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MULTIVARIATE STOCHASTIC DOMINANCE FOR RISK AVERTERS
AND RISK SEEKERS
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Abstract. This paper first extends some well-known univariate stochastic dominance results to multi-
variate stochastic dominances (MSD) for both risk averters and risk seekers, respectively, to n order for
any n ≥ 1 when the attributes are assumed to be independent and the utility is assumed to be additively
and separable. Under these assumptions, we develop some properties for MSD for both risk averters
and risk seekers. For example, we prove that MSD are equivalent to the expected-utility maximization
for both risk averters and risk seekers, respectively. We show that the hierarchical relationship exists
for MSD. We establish some dual relationships between the MSD for risk averters and risk seekers.
We develop some properties for non-negative combinations and convex combinations random variables
of MSD and develop the theory of MSD for the preferences of both risk averters and risk seekers on
diversification. At last, we discuss some MSD relationships when attributes are dependent and discuss
the importance and the use of the results developed in this paper.
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1. Introduction

There are two major types of persons: risk averters and risk seekers. Their corresponding utility functions
are concave and convex; both are increasing. Many authors have studied their selection rules. For example,
Markowitz [25] and others propose the mean-variance selection rules for risk averters and risk seekers. Quirk
and Saposnik [29] and many others develop some univariate stochastic dominance (SD) rules for risk averters.
On the other hand, Hammond [14] and many others develop the univariate SD rules for risk seekers.

Decisions are often drawn from multidimensional attributes and, in this situation, decision makers will rely on
multidimensional utility. Some, if not all, of the outcomes in the decisions with multidimensional consequences
could be risky (see, for example, [11]). Consider a problem of decision-making with risky outcomes described
by n (n > 1) attributes and under the expected-utility framework, if the distribution of the outcomes is known,
the main practical difficulty is to define an appropriate n-variate utility function u for the assessment of the
expected utility of the outcomes. A simple way for the assessment is to assume that the utility function u
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possesses separability property for its attributes and the attributes of the outcomes are independent [21]. Our
paper follows this approach.

Some work has been done in the literature to extend the SD concept from a single variable to the multivariate
case. For example, Levy [22] assumes stochastically independent attributes whereas Levy and Paroush (1974a)
adopt additively separable utilities. In addition, Hazen [16] investigates multivariate SD when simple forms of
utility independence can be assumed. Readers may refer to Denuit and Eeckhoudt [9] and the references therein
for other studies in the multivariate SD. In this paper we call SD for risk averters ascending SD (ASD) and SD
for risk seekers descending SD (DSD).

In this paper, we extend some well-known univariate ASD and DSD results to multivariate ASD and DSD for
risk averters and risk seekers, respectively, to n order for any n ≥ 1 when attribute is assumed to be independent
and the utility is assumed to be additively and separable. Under these assumptions, we develop some properties
for ASD and DSD, respectively. For example, we prove that ASD and DSD are equivalent to the expected-
utility maximization for risk averters and risk seekers, respectively. We show that the hierarchical relationship
exists and establish the relationships between multivariate ASD and DSD. We establish some dual relationships
between the MSD for risk averters and risk seekers. We develop some properties of non-negative combinations
and convex combinations random variables for multivariate stochastic dominance and develop the theory of
multivariate SD for the preferences of risk averters and risk seekers on diversification. At last, we discuss some
multivariate SD relationships when attributes are dependent.

We begin by introducing notations and definitions in Section 2. In Section 3, we develop the theory of
multivariate stochastic dominance for risk averters and risk seekers. We discuss in Section 4 the importance and
the use of the results developed in this paper. Section 5 concludes.

2. Definitions and notations

We let X and Y be random variables defined on Ω = [a, b] with distribution functions F and G, and
probability density functions f and g, respectively, satisfying

HA
j (x) =

∫ x

a

HA
j−1(y) dy , HD

j (x) =
∫ b

x

HD
j−1(y) dy for H = F or G.

in which HA
0 (x) = HD

0 (x) = h(x) with h = f or g and H = F or G. In addition, we let μF = μX = E(X) =∫ b

a
t d F (t) and μG = μY = E(Y ) =

∫ b

a
t d G(t)

2.1. Univariate stochastic dominance

We next define the N -order ascending (descending) stochastic dominance which is applied to risk averters
(seekers)6. We first modify the definition used in Jean [19] to obtain the following definition for the N -order
ascending stochastic dominance (ASD).

