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OPTIMAL MANUFACTURING BATCH SIZE WITH REWORK
FOR A FINITE-HORIZON AND TIME-VARYING DEMAND RATES

INVENTORY MODEL ∗
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Abstract. This paper proposes a finite-horizon and time-varying demand rate function formulations
for the optimal manufacturing batch size model with rework. The basic model is found in [Jamal et al.
Comput. Ind. Eng. 47 (2004) 77–89.]. Two policies 1 and 2 are considered. In Policy 1 defective items
produced in a given period are remanufactured within the same period while Policy 2 accumulates
the defective items until the last period. The search for the optimal manufacturing batch size for
policies 1 and 2 is shown to reduce to the problem of determining the number of manufacturing-rework
periods as well as their starting and finishing times. This leads to the examination of two mixed
integer non-linear programming problem which are completely solved by appealing to some established
techniques proposed in [Al-Khamis et al. Int. J. Syst. Sci. 45 (2014) 2196–2202]. Numerical results are
also presented for illustration.
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1. Introduction

Producing imperfect quality items in a manufacturing process is inevitable due controllable and uncontrollable
factors. Driven by economic considerations, environmental awareness, and (or) or governmental legislations
imperfect quality items may be reworked to serviceable condition. The term rework refers to the repetition of
the production process to bring a product or service into conformance with its original requirements (see [8,9]).
Sarker et al. [21] cite the example of filing cabinet in the metal industries where shelves and defective filing
cabinets are reworked. Other examples may be found in semiconductor, automobile, pharmaceutical, and food
industries.

The work of Schrady [22] appears to be one the earliest work to focus on remanufacturing process with
constant demand and return rates (see also [16] for related work). Teunter [23] examined a more general problem
of Schrady by considering the numbers n1 of recovery lots (that are of equal size) and n2 of manufacturing lots
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of equal sizes, together with their respective quantities. In [23] only heuristics were proposed. Konstantaras and
Papachristos [14] proposed an exact procedure for finding the optimal values of n1 and n2 together with their
corresponding optimal quantities.

Jamal et al. [12] examined an (EPQ) model with imperfect items, where demand is constant. Optimal batch-
quantity were developed for a multi-stage manufacturing system for two operational policies: policies 1 and 2.
Policy 1 deals with the rework in the same cycle. The second policy considers rework after N cycles. Refinement
and extensions of Jamal et al. [12] are found in [5–7,21, 26]. Related work may also be found in [4, 24, 25].

In all the above cited papers the demand rate is assumed constant over time. Although, this assumption
may be considered to be reasonable for some products over a period of time, it cannot be seen to be a true
reflection of reality for a large number of product-demands. Particularly, for newly launched products, and
seasonal products. Therefore, the need to include time-varying demand in modeling arises.

This paper is concerned with the determination of optimal batch quantities in a manufacturing system with
an imperfect production process where the demand is time-varying and the planning horizon is finite for the
model of Jamal et al. [12]. Examination of time-varying demand with remanufactured items has been examined
in [18,19], where the planning horizon is made-up of regular production and remanufacturing runs. The objective
is the determination of the sequence as well as the timings of the production runs and remanufacturing runs that
minimizes some inventory costs. Modeling and numerical results are presented. Structural results for model [18]
are found in [2]. The extension of the work of Jamal et al. [12] to time-varying demand rate call for the
examination of classical optimal batching models for time-varying demand. The work of Hill [10], Hill et al. [11],
and Omar and Smith [17] are possibly one of the earliest model on the subject. Of particular relevance to the
present work is a general form of the inventory cost function within a cycle found in Omar and Smith [17].
These papers examined the optimal batching problem for linear demand rate function where numerical results
are presented. Rau and Ou Yang [20] proposed a complete solution procedure for the linear demand rate case.
Recently, Al-Khamis et al. [1] suggested a methodology for tackling finite-horizon batching inventory model for
general demand rate function. Crucial in the success of the methodology are a number of properties of the form
of the inventory cost function within a cycle found in [17]. This form, as we shall see, reappears in the extension
of the model of Jamal et al. [12] to time-varying demand rate models.

