterion has been set to 10−2, i.e. in all of the tests listed below the overall (mixed-integer) SDP is solved to
less then a 1% optimality gap.

Starting from left, the following information is “encoded” in the columns of Table 1: model number, IEEE
benchmark network, numbers of generators and hydro units, as well as resulting numbers of continuous and
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Table 1. Computational results for the deterministic Benders approach.

Model Network Generator Hydro Variables Constr. Iter. CPU Gen. Costs
Units (Binaries) Cuts

D1 IEEE 14 5 0 11 496 (120) 3319 14 132.68 s 336 278 328.52
D2 IEEE 14 5 1 11 569 (120) 3465 21 184.27 s 504 277 770.19
D3 IEEE 14 5 2 11 642 (120) 3611 35 329.35 s 840 277 814.05
D4 IEEE 30 6 0 46 656 (144) 5250 11 204.15 s 264 17 597.26
D5 IEEE 30 6 1 46 729 (144) 5396 18 324.57 s 432 17 597.61
D6 IEEE 30 6 2 46 802 (144) 5442 20 372.09 s 480 17 604.62
D7 NE 39 10 0 77 976 (240) 7694 4 94.71 s 96 918 751.08
D8 NE 39 10 1 78 049 (240) 7840 1 22.73 s 24 557 948.54
D9 NE 39 10 2 78 122 (240) 7986 1 22.18 s 24 557 948.54
D10 IEEE 57 7 0 161 568 (168) 8237 19 944.08 s 456 1 117 780.35
D11 IEEE 57 7 1 161 641 (168) 8383 11 521.80 s 264 988 369.13
D12 IEEE 57 7 2 161 714 (168) 8529 13 570.24 s 312 988 301.96

integers (binary) variables, and constraints. The remaining four columns display the numbers of iterations, CPU
time, cuts generated, and optimal costs.

Our Benders decomposition approach has been significantly improved by adding the constraints∑
k∈N

pt
Dk

≤
∑

k∈G
ut

k · Pmax
k +

∑
h∈H

(pt
h − wt

h), t = 1, . . . , T, (5.2)

to the master problem (3.2). For each time interval, these requirements guarantee that there is a sufficient
number of on-line thermal generators to produce the required active power. Doing so, a lot of switching decisions
become inferior, already in the master problem (3.2), such that they do not have to be cut off by solving the
(computationally expensive) semidefinite subproblems (3.10).

5.2.2. Computational results for the stochastic dual decomposition algorithm

Tables 2 and 3 exhibit numerical results for the dual decomposition algorithm from Section 4.2. These tables
are structured as follows: the left most seven columns corresponds to those of Table 1 with the exception that
now scenarios have to listed (in column three). Colmuns eight to ten correspond to the number of SeDuMi calls,
the CPU time (with SeDuMi share in brackets), and the optimal costs. For each stochastic program listed the
overall (mixed-integer) semidefinite relaxation has been solved to a 1% duality gap.

The execution of our dual decomposition algorithm requires to solve almost identical scenario specific unit
commitment problems again and again. In order to improve computational performance of our method, we
stored the generated Benders cuts and reused them in each iteration. This has decreased CPU time considerably.
Having solved a scenario specific unit commitment problem once, which takes minutes (cf. Tab. 1), it will be
solved in a few seconds in future iterations. Cut deletion, clearly, would have been an option. This has not been
pursued, since the share of solving master problems (including all previous cuts) amounted to a mere 3% or less
of the total computation time.

The above tables show that most time (on average about 95%) is spent solving the arising OPF problems
by SeDuMi. Essentially, this is due to the vast number of cuts that have to be generated to solve the scenario
problems.

Observe that the total times for solving the risk averse models are approximately the same as for the risk
neutral ones except for the test instances containing (second-stage) gas turbines where the total time has
roughly doubled. This is due to the complexity of the single-scenario unit commitment problems. We merely
add to each of them just one big-M constraint and penalize its violation, such that, in this case, (4.7) is not
that much harder to solve than (4.11).
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Table 2. Computational results for the risk neutral model.