Definition 2.1. Given two random variables X and Y with F and G as their respective distribution functions,
X is at least as large as Y in the sense of:

1. FASD(SASD), denoted by X �1 Y (X �2 Y ) if and only if FA
1 (x) ≤ GA

1 (x) (FA
2 (x) ≤ GA

2 (x)) for each x in
[a, b],

2. NASD, denoted by X �N Y if and only if FA
N (x) ≤ GA

N (x) for each x in [a, b] and FA
k (b) ≤ GA

k (b) for
k = 2, . . . , N − 1 for N ≥ 3,

where FASD, SASD and NASD stand for first-, second-, and N-order ascending SD, respectively.

6We call stochastic dominance for risk averters ascending stochastic dominance because its integrals count from the leftmost point
in the domain ascending to the rightmost point in the domain. Similarly, we call stochastic dominance for risk seekers descending
stochastic dominance because its integrals count from the rightmost point in the domain descending to the leftmost point in the
domain. Readers may refer to [31] and the references therein for more information.
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We then define the first, second and N -order descending stochastic dominance (DSD) as follows:

Definition 2.2. Given two random variables X and Y with F and G as their respective distribution functions,
X is at least as large as Y in the sense of:

1. FDSD(SDSD), denoted by X �1 Y (X �2 Y ) if and only if FD
1 (x) ≥ GD

1 (x) (FD
2 (x) ≥ GD

2 (x)) for each x
in [a, b],

2. NDSD, denoted by X �N Y if and only if FD
N (x) ≥ GD

N (x) for each x in [a, b], and FD
k (a) ≥ GD

k (a) for
k = 2, . . . , N − 1 for N ≥ 3,

where FDSD, SDSD, and NDSD stand for first-, second-, and N-order descending stochastic dominance,
respectively.

In Definition 2.1, if, in addition, there exists x in [a, b] such that the inequality is strictly, then we say that
X is large than Y and F is large than G in the sense of SFASD, SSASD, and SNASD, denoted by X �1 Y or
F �1 G, X �2 Y or F �2 G, and X �N Y or F �N G, respectively, where SFASD, SSASD, and SNASD stand
for strictly first-, second-, and N -order ASD, respectively. The strictly first, second, and N -order DSD, denoted
by SFDSD, SSDSD, and SNDSD can be defined similarly.

2.2. Majorization and Dalton transfer

In this paper we also study the single period portfolio selection for investors to allocate their wealth to the
n (n > 1) risks without short selling in order to maximize their expected utilities from the resulting final
wealth [1–26]. Let random variable X ∈ X be an (excess) return of an asset or prospect. If there are n assets
�Xn = (X1, . . . , Xn)′, a portfolio of �Xn without short selling is defined by a convex combination,

−→
λn

′−→Xn, of the
n assets �Xn for any

−→
λn ∈ S0

n (Sn) where

S0
n =

{
(s1, s2, . . . , sn)′ ∈ R

n : 0 ≤ si ≤ 1 for any i,

n∑
i=1

si = 1

}
,

Sn =

{
(s1, s2, . . . , sn)′ ∈ R

n : 1 ≥ s1 ≥ s2 ≥ . . . ≥ sn ≥ 0,

n∑
i=1

si = 1

}
, (2.1)

in which R is the set of real numbers and the ith element of
−→
λn is the weight of the portfolio allocation on the

ith asset of return Xi. A portfolio will be equivalent to return on asset i, which we call a specialized portfolio,
or simply a specialized asset, if si = 1 and sj = 0 for all j �= i. It is a partially diversified portfolio if there exists
i such that 0 < si < 1 and is the completely diversified portfolio if si = 1

n for all i = 1, 2, . . . , n. We note that we
include the condition of

∑n
i=1 si = 1 is only for convenience. All the results developed in this paper work well

without this condition. We then follow Hardy, et al. [15] to state the following definition to order the elements
in Sn.

Definition 2.3. Let �αn, �βn ∈ Sn in which Sn is defined in (2.1). �βn is said to majorize �αn, denoted by

�βn �M �αn, if
k∑

i=1

βi ≥
k∑

i=1

αi, for all k = 1, 2, . . . , n.
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Possessing the Dalton Pigou transfer is an important feature for the theory of majorization. We state the
definition as follows:

Definition 2.4. 7 For any �αn, �βn ∈ Sn, �αn is said to be obtained from �βn by applying a single Dalton (Pigou)
transfer, denoted by �βn

D→ �αn, if there exist h and k (1 ≤ h < k ≤ n) such that αi = βi for any i �= h, k;
αh = βh − ε; and αk = βk + ε with ε > 0.