The main contributions of this paper are two fold:

(i) extend the model in [12] to finite planning horizon with time-varying demand rate,
(ii) to show that the optimal inventory policies within classes of policies 1 and 2 defined in [12] exist and are

unique under some technical requirements. A complete characterization of the policies will also be given.
This will be done by solving two mixed integer non-linear programming problems.

The remainder of the paper is organized as follows. The next section contains the notations and the assumptions.
Section 3 is concerned with Policy 1 where the model is introduced along with the derivation of the total inventory
costs and the optimal batching policy. Section 4 is related to Policy 2. Numerical examples as well as sensitivity
analysis are found in Section 5. Section 6 concludes the paper with some general remarks and a list of possible
extensions of the paper.

2. Assumptions and notation

The models considered in the following notation which are similar to those found in [12] with obvious modi-
fication when required.

2.1. Assumptions

(1) A single product inventory system is considered over a known and finite planning horizon.
(2) The demand rate is known and is given by a continuously differentiable function.
(3) All demands must be satisfied from good items.
(4) The proportion of defective items is known and is constant in each cycle.
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(5) The production rate is known and is constant in each cycle.
(6) No defective items are produced during the rework.
(7) The inspection cost is ignored.

Note that Assumptions (2)–(7) are reproduced from [21]. We shall comment briefly on the implication of relaxing
Assumption (7) later on.

2.2. Notations

Below are some of the main notations used in this paper:

• H : the total planning horizon, H > 0,
• D(t): demand rate at time t, where D : [0.H ] → R+, and belongs to the space of differentiable functions in

[0, H ],
• p : production rate, with p > 0,
• β : proportion of defective items in a stage (cycle), where 0 < β < 1, and (1 − β)p > D(t), for all t ∈ R+,
• cc : the unit production cost, cc > 0,
• ch : holding cost per item per unit time,
• cp : penalty cost per item per unit time, cp > 0,
• K : the set-up cost for a regular production run, K > 0,
• S : the set-up cost for a rework production run, S > 0.

Note that in this paper defective items are held in stock until they are reworked. The unit holding cost for such
item is cp. Also, the time is taken in unit of time (day or otherwise) and money in unit of money (dollars or
otherwise).

3. Policy 1: Rework within the same cycle

This model assumes that for a given planning horizon H , production is undertaken in stages and good items
produced are continuously shipped to a buyer. Each stage consists of a regular production run followed by a
rework production run. In the latter run defective items produced in the former run are reworked to quality as
good as new. For a typical stage (cycle) i which begins at time ti−1 and finishes at time ti (say): see Figure 1, a
regular production lasts from time ti−1 up to some time τi, ti−1 < τi < ti. During this run a number of defective
items are produced which are reworked from time τi to tpi , with τi < tpi < ti. On the interval [tpi , ti) production
is stopped and the inventory accumulated during the production runs is left to deplete until it reaches level zero
at ti, at which time a new production stage is triggered if ti < H . Otherwise, production is stopped. Let I(t)
be the inventory level of good items at time t, and set α := 1 − β. On the interval [ti−1, τi) the changes in the
inventory level is described by the differential equation:

I ′(t) = αp − D(t), (3.1)

with initial condition I(ti−1) = 0.
The solution to (3.1) is given by:

I(t) =
∫ t

ti−1

{αp − D(u)}du. (3.2)

Using integration by parts, the amount of inventory A1 on [ti−1, τi) is then:

A1 =
∫ τi

ti−1

(τi − t){αp − D(t)}dt. (3.3)

On the interval [τi, t
p
i ) the changes in the level of inventory is described by the equation:

I ′(t) = p − D(t), (3.4)
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Figure 1. The level of inventory of good items for a typical period i for Policy 1.

with initial condition

I(τi) =
∫ τi

ti−1

{αp − D(t)}dt. (3.5)

It follows that for τi ≤ t < tpi , I(t) is given by:

I(t) =
∫ t

τi

{p − D(u)}du +
∫ τi

ti−1

{αp − D(u)}du. (3.6)

The amount of inventory on the interval [τi, t
p
i ) can be shown to be:

A2 :=
∫ tp

i

τi

(tpi − t){p − D(t)}dt + (tpi − τi)
∫ τi

ti−1

{αp − D(t)}dt. (3.7)

For t ∈ [tpi , ti], the changes in I(t) is described by the differential equation

I ′(t) = −D(t), (3.8)

with boundary condition I(ti) = 0.
Therefore,

I(t) =
∫ ti

t

D(u)du, tpi ≤ t < ti. (3.9)

The amount of inventory on the interval [tpi , ti] is then

A3 :=
∫ ti

tp
i

(t − tpi )D(t)dt. (3.10)
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Our objective next is to express the total amount of the inventory A1 + A2 + A3 as a function of ti−1 and ti.
This as we shall see is key in the determination of an optimal inventory policy (to be defined below). Before we
proceed further note that

αp(τi − ti−1) + p(tpi − τi) =
∫ ti

ti−1

D(t)dt. (3.11)

Relation (3.11) means that amount of good items produced in stage i is consumed in that stage. Also, we have

p(τi − ti−1) =
∫ ti

ti−1

D(t)dt. (3.12)

It follows from (3.11) and (3.12) that

p(tpi − τi) = (1 − α)
∫ ti

ti−1

D(t)dt, (3.13)

and

τi = ti−1 +
1
p

∫ ti

ti−1

D(t)dt. (3.14)

Expressions (3.13) and (3.14) lead after some simple computation to:

tpi = ti−1 +
2 − α

p

∫ ti

ti−1

D(t)dt. (3.15)

Lemma 3.1. The total amount of inventory of good items A1 + A2 + A3 is given by

∫ ti

ti−1

(t − ti−1)D(t)dt − 1
2p′

{∫ ti

ti−1

D(t)dt

}2

, (3.16)

where
p′ =

p

1 + (1 − α)(2 − α)
· (3.17)

The proof of the lemma may be found in the appendix.

Remark 3.2. Note that (3.16) is a special case of the form

c1

{∫ ti

ti−1

D(t)dt

}2

+ c2

⎡
⎣∫ ti

ti−1

(t − ti−1)D(t)dt − 1
2z

{∫ ti

ti−1

D(t)dt

}2
⎤
⎦ , (3.18)

with c1 = 0, c2 = 1, and z = p′. This form is found in [1] and will be key in the determination of the optimal
inventory policy. Also, for t ∈ [0, H ]

p′ > D(t). (3.19)

It is easy to see that since αp > D(t) by assumption and 0 < α < 1, (3.19) is true if (1 − α)2 > 0, which
certainly holds.

The amount of inventory of defective items, in stage i, needing rework can be shown (see Fig. 2) to be:

1
2
(1 − α)(τi − ti−1)(t

p
i − ti−1)p =

(1 − α)(2 − α)
2p

{∫ ti

ti−1

D(t)dt

}2

. (3.20)
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Id(t) 

-p 

Figure 2. The level of inventory of defective items for Policy 1.

The last equality follows from (3.12) and (3.15). Moreover, the amount of defective items in a given cycle i can
be shown to be (1 − α)

∫ ti

ti−1
D(t)dt. Therefore, the total amount of defective items on the the whole planning

horizon is

(1 − α)
H∑

i=1

∫ ti

ti−1

D(t)dt,

which is equal to (1− α)
∫ H

0 D(t)dt and is constant. Hence, this term is dropped from any computations of the
overall inventory costs.

The total cost incurred in stage i is equal to:

set-up costs + holding costs + penalty costs + purchasing costs.