Networks exclusive of gas turbines (No second-stage integers)
Model Network Scenarios Generator Hydro Var. Constr. SeDuMi CPU (SeDuMi) Costs

Calls
E1 IEEE 14 10 5(0) 0 113 760 30 040 5743 2128 s (2083 s) 292 565.64
E2 IEEE 14 10 5(0) 1 114 610 31 500 10 276 3853 s (3718 s) 293 056.19
E3 IEEE 14 10 5(0) 2 115 340 32 960 17 285 6545 s (6128 s) 293 156.36
E4 IEEE 14 50 5(0) 0 568 920 148 800 20 730 7668 s (7523 s) 314 167.29
E5 IEEE 14 50 5(0) 1 572 570 156 100 49 298 16 119 s (15526 s) 314 174.97
E6 IEEE 14 50 5(0) 2 576 220 163 400 59 774 22 530 s (21373 s) 314 279.54
E7 IEEE 30 10 6(0) 0 465 264 48 720 7668 5705 s (5661 s) 18079.13
E8 IEEE 30 10 6(0) 1 465 994 50 180 9028 6066 s (5938 s) 17821.18
E9 IEEE 30 10 6(0) 2 466 724 50 640 4323 3276 s (3229 s) 17 822.27
E10 IEEE 30 50 6(0) 0 2 325 744 241 920 15 252 11 235 s (11127 s) 18 643.85
E11 IEEE 30 50 6(0) 1 2 329 394 249 220 16 623 11 247 s (11057 s) 18 645.24
E12 IEEE 30 50 6(0) 2 2 333 044 251 520 16 840 11 464 s (11257 s) 18 645.03

Networks including gas turbines (second-stage integers).
Model Network Scenarios Generator Hydro Var. Constr. SeDuMi CPU (SeDuMi) Costs

Calls
E13 IEEE 14 10 5(3) 0 114 408 30 040 6350 2135 s (2083 s) 258 080.00
E14 IEEE 14 10 5(3) 1 115 258 31 500 6402 2144 s (2084 s) 247 850.00
E15 IEEE 14 10 5(3) 2 115 988 32 960 9772 3572 s (3424 s) 240 280.00
E16 IEEE 14 50 5(3) 0 572 448 148 800 16 864 5992 s (5905 s) 281 230.00
E17 IEEE 14 50 5(3) 1 576 098 156 100 26 261 9815 s (9556 s) 278 960.00
E18 IEEE 14 50 5(3) 2 579 748 163 400 56 706 18 353 s (17 589 s) 271 023.66
E19 IEEE 30 10 6(4) 0 466 128 48 720 9969 6955 s (6765 s) 18 077.00
E20 IEEE 30 10 6(4) 1 466 858 50 180 3771 2770 s (2736 s) 17 816.00
E21 IEEE 30 10 6(4) 2 467 588 50 640 3698 2818 s (2783 s) 17 816.00
E22 IEEE 30 50 6(4) 0 2 330 448 241 920 6926 4762 s (4736 s) 17 896.00
E23 IEEE 30 50 6(4) 1 2 334 098 249 220 14 126 10 086 s (9934 s) 18 606.00
E24 IEEE 30 50 6(4) 2 2 337 748 251 520 14 368 10 681 s (10 509 s) 18 607.00

Table 3. Computational results for the risk averse model.