2.3. Multivariate Stochastic Dominance

Now, we are ready to define multivariate stochastic dominance for risk averters and risk seekers for indepen-
dent assets. If there are two vectors of n assets, �Xn = (X1, . . . , Xn)′ and �Yn = (Y1, . . . , Yn)′, in which {Xi} are
independent and {Yi} are independent. We have the following definitions:

Definition 2.5. For any integer N , we say �Xn �N
�Yn if and only if Xi �N Yi for any i = 1, 2, . . . , n.

Definition 2.6. For any integer N , we say �Xn �N �Yn if and only if Xi �N Yi for any i = 1, 2, . . . , n.

We note that readers may modify the work by Levy [22] and others to set some conditions and establish the
statements in Definitions 2.5 and 2.6 as theorems instead of definitions. However, our paper prefer to keep them
as definitions.

Before we discuss the theory further, we state the definitions of the sets of utility functions for risk averters
and risk seekers, UA

j and UD
j , for the MSD as follows:

Definition 2.7. For J = 1, 2,. . . , N , u ∈ UA
J or UD

J is an utility function for �Xn = (X1, . . . , Xn)′ satisfying

u( �X) = u1(X1) + . . . + un(Xn) (2.2)

such that:

UA
J = {u : (−1)k∂ku/∂Xi1 . . . ∂Xin ≤ 0 ,

∑
ij = k, ij ≤ J ∀j = 1, . . . , n} , and

UD
J = {u : ∂ku/∂Xi1 , . . . ∂Xin ≥ 0 ,

∑
ij = k, ij ≤ J ∀j = 1, . . . , n},

where ui is the utility on Xi satisfying (−1)ju(j) ≤ 0 for any integer j if u ∈ UA
J and satisfying u(j) ≥ 0 for any

integer j if u ∈ UD
J .

Readers may refer to Keeney and Raiffa [21] and others for the definition of u in Definition 2.7. We note that
u in (2.2) is quasiconcave (quasiconvex) if each argument is concave (convex) (see for example[3]). We also note
that the theory developed in this paper fit well for the following additive and separable utility:

u( �X) = α +
n∑

i=1

βiui(Xi), βi ≥ 0 ∀i.

However, for simplicity, in this paper we only use u in (2.2).
At last, we assume investors will choose between F and G (which could be univariate or multivariate)

in accordance with a consistent set of preferences satisfying the von Neumann–Morgenstern [32] consistency
properties such that F is (strictly) preferred to G, or equivalently, X is (strictly) preferred to Y if

ΔEu ≡ E
[
u(X)

] − E
[
u(Y )

] ≥ 0(> 0), (2.3)

where E
[
u(X)

] ≡ ∫ b

a
u(x)dF (x) and E

[
u(Y )

] ≡ ∫ b

a
u(x)dG(x).

7Some scholars suggest the reverse direction for the definition of a Dalton Pigou transfer. In this paper, we follow Ok and
Kranich [27] for the definition.



MULTIVARIATE STOCHASTIC DOMINANCE FOR RISK AVERTERS AND RISK SEEKERS 579

3. The theory

We first develop some new results for n-dimensional multivariate stochastic dominance (MSD) under the
assumptions that the attributes are independent and the utility is additive and separable and thereafter release
the assumption of independence.

3.1. Stochastic dominance for independent random variables

Quirk and Saposnik [29] and others have developed some properties of univariate SD for the preferences of
risk averters while Hammond [29] and others have extended the work to include properties of univariate SD for
the preferences of risk seekers. We extend their work to establish the following important theorem in SD theory.

Theorem 3.1. Let �Xn and �Yn be two vectors of n independent random variables. Suppose u is a utility function
defined in Definition 2.7. For any integer N , we have

1. �Xn �N
�Yn if and only if E

[
u( �Xn)

] ≥ E
[
u(�Yn)

]
for any u in UA

N , and
2. �Xn �N �Yn if and only if E

[
u( �Xn)

] ≥ E
[
u(�Yn)

]
for any u in UD

N .