It follows from (3.16) and (3.20) that the total cost in cycle i is given by:

K + S + cc

∫ ti

ti−1

D(t)dt + cpL(ti−1, ti) + chQ(ti−1, ti), (3.21)

where

L(x, y) :=
(1 − α)(2 − α)

2p

{∫ y

x

D(t)dt

}2

, (3.22)

Q(x, y) :=
∫ x

x

(t − x)D(t)dt − 1
2p′

{∫ y

x

D(t)dt

}2

, (3.23)

with p′ given by (3.17).
An optimal inventory policy consists of determining the number of production stages and at each stage the

schedules of the regular production and the rework production. This reduces to considering the optimization
problem

P : min n(K + S) + cc

n∑
i=1

∫ ti

ti−1

D(t)dt +
n∑

i=1

{cpL(ti−1, ti) + chQ(ti−1, ti)} ,

subject to : t0 = 0 < t1 < . . . < tn = H , (3.24)
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where the decision variables are n and the vector (t1, . . . , tn), and L(ti−1, ti), and Q(ti−1, ti) are given respectively
by (3.22) and (3.23).

Remark 3.3. Note that once the starting and the finishing times of cycle i, say, are known, then so are τi (the
finishing time of a regular production and the starting time of the rework run) and tpi (the finishing time of the
rework run). These can be obtained from (3.14) and (3.15).

The next subsection contains the solution to Problem P.

3.1. Optimal inventory policy

This subsection contains the solution to Problem P. The mathematical foundations for solving P are found
in Benkherouf and Gilding [3] and Al-Khamis et al. [1].

Note first that objective function term

n∑
i=1

∫ ti

ti−1

D(t)dt =
∫ H

0

D(t)dt, (3.25)

is fixed and therefore will be dropped since it has no effect on the optimal solution. In this case P reduces to

P′ : min n(K + S) +
n∑

i=1

R(ti−1, ti), (3.26)

subject to : t0 = 0 < t1 < . . . < tn = H , (3.27)

with

R(x, y) = c1

{∫ y

x

D(t)dt

}2

+ c2Q(x, y), (3.28)

where c1 =
(1 − α)(2 − α)

2p
cp, c2 = ch, and Q(x, y) is given by (3.23).

Problem P′ belongs to a class of optimization problem of finite-horizon batching problem which was initiated
in [10] and examined by Hill, Omar and Smith [11] and Omar and Smith [17]. This problem was solved in [1].
We shall state the results pertaining to P′ without proof. Interested readers may consult [1].

Fix n and consider the problem of finding the minimum of the function

Vn(t1, . . . , tn) =
n∑

i=1

R(ti−1, ti), (3.29)

under constraints (3.27).
Let

r := 2c1 − c2

p
, (3.30)

F (x) :=
D′(x)

rD(x) + c2
· (3.31)

Theorem 3.4. If the demand rate is log-concave, and

(i) (r = 0), or
(ii) (r > 0), and F is non-increasing or
(iii) (r < 0), and F is non-decreasing, then the minimum of the function Vn(t1, . . . , tn) under constraint (3.27)

exist and is unique. Moreover, this minimum is the stationary point of the function Vn.
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Remark 3.5. Note that Theorem 3.4 implies that the solution of
∇Vn(t1, . . . , tn) = 0 gives the unique optimal solution of P′. In practice one can use any the available off the
shelve software or use the univariate line search method alluded to in [3] to find the stationary point.

Theorem 3.6. If vn refers to the optimal value function of the function Vn under the assumptions of the
Theorem 3.4, then vn is convex in n.

Theorem 3.7. If vn refers to the optimal value function of the function Vn under the assumptions of the
Theorem 3.4, then the optimal number of stages n∗ is prescribed by:

(i) if K + S > v1 − v2, then n∗ = 1,
(ii) if there exists N ≥ 2 such that vN−1 − vN > K + S > vN − vN+1, then n∗ = N ,
(iii) if there exists N ≥ 2 such that K + S = vN − vN+1, then n∗ = N , and n∗ = N + 1.

Remark 3.8. Note under the assumptions of Theorem 3.4 and if the demand rate D is monotonic then so are
the lengths of the stages.