Model Network Scenarios Generator Hydro Var. Constr. SeDuMi CPU (SeDuMi) Costs
Calls

EP1 IEEE 14 10 5(0) 0 113 770 30 050 5292 1462 s (1394 s) 296 117.52
EP2 IEEE 14 10 5(3) 0 114 418 30 050 13618 3237 s (3136 s) 287 906.38
EP3 IEEE 14 50 5(0) 0 568 970 148 850 20 730 5399 s (5212 s) 319 247.29
EP4 IEEE 14 50 5(3) 0 572 498 148 850 56 654 12 265 s (120 00 s) 281 702.41
EP5 IEEE 30 10 6(0) 0 465 274 48 730 3448 1935 s (1908 s) 18 494.48
EP6 IEEE 30 10 6(4) 0 466 138 48 730 23 132 10 773 s (10 609 s) 18 150.40
EP7 IEEE 30 50 6(0) 0 2 325 794 241 970 15 252 6369 s (6294 s) 19 167.85
EP8 IEEE 30 50 6(4) 0 2 330 498 241 970 21 251 12 733 s (12 563 s) 19 052.32

The value of the stochastic solution. When exploring the usefulness of the stochastic programming approach
in (4.1) achieving second stage feasibility turned out difficult. In fact, in our instances E1–E6, none of the optimal
solutions to the averaged models has been feasible for all individual scenarios. This is reflected by Table 4, where
column 2 displays infeasibility (regarding both numbers of scenarios and accumulated probability).

Furthermore, column 2 of Table 4 reveals that deterministic solutions could be very misleading as they may
be infeasible in a considerable number of cases. By contrast, the solutions of the stochastic programs E1–E6
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Table 4. Evaluation of the solutions of the expected value models.

Model Infeasibility Wait-and-See EVPI Gap
E1 3 (19.1%) 249 098.16 43 467.48 17.45%
E2 4 (24.8%) 240 916.12 52 140.07 21.64%
E3 3 (19.1%) 234 096.86 59 059.5 25.22%
E4 9 (15.0%) 273 349.90 40 817.39 14.93%
E5 19 (36.7%) 271 728.20 42 446.77 15.62%
E6 9 (15.0%) 271 111.36 43 168.18 15.92%

are quite robust with respect to changes in the data. Moreover, calculating the gap between the wait-and-see
(WS) solution4 (the WS solution for E1–E6 is displayed in column 3 of Tab. 4) and the optimal value of E1–
E6, it turned out, that, after the fact, the stochastic solutions are not optimal, but fairly good. These gaps
and in addition the expected value of perfect information5 (EVPI) are reported in column 5 and 4 of Table 4,
respectively.

The benefit of the risk averse approach. In order to push the effect of the risk averse approach, compared
to the risk neutral one, we have considered instances whose scenarios were less power consuming. To this end,
we just divided the scenario load profiles (from the results above) by four. Than much more first-stage solutions
become feasible (more generators may be in off-state).

The bar charts in Figure 2 illustrate the impact of different, risk neutral and risk averse, stochastic criteria
on the shapes of the optimal solutions. It displays our results for the 14-bus IEEE network with two (first-stage)
coal fired blocks and three (second-stage) gas turbines, as well as 50 scenarios. Here, each individual column
symbolizes one of the 50 scenarios where the particular height refers to the (single-scenario) objective value and
the width to the corresponding probability.

The expectation based model minimizes the sum over all single-scenario problems (where each single-scenario
problem is weighted by its probability). This implies that scenarios with high costs may be compensated by
scenarios with lower costs. In doing so, variability is neglected at all. Hence, this may result in a solution whose
associated random variable highly fluctuates and takes unfavorable values “too often”. These drawbacks are
illustrated in Figure 2. For the considered test instance, the solution of the expectation based model varies
strongly and incurs costs higher than 91 000 in five of the fifty single-scenarios (corresponding probability is
14.1%). The objective value is 49 253.70. Despite the solution of the excess probability mean-risk model causing
objective costs of 66 073.50 in the expected value model, its single-scenario objectives do not vary that much
and none of them exceeds the threshold η = 91 000.

6. Concluding remarks

In the present paper we have brought together unit commitment in AC transmission systems with risk averse
stochastic optimization employing semidefinite programming. The latter recently was boosted by rank relax-
ations of semidefinite programs that lead to (globally) solvable optimal power flow problems. More specifically,
relaxations of rank-one conditions could be recuperated for certain classes of electricity networks including
among others popular IEEE OPF test instances.