Proof. We only prove the sufficient part of part 1 of the theorem. The proof of part 2 can be obtained similarly
and one could also easily prove the necessary part of the theorem. Recall the definition of u in Definition 2.7,
we know that

E
[
u( �Xn)

]
=

n∑
i=1

E
[
ui(Xi)

]
.

Now we assume that �Xn �N
�Yn holds first. According to Definition 2.5, we can obtain that Xi �N Yi for any

i = 1, 2, . . . , n. Following Levy (2006), we then can get E
[
ui(Xi)

] ≥ E
[
ui(Yi)

]
. This can yard that

E
[
u( �Xn)

]
=

n∑
i=1

E
[
ui(Xi)

] ≥ n∑
i=1

E
[
ui(Yi)

]
= E

[
u(�Yn)

]
,

and thus, the assertion holds. �

It is well-known that the hierarchical relationship exists in SD (see, for example, [23]). We extend their results
to obtain the hierarchical relationship for MSD as stated in the following theorem:

Theorem 3.2. For any integer N , we have

1. if �Xn �N
�Yn, then �Xn �N+1

�Yn, and
2. if �Xn �N �Yn, then �Xn �N+1 �Yn.

Theorem 3.2 can be obtained by applying Theorem 3.1, the fact that the hierarchical relationship holds for
univariate SD, and Definition 2.5.

It is well-known that if μF = μG, F �2 G (F �2 G) and if their variances exist, then σ2
F ≤ σ2

G (σ2
F < σ2

G). If
μF = μG, F �2 G (F �2 G) and if their variances exist, then σ2

F ≥ σ2
G (σ2

F > σ2
G). These reflect the fact that

risk averters prefer to invest in prospects or portfolios with smaller variances while risk seekers prefer larger
variances. Li and Wong [24], Wong and Li [35], and others establish a similar relation between the first three
orders of ASD and DSD for univariate SD. We extend their results by establishing some relationships between
multivariate ASD and DSD for any order as shown in the following theorem.
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Theorem 3.3.

1. �Xn �1
�Yn if and only if �Xn �1 �Yn.

2. �Xn �i
�Yn if and only if −�Yn �i − �Xn.

3. If �Xn and �Yn have the same mean which is finite, then �Xn �2
�Yn if and only if �Yn �2 �Xn.

4. If μX = μY and FA
3 (b) = GA

3 (b), then �Xn �3
�Yn if and only if �Xn �3 �Yn.

5. If FA
k (b) = GA

k (b), k = 2, . . . , N , then
(a) for any even N , �Xn �N

�Yn if and only if �Yn �N �Xn;
(b) for any odd N , �Xn �N

�Yn if and only if �Xn �N �Yn.

Proof. One could easily obtain the proof of the first three parts of Theorem 3.3 by using the results from
Lemma 3 in [24] and Definitions 2.5 and 2.6. To prove the fourth and the fifth part of Theorem 3.3, we only
need to prove the results hold for univariate SD. We first prove the fourth part. Note that

HD
2 (x) =

∫ b

x

HD
1 (y)dy =

∫ b

x

(1 − H(y))dy

= (b − a) −
∫ b

a

H(y)dy − (x − a) +
∫ x

a

H(y)dy

= b − x − HA
2 (b) + HA

2 (x).

Furthermore, we get

HD
3 (x) =

∫ b

x

HD
2 (y)dy =

∫ b

x

(b − y − HA
2 (b) + HA

2 (y))dy

=
∫ b

x

(b − y)dy − HA
2 (b)(b − x) + HA

3 (b) − HA
3 (x).

We then obtain

FD
3 (x) − GD

3 (x) = FA
3 (b) − GA

3 (b) − FA
3 (x) + GA

3 (x) + (b − x)(GA
2 (b) − FA

2 (b)). (3.1)

In addition, if FA
n (b) = GA

n (b) for n = 2, 3, we have

FD
3 (x) − GD

3 (x) = GA
3 (x) − FA

3 (x).

As a result, we can conclude that X �3 Y if and only if X �3 Y . Now we turn to the general case as
stated in the fifth part. We prove by induction on N . Assume that if FA

k (b) = GA
k (b), k = 2, . . . , N , then

FD
N (x) − GD

N (x) = GA
N (x) − FN

A (x). The result is true if N = 3. Then, we obtain

FD
N+1(x) =

∫ b

x

FD
N (y)dy =

∫ b

x

(GD
N (y) + GA

N (y) − FN
A (y))dy

= GD
N+1(x) + GA

N+1(b) − FA
N+1(b) + FA

N+1(x) − GA
N+1(x).

For N + 1, if FA
k (b) = GA

k (b), k = 2, . . . , N + 1, we get FD
N+1(x) − GD

N+1(x) = FA
N+1(x) − GA

N+1(x). Thus, the
assertion holds. �

We note that Theorem 3.3 tell us that the preference of risk averters and risk seekers could be of the same
directions sometimes while in other situations, it could be opposite. Moreover, one could also easily obtain the
“transitivity” property for MSD as shown in the following theorem.
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Theorem 3.4.

1. If �X �i
�Y and �Y �j

�Z, then �X �k
�Z, and

2. if �X �i �Y and �Y �j �Z, then �X �k �Z,

where k = max(i, j).

Proof. One could prove Theorem 3.4 by applying the results in Theorems 3.1 and 3.2. Without loss of generality,
we assume k = max(i, j) = j. In the following, we focus on part 1 of Theorem 3.4. According to Theorem 3.2,
if �X �i

�Y , we can obtain that �X �j
�Y . Applying Theorem 3.1, we get E

[
u( �X)

] ≥ E
[
u(�Y )

]
for any u in UA

j .
We also obtain E

[
u(�Y )

] ≥ E
[
u(�Z)

]
for any u in UA

j . Thus, we have E
[
u( �X)

] ≥ E
[
u(�Z)

]
for any u in UA

j .
Consequently, we can get �X �k

�Z. �

Now, we turn to study the properties for convex combinations of random variables. If X, Y, . . . is the returns
of individual assets, convex combinations of X, Y, . . . are the returns of the portfolios of different assets. Note
that for any pair of random variables X and Y , X �m Y , and F �m G are the same for any integer m.
However, for n > 1, the convex combinations of random variables, say,

∑n
i=1 αiXi �m

∑n
i=1 αiYi are different

from the convex combinations of distribution functions, say,
∑n

i=1 αiFi �m

∑n
i=1 αiGi. Readers may refer to

the convex stochastic dominance theorems [35] for the convex combinations of distribution functions while this
paper studies the convex combinations of random variables.

Hadar and Russell [13] and others have developed some results of the univariate SD of random variables that
are in the same location and scale family [36]. In this paper we extend their work by developing the following
theorem for MSD.

Theorem 3.5. Let �X be a random vector with mean μ �X = (μX1 , . . . , μXn)′ and elements {Xi}, each defined
in [a, b]. Suppose the random variable �Y = p + q �X with mean μ�Y = (μY1 , . . . , μYn)′.

1. If p + qy ≥ y for all y ∈ [a, b], then �Y �1
�X, equivalently �Y �1 �X.

2. If 0 ≤ q < 1 such that p/(1 − q) ≥ μXi ; that is, μYi ≥ μXi , for each i, then �Y �2
�X.

3. If 0 ≤ q < 1 such that p/(1 − q) ≤ μXi ; that is, μYi ≤ μXi , for each i, then �X �2 �Y .

Readers could apply Theorems 3.1 and 8 of [13] to obtain the proof of Theorem 3.5. Hadar and Russell [13] and
others have developed some relationships for linear combinations of random variables for univariate SD. In this
paper, we extend their work to obtain the following theorem for linear combinations of random vectors in MSD.

Theorem 3.6. Let { �Xn,1, . . . , �Xn,m} and {�Yn,1, . . . , �Yn,m} be two sets of independent vectors for random vari-
ables. For j = 1, 2, . . . , N , we have:

1. �Xn,i �j
�Yn,i for i = 1, . . . , m if and only if

∑m
i=1 αi

�Xn,i �j

∑m
i=1 αi

�Yn,i for any αi ≥ 0, i = 1, . . . , m; and
2. �Xn,i �j �Yn,i for i = 1, . . . , m if and only if

∑m
i=1 αi

�Xn,i �j
∑m

i=1 αi
�Yn,i for any αi ≥ 0, i = 1, . . . , m.

Proof. To prove the above theorem, we only need to show that Xn,il �j Yn,il for i = 1, . . . , m if and only if∑m
i=1 αiXn,il �j

∑m
i=1 αiYn,il for any αi ≥ 0, i = 1, . . . , m and any l = 1, . . . , n.