Our focus has been to explore the potential of the recent findings in power flow when addressed under
data uncertainty. The computations in the present paper confirm in principal that such a model extension
remains computationally feasible provided proper decomposition techniques are integrated into the algorithmic
treatment.

4 The expected value E [minX∈X f(X, ω)] is called wait-and-see solution.
5 The value minX∈X E [f(X, ω)] − E [minX∈X f(X, ω)] is called the expected value of perfect information.
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Figure 2. IEEE 14-bus system (2 coal fired blocks, 3 gas turbines) and 50 scenarios: Objective
values for each of the single-scenario problems.

In this context, we refer to very recent publications on sufficient conditions for the semidefinite approximation
of OPF finally enabling solution of the original problem, see the doctoral thesis [33] and survey paper [32].

Appendix A. Equivalent rank constrained SDP representation

The inclusion of the AC power flow constraints introduced in Section 2.1 leads to a mixed-integer nonlinear
program. Whenever these conditions enter into an optimization problem, its feasible set becomes nonconvex
and the problem itself NP-hard [24]. Nevertheless, following Lavaei and Low, the introduced network condi-
tions (2.8)–(2.17) and thus our whole unit commitment problem may be solved by considering a (rank con-
straint) mixed-integer linear semidefinite program. To this, it takes the introduction of some parameters: For
lines (l,m) ∈ L, the complex parameter ylm := glm + jblm is referred to as the admittance between the nodes
l and m. This definition is extended to all l 
= m by putting ylm equal to zero, whenever bus l and m are not
directly linked. The parameter ykk denotes the admittance-to-ground at k ∈ N , it is defined as the sum over
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all connected line admittances added by the line shunt admittances. In addition, it is essential to introduce the
admittance matrix Y = G+jB ∈ Cn×n defined by yll +

∑
m∈N(l) ylm for diagonal elements and −ylm otherwise.

Moreover, the following parameters for every k ∈ N and (l,m) ∈ L are required:

Ỹk := eke
T
k Y, Ỹlm := (b0lm + ylm)ele

T
l − (ylm)ele

T
m,

Mk :=
[
eke

T
k 0

0 eke
T
k

]
, Mlm :=

[
(el − em)(el − em)T 0

0 (el − em)(el − em)T

]
,

where Y is the net corresponding admittance matrix, b0lm are the given shunts, ylm are the admittances, and
e1, . . . , en are the standard basis vectors in Rn. With these agreements, we besides need the subsequent auxiliary
matrices:

Yk :=
1
2

⎡⎣Re
(
Ỹk + Ỹ T

k

)
Im

(
Ỹ T

k − Ỹk

)
Im

(
Ỹk − Ỹ T

k

)
Re

(
Ỹk + Ỹ T

k

)⎤⎦ ,
Y k := −1

2

⎡⎣Im
(
Ỹk + Ỹ T

k

)
Re

(
Ỹk − Ỹ T

k

)
Re

(
Ỹ T

k − Ỹk

)
Im

(
Ỹk + Ỹ T

k

)⎤⎦ ,
Ylm :=

1
2

⎡⎣Re
(
Ỹlm + Ỹ T

lm

)
Im

(
Ỹ T

lm − Ỹlm

)
Im

(
Ỹlm − Ỹ T

lm

)
Re

(
Ỹlm + Ỹ T

lm

)⎤⎦ ,
Y lm := −1

2

⎡⎣Im
(
Ỹlm + Ỹ T

lm

)
Re

(
Ỹlm − Ỹ T

lm

)
Re

(
Ỹ T

lm − Ỹlm

)
Im

(
Ỹlm + Ỹ T

lm

)⎤⎦ .
Further, define the real voltage vector X := [Re(V)T , Im(V)T ] and for k ∈ N , the injected net active and reactive
powers pk,inj and qk,inj, respectively. Here, the latter are defined by pk,inj := pGk

−pDk
, qk,inj := qGk

− qDk
for

all k ∈ G as well as pk,inj := −pDk
, qk,inj := −qDk

for all k ∈ N\G. Then, with these notations, the following
equations are valid (cf. [24]):

pk,inj := Yk •
(
XXT

)
, qk,inj := Y k •

(
XXT

)
|Vk|2 := Mk •

(
XXT

)
, |Vl − Vm|2 := Mlm •

(
XXT

)
, (A.1)

plm := Ylm •
(
XXT

)
, |Slm|2 :=

(
Ylm •

(
XXT

))2

+
(
Y lm •

(
XXT

))2

.