The proofs for the necessary parts are obvious. For the sufficient part, it suffices to prove the following two
lemmas:

Lemma 3.7. X and Y are random variables. For any integer j and for α > 0, X �j (�j)Y implies αX �j

(�j)αY.

Lemma 3.8. Suppose Xi and Yi (i = 1, 2) are random variables such that X1 and X2 are independent, and Y1

and Y2 are independent. For any integer j if Xi �j (�j)Yi for i = 1 and 2, then X1 + X2 �j (�j)Y1 + Y2 .
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The proof of Lemma 3.7 is obvious. For Lemma 3.8, we suppose without loss of generality, we assume Xi

and Yi (i = 1, 2) to be defined in [a, b]. Li and Wong [24] have proved the result for the second order. In the
following, we give the proof for the general j-order. Let X̃1 = X1 + k and Ỹ1 = Y1 + k. Let the probability
distribution functions of X1, X̃1, Y1 and Ỹ1 be F1, F̃1, G1 and G̃1, respectively.

We can know that F̃1(x) = F1(x − k) and G̃1(x) = G1(x − k).
From Proposition 1 in Ogryczak and Ruszczynski (2001), we know that

FA
j (η) =

1
(j − 1)!

∫ η

−∞
(η − x)j−1dF (x) =

1
(j − 1)!

E(η − X)j−1
+ .

Here, the function t �→ (t)+ = max(0, t) and j ≥ 3. Thus, we can have

F̃A
j (η) =

1
(j − 1)!

∫ η

−∞
(η − x)j−1dF̃ (x)

=
1

(j − 1)!

∫ η

−∞
(η − x)j−1dF1(x − k)

=
1

(j − 1)!

∫ η−k

−∞
(η − k − t)j−1dF1(t) =

1
(j − 1)!

E(η − k − X)j−1
+ .

Consequently, if X1 �j (�j)Y1 then X1+k �j (�j)Y1+k. As a result, we can have E
[
u(X1+k)

] ≥ E
[
u(Y1+k)

]
for any u ∈ UA

j . Now we turn to compare X1 + X2 with Y1 + Y2. Note that

E
[
u(X1 + X2)

]
= E

[
E(u(X1 + X2)|X2)

] ≥ E
[
E(u(Y1 + X2)|X2)

]
= E

[
u(Y1 + X2)

]
.

Thus, we conclude that X1 + X2 �j (�j) Y1 + X2. Similarly, we can prove that Y1 + X2 �j (�j) Y1 + Y2. Based
on these results, we conclude that the assertion X1 + X2 �j (�j) Y1 + Y2 holds. �

On the other hand, Hadar and Russell [13] and others have developed some results for risk averters to compare
their preference on the individual assets with partial and completed diversified portfolios for univariate SD while
Li and Wong [24] extend the result to the preference of risk seekers. In this paper, we extend their results for
the convex combinations of random variables for MSD as shown in the following theorem:

Theorem 3.9. Let m ≥ 2. If �Xn,1, . . . , �Xn,m are i.i.d., then

(a)
1
m

m∑
i=1

�Xn,i �2

m∑
i=1

λi
�Xn,i �2

�Xn,i for any (λ1, . . . , λm) ∈ S0
m , and

(b) �Xn,i �2
m∑

i=1

λi
�Xn,i �2 1

m

m∑
i=1

�Xn,i for any (λ1, . . . , λm) ∈ S0
m ,

where S0
m is defined in (2.1).

Readers could apply Theorem 12 of Li and Wong (1999) and Theorem 3.1 to prove Theorem 3.9.

3.2. Stochastic dominance and majorization

Now, we turn to develop the MSD results by applying the theory of majorization and Dalton transfer. To
do so, we first state the following proposition [10] that could be used to develop some stochastic dominance
relationships.

Proposition 3.10. Let �αn, �βn ∈ Sn, �βn �M �αn if and only if �αn can be obtained from �βn by applying a finite
number of Dalton transfers, denoted by �βn

D→ �αn.
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Theorem 3.9 enables investors to compare the preferences among any specialized asset, any partially diversified
portfolio, with the completely diversified portfolio. However, it cannot be used to compare any two different
partially diversified portfolios. We now generalize Theorem 7 in [10] to obtain the following theorem to make
such comparison become possible.

Theorem 3.11. For n > 1, let �αn, �βn ∈ Sn
8 and �Xn = (X1, . . . , Xn)′ where X1, . . . , Xn are i.i.d. If �βn �M �αn,

then �α′
n

�Xn �2
�β′

n
�Xn and �β′

n
�Xn �2 �α′

n
�Xn.

In addition, one could easily applying Proposition 3.10 and Theorem 3.11 to obtain the following corollary:

Corollary 3.12. For n > 1, let �αn, �βn ∈ Sn and �Xn = (X1, . . . , Xn) where X1, . . . , Xn are i.i.d. If
−→
β n

D→ −→α n,
then �α′

n
�Xn �2

�β′
n

�Xn and �β′
n

�Xn �2 �α′
n

�Xn.

Between any pair of two partially diversified portfolios �α′
n

�Xn and �β′
n

�Xn, if the conditions in Theorem 3.11
or Corollary 3.12 are satistified, Theorem 3.11 and Corollary 3.12 tell us that risk averters will prefer �α′

n
�Xn

whereas risk seekers will prefer �β′
n

�Xn.
Can the i.i.d. assumption be dropped in the diversification problem and the completely diversified portfolio

still be optimal? Samuelson [30] tells us that the answer is no in general. He further establishes some results to
relax the i.i.d. assumption. In this paper, we complement Samuelson’s work by applying Proposition 3.10 and
Theorem 3.11 to obtain the following corollaries:

Corollary 3.13. For n > 1, let �Xn = (X1, . . . , Xn)′ be a series of random variables that could be dependent. For
any �αn and �βn, if there exist �Yn and Ann with �Yn = (Y1, . . . , Yn)′ in which {Y1, . . . , Yn} are i.i.d., �Xn = Ann

�Yn

such that
�β′

nAnn �M �α′
nAnn or �β′

nAnn
D→ �α′

nAnn ,

with �α′
nAnn, �β′

nAnn ∈ Sn, then

�α′
n

�Xn �2
�β′

n
�Xn and �β′

n
�Xn �2 �α′

n
�Xn

Corollary 3.14. For n > 1, let �Xn = (X1, . . . , Xn)′ and �Yn = (Y1, . . . , Yn)′ be two series of random variables
that could be dependent. For any �αn and �βn, if there exist �Un = (U1, . . . , Un)′, �Vn = (V1, . . . , Vn)′, Ann, and Bnn

in which {U1, . . . , Un} and {V1, . . . , Vn} are two series of i.i.d. random variables with �Xn = Ann
�Un, �Yn = Bnn

�Vn,
Ui �2 Vi for all i = 1, 2, ..., n such that

�β′
nBnn �M �α′

nAnn or �β′
nBnn

D→ �α′
nAnn ,

where �α′
nAnn, �β′

nBnn ∈ Sn, then

�α′
n

�Xn �2
�β′

n
�Yn and �β′

n
�Yn �2 �α′

n
�Xn

4. Discussions

In this section we will discuss briefly the importance and the use of the results developed in this paper.
Theorem 3.1 states that ranking multivariate prospects in the sense of multivariate ascending and descending
MSD is equivalent to the expected-utility maximization for risk averters and risk seekers, respectively. With this
establishment, if one would like to compare the preferences on different prospects for different types of investors,
it is not necessary to measure the utilities for different types of investors and analyze their expected utilities.
One only needs to find out the orders and the types of SD for different prospects. This information could then
enable us to draw conclusion on the preferences for different types of investors on the prospects. This is the

8We keep the condition
∑n

i=1 si = 1 in Sn for convenience. One could exclude this condition and relax it to be �1′n�αn = �1′n�βn.
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basic principle academics apply the SD theory to many areas like economics and finance. For example, Qiao
et al. [28] find that stocks SASD dominates futures and futures SDSD dominates stocks and conclude that risk
averters prefer to buy stocks, whereas risk seekers prefer long index futures. Recently, Davidson and Duclos [4]
and others develop test statistics for ASD while Bai et al. [1] extend their work by developing test statistics for
both ASD and DSD. The tests could be used to apply the theory of ASD and DSD to empirical issues.