If now all generator on/off decisions are fixed and in addition the active and reactive power out-
puts/consumptions, respectively, at all pumped-storage plants are given in advance, then we obtain the following
arithmetic reformulation (in terms of X) of the production bounds (2.2) and power flow constraints (2.8)–(2.17):

Pmin
k ≤ Yk •

(
XXT

)
+ pDk

≤ Pmax
k , ∀k ∈ N , (A.2)

Qmin
k ≤ Y k •

(
XXT

)
+ qDk

≤ Qmax
k , ∀k ∈ N , (A.3)

(V min
k )2 ≤Mk •

(
XXT

)
≤ (V max

k )2, ∀k ∈ N (A.4)(
Ylm •

(
XXT

))2

+
(
Ylm •

(
XXT

))2

≤ (Smax
lm )2, ∀(l,m) ∈ L, (A.5)

Ylm •
(
XXT

)
≤ Pmax

lm , ∀(l,m) ∈ L, (A.6)

Mlm •
(
XXT

)
≤ (ΔV max

lm )2 , ∀(l,m) ∈ L, (A.7)
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where we have to extend the definition of Pmin
k , Pmax

k , Qmin
k , Qmax

k from k ∈ G to every network bus k ∈ N ,
by putting Pmin

k = Pmax
k = Qmin

k = Qmax
k = 0 if k ∈ N\G. Further, we have to adjust the active and reactive

load/infeed at pumped-storage buses. Here, observe that all conditions in (A.2)–(A.7) become linear in XXT ,
except the quadratic inequalities in (A.5). However, with the aid of Schur’s complement and by introducing for
all lines (l,m) ∈ L an artificial matrix variable Zlm ∈ S3, these non-quadratic inequalities may be represented
by the following linear matrix equations:⎡⎣1 0 0

0 0 0
0 0 0

⎤⎦ • Zlm = (Smax
lm )2,

⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦ • Zlm = 1,

⎡⎣0 0 0
0 0 0
0 0 1

⎤⎦ • Zlm = 1,

⎡⎣0 0 0
0 0 1
0 1 0

⎤⎦ • Zlm = 0,

⎡⎣ 0 1/2 0
1/2 0 0
0 0 0

⎤⎦ • Zlm + Ylm • XXT = 0,

⎡⎣ 0 0 1/2
0 0 0

1/2 0 0

⎤⎦ • Zlm + Y lm •XXT = 0, Zlm 	 0.

(A.8)

Similarly, adopting the reformulation (A.1) of net active power injected at nonrenewable generators to the
quadratic cost function (2.1), while simultaneously introducing for each of the nonrenewable generators k ∈ G\H ,
the matrix variable Ak ∈ S2, it can be transformed into linear shape as well:[

1 0
0 0

]
• Ak + ck1Yk • XXT − ak = −ak,

[
0 0
0 1

]
• Ak = 1,

[
0 1/2

1/2 0

]
• Ak +

√
ck2Yk • XXT = −bk, Ak 	 0,

(A.9)

where ak denotes the operating costs occurring at generator k, i.e. the objective is
∑

k∈G\H (ak + ck0 · rk).
Moreover, in the same way, the injected active power at pumped-storage units h ∈ H may be depict by
ph − wh := Yh • XXT + pDh

, such that the box constraints

−Wmax
h ≤ Yh • XXT + pDh

≤ Pmax
h , and −W

max

h ≤ Y h • XXT + qDh
≤ P

max

h ,

at these particular network nodes have to be satisfied (cf. (2.3)). Hence, since that a given matrix W can be
written as XXT for some (nonzero) vector X if and only if W is both symmetric positive semidefinite and
rank 1, we finally receive an equivalent rank constrained linear SDP reformulation. Thus, by applying this
substitution to our initial unit commitment problem from Section 2.1, it is indeed equivalent to a mixed-integer
rank constrained SDP.

Appendix B. A strategy for solving OPF problems

If we apply the reformulation described in Appendix A to the unit commitment problem introduced in
Section 2.1 and further fix all generator switching decisions as well as the active and reactive power out-
puts/consumptions, respectively, at all pumped-storage plants, then, for t ∈ {1, . . . , T}, the dual to the resulting
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decomposed OPF is given by (cf. [24]):

max
λt≥0

{
h(λt, rt) : A(λt, rt) 	 0,[

1 rt
k,1

rt
k,1 rt

k,2

]
	 0, ∀k ∈ G\H

⎡⎣rt
lm,1 rt

lm,2 rt
lm,3

rt
lm,2 rt

lm,4 rt
lm,5

rt
lm,3 rt

lm,5 rt
lm,6

⎤⎦ 	 0, ∀(l,m) ∈ L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (B.1)

with

A(λt, rt) :=
∑

k∈N

(
λ

t

k − λt
k

)
Yk +

(
γt

k − γt
k

)
Y k +

(
μt

k − μt
k

)
Mk

+
∑

k∈G\H
(ck1 + 2

√
ck2r

t
k,1)Yk

+
∑

(l,m)∈L
(λt

lm + 2rt
lm,2)Ylm + 2rt

lm,3Y lm + μt
lmMlm, (B.2)

h(λt, rt) :=
∑

k∈N
λt

kP
min
k − λ

t

kP
max
k +

(
λ

t

k − λt
k

)
pt

Dk

+
∑

k∈N
γt

k
Qmin

k − γt
kQ

max
k +

(
γt

k − γt
k

)
qt
Dk

+
∑

k∈N
μt

k

(
V min

k

)2 − μt
k (V max

k )2

−
∑

(l,m)∈L
λt

lmP
max
lm + μt

lm (ΔV max
lm )2 + rt

lm,1 (Smax
lm )2 + rt

lm,4 + rt
lm,6,

where
λt = (λ

t

k,λ
t
k,γ

t
k,γ

t
k
,μt

k,μ
t
k
,λt

lm,μ
t
lm),

and
rt = (rt

k,1, r
t
k,2, r

t
lm,1, r

t
lm,2, r

t
lm,3, r

t
lm,4, r

t
lm,5, r

t
lm,6).

Now, provided (B.1) is solvable, let us denote by (λt
opt, r

t
opt) any optimal solution to this program. Assume

further that Xt
opt is primal optimal (i.e., it solves the dual to (B.1)) and that Slater’s condition is satisfied.

Then, due to strong duality, A(λt
opt, r

t
opt) • Xt

opt = 0. This equation is valid if and only if the product of the
symmetric and positive semidefinite matrices A(λt

opt, r
t
opt) and Xt

opt vanishes. Hence, writing the symmetric
matrix Xt

opt by using its eigenvalue decomposition P tΛtP tT =
∑2N

i=1 λ
t
ip

t
ip

t
i
T , the following equations have to

hold true:
A(λt

opt, r
t
opt)p

t
i = 0, for those i ∈ {1, . . . , 2N} for which λi 
= 0. (B.3)

This means that all of the concerned orthogonal eigenvectors (eigenvectors to nonzero eigenvalues of Xt
opt) must

belong to the kernel of A(λt
opt, r

t
opt). If now the latter were of dimension one, the primal would have a rank-one

solution. Hence, there were a zero duality gap between the OPF and its SDP relaxation. The same result is
obtained when the kernel of A(λt

opt, r
t
opt) has dimension less than or equal to 2 (cf. [24]). Indeed, in view of

Appendix A, the matrix A(λt
opt, r

t
opt) as a weighted sum of the matrices Yk, Y k,Mk, Ylm, Y lm,Mlm has the

following block structure:

A(λt
opt, r

t
opt) =

[
A(λt

opt, r
t
opt) B(λt

opt, r
t
opt)

−B(λt
opt, r

t
opt) A(λt

opt, r
t
opt)

]
.