Theorem 3.2 establishes the hierarchical relationship in ASD and DSD. This relationship is important because,
with the establishment of this theorem, only the lowest dominance order of SD is needed to be reported in
practice. On the other hand, Theorem 3.3 is important because it enables one to realize the DSD preferences of
prospects if their ASD preferences are known and vice versa. On the other hand, Theorem 3.4 tells us that the
“transitivity” property holds for MSD, and thus, investors only need to evaluate the set of the most efficient
ones and ignore the inefficient assets.

We call a person a ASD risk averter if his/her utility function belongs to UA
2 , and a SDSD risk seeker if

his/her utility function belongs to UD
2 . The other orders of ASD risk averter and DSD risk seeker can be defined

similarly. Applying Theorem 3.5 to Corollary 3.14, we could obtain several interesting properties. We state the
following two properties in this paper:

Property 4.1. For the portfolio of n vectors of i.i.d. prospects with n ≥ 2,

1. SASD risk averters will prefer to invest in the completely diversified portfolio than any partially diversified
portfolio, which, in turn, is preferred to any specialized asset; and

2. SDSD risk seekers will prefer to invest in any specialized asset than any partially diversified portfolio, which,
in turn, is preferred to the completely diversified portfolio.

Property 4.2. Between the two partially diversified portfolios �α′
n

�Xn and �β′
n
�Yn, if �βn majorizes �αn, or if the

conditions in Corollaries 3.13 and 3.14 are satisfied, then SASD risk averters prefer to invest in �α′
n

�Xn while
SDSD risk seekers prefer to invest in �β′

n
�Yn.

5. Concluding remarks

This paper develops some properties of the multivariate ASD and DSD for risk averters and risk seekers,
respectively, and discuss how to apply the results to investment decision-making. We remark that though we have
developed some MSD relationships when attributes are dependent but the dependent situations are restricted
to some special situations. Further research could extend the results to include more general situations. In
addition, it would be interesting to extend the theory developed in this paper for utility that is not additively or
separable. Further study could extend univariate SD theory to multivariate SD theory for other types of investors,
for example, S-shaped and reverse S-shaped investors. Readers may refer to, for example, [34], Egozcue, et al.
(2011), Clark, et al. (2015), and the references therein for more information on S-shaped and reverse S-shaped
investors.

At last, we note that the SD theory could be used to explain many financial anomalies. For example, Jegadeesh
and Titman [20] document a financial anomaly on momentum profit in stock markets that extreme movements
in stock prices will be followed by subsequent price movements in the same direction. In another words, former
winners are still winners and former losers are still losers. If investors know that past winners are still be winners
and past losers are still be losers, they would buy winners and sell losers. This will drive up the price of winners
relative to losers until the market price of winners relative to losers is high enough to make the momentum profit
disappear. However, after many years, many studies still find momentum profits empirically. We note that the
SD theory could explain this financial anomaly well. For example, extending the work of Fong [12], Sriboonchita
et al. [31] conclude that winners dominate losers in the sense of the second order ASD while losers dominate
winners in the sense of the second order DSD, inferring that risk averters will prefer to invest in winners whereas
risk seekers will prefer to invest in losers. This finding could explain why the momentum profit could still exist
after discovery. If the market do consists of both risk averters and risk seekers, risk averters prefer to invest in
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winners while risk seekers prefer to invest in losers. Thus, both risk averters and risk seekers would get what
they want in the market and will not drive up the price of winners or drive down the price of losers and thus
the momentum profit could still exist after discovery.

Dentcheva and Ruszczynski [6] consider stochastic optimization problem with multivariate stochastic domi-
nance constraints. They introduce the concept of positive linear multivariate stochastic dominance. They con-
sider linear scalarization with positive coefficients and apply a univariate SSD constraint to all nonnegative
weighted combinations of random outcomes. To be precise, two random vectors, X is said to dominate Y in
positive linear second order, written X �Plin

(2) Y , if cτX �(2) cτY for all c ∈ Rm
+ . Following this linear scalar-

ization idea, Homem-de-Mello and Mehrotra [17] further propose the polyhedral second order dominance by
allowing the set of scalarization coefficients to be an arbitrary polyhedron. Hu et al. [18] develop an even more
general concept of dominance by allowing arbitrary convex scalarization sets. These several interesting papers
all focus on optimization problem with multivariate stochastic dominance constraints, refining and extending
earlier results for optimization under univariate stochastic dominance constraints, see, for example, [5, 8] for
more information.
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