This implies: if the kernel of A(λt
opt, r

t
opt) includes

pt =
[
pt
1
T
pt
2
T
]T

,
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then it also includes [
−pt

2
T
pt
1
T
]T

.

As these two vectors are orthogonal, they must be the two eigenvectors to the zero eigenvalue of A(λt
opt, r

t
opt).

Therefore, for primal optimal Xt
opt, the following holds

Xt
opt = λt

1

[
pt
1

pt
2

] [
pt
1
T
pt
2
T
]

+ λt
2

[
−pt

2

pt
1

] [
−pt

2
T
pt
1
T
]
.

Further, due to the fact that the trace of a skew-symmetric and symmetric matrix is equal to zero, it could be
observed that [

A B
−B A

]
•
[
pt
1

pt
2

] [
pt
1
T
pt
2
T
]

= A • pt
1p

t
1
T +A • pt

2p
t
2
T

=
[
A B
−B A

]
•
[
−pt

2

pt
1

] [
−pt

2
T
pt
1
T
]
. (B.4)

Hence, the rank-one matrix

X
t

V = (λt
1 + λt

2)
[
pt
1

pt
2

] [
pt
1
T
pt
2
T
]

is globally optimal for the original OPF (it satisfies all of its constraints and produces the same objective value
as Xt

opt). Summing up, this leads to the following corollary (cf. [24]).

Corollary B.1. Assume that (λt
opt, r

t
opt) is an optimal solution to (B.1) and that

dim
(
ker

(
A(λt

opt, r
t
opt)

))
≤ 2. (B.5)

Then, for any nonzero vector pt in the null space of A(λt
opt, r

t
opt), there exists two real-valued scalars λt

1 and λt
2

such that
X

t

V = (λt
1 + λt

2)p
tptT

is a global optimum of the corresponding OPF problem.

In summery, the following strategy for finding a global optimum of the underlying OPF problem can be
applied (see [24]):

Algorithm framework for solving OPF problems

Step 1. Compute a solution (λt
opt, r

t
opt) of (B.1).

Step 2. If the optimal value h(λt
opt, r

t
opt) is +∞,

then the OPF problem is infeasible.
Step 3. Find the multiplicity ψ of the zero eigenvalue of A(λt

opt, r
t
opt).

Step 4. If ψ > 2, (B.1) depicts a lower bound for the associated OPF.
Step 5. If ψ ≤ 2, then a (globally) optimal solution to the associated OPF

can be constructed via Corollary B.1.

Beside the nice feature to convexify NP-hard OPF problems, applying the above SDP approach (which
squares the number of voltage variables) leads to an enormous inflation of problem size. Indeed, when con-
sidering large network instances with a huge number of buses this approach yields an SDP with an enormous
number of variables. Nevertheless, according to [24], for all IEEE benchmark systems, the SDP approach works
very well, meaning that these problems could be solved within a few seconds. For larger network instances
tree decomposition techniques have been proposed (see [34] and [29]) in order to break down the large-scale
semidefinite constraint into small-sized constraints.
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[41] A. Ruszczyński and A. Shapiro, Stochastic Programming. Vol. 10 of Handbooks Oper. Res. Manage. Sci. Elsevier (2003).

[42] P. Sánchez-Martin and A. Ramos, Modeling transmission ohmic losses in a stochastic bulk production cost model. Instituto
de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid (1997).

[43] P. Sánchez-Martin, A. Ramos and J.F. Alonso, Probablistic midterm transmission planning in a liberalized market. IEEE
Trans. Power Syst. 20 (2005) 2135–2142.

[44] R. Schultz and S. Tiedemann, Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse. SIAM
J. Optim. 14 (2003) 115–138.
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