4. Policy 2: N-cycle rework model

For an n-normal manufacturing run defective items produced are accumulated until the end of nth run. Stage
n + 1 is dedicated to the rework of these defective items: (see Figs. 3a and 3b). As a result Policy 2 may require
large storage space to implement and thus higher penalty costs. Here, a typical cycle i begins at time ti−1 and
ends at time ti. If i ≤ n, regular production lasts from time t i−1 to time tpi , tpi < ti. Production is then stopped
from time tpi to time ti. Defective items produced at this stage are accumulated until the rework stage, which
begins at time tn and finishes at time H.

Key relations for this model are:

tpi − ti−1 =
1
αp

∫ ti

ti−1

D(t)dt, (4.1)

and

tpi = ti−1 +
1
αp

∫ ti

ti−1

D(t)dt. (4.2)

Similar computations to those undertaken in Section 2 show that the amount of inventory in stage i ≤ n is
equal to:

W (ti, ti−1) :=
∫ ti

ti−1

(t − ti−1)D(t)dt − 1
2αp

{∫ ti

ti−1

D(t)dt

}2

. (4.3)

In this model defective items are stored in a warehouse until the start of the rework stage. Let h refers to the
starting time of the rework stage. The next result shows that if the planning horizon is known, then so is h.

Lemma 4.1. The starting time of the rework period is uniquely determined as a function of the planning
horizon.

Proof. For a given time span x of regular production, the amount of defective items produced is given by

(1 − α)
∫ x

0

D(t)dt. (4.4)

The fact that all defective items produced are reworked in the last period implies that

(1 − α)
∫ h

0

D(t)dt =
∫ H

h

D(t)dt. (4.5)
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Figure 3. The level of inventory for a typical period i for Policy 1. (a) The level of stock of
good items. (b) The level of stock of defective items.

This suggests examining the function

G(x) := (1 − α)
∫ x

0

D(t)dt −
∫ H

x

D(t)dt. (4.6)

The function G is strictly increasing in x with G(0) < 0, and G(H) > 0. Therefore, G(x) = 0 has a unique
solution on [0, H ]. This leads to the required result. �

We shall next turn our attention to the computation of the amount of inventory of defective items in a typical
stage i ≤ n (see Fig. 3b). This is equal to

B1
i + B2

i . (4.7)
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B1
i refers to the area of a rectangle with length (ti − ti−1) and width (1 − α)

∑i−1
j=1 p(tpj − tj−1). But by (4.1)

(1 − α)
i−1∑
j=1

p(tpj − tj−1) =
1 − α

α

i−1∑
j=1

∫ tj

tj−1

D(t)dt =
1 − α

α

∫ ti−1

0

D(t)dt. (4.8)

It follows that

B1
i =

1 − α

α
(ti − ti−1)

∫ ti−1

0

D(t)dt. (4.9)

Now (see Fig. 3b),

B2
i =

1
2
(1 − α)p(tpi − ti−1)2 + (1 − α)p(tpi − ti−1)(ti − tpi ). (4.10)

By virtue of (4.1) and (4.2)

B2
i = −

(
1 − α

2α2p

) {∫ ti

ti−1

D(t)dt

}2

+
(

1 − α

α

)
(ti − ti−1)

∫ ti

ti−1

D(t)dt. (4.11)

The total area (pertaining to the defective items) in stage i is then given by:

(
1 − α

α

) {
ti

∫ ti

0

D(t)dt − ti−1

∫ ti−1

0

D(t)dt

}

+
(

1 − α

α

) ⎡
⎣∫ ti

ti−1

(t − ti−1)D(t)dt − 1
2αp

{∫ ti

ti−1

D(t)dt

}2
⎤
⎦ −

(
1 − α

α

) ∫ ti

ti−1

tD(t)dt. (4.12)

Remark 4.2. The sum of the first line of expression (4.12) from stage 1 up to the beginning of the rework
stage is (

1 − α

α

)
h

∫ h

0

D(t)dt, (4.13)

which is fixed by Lemma 4.1. Similarly, the sums for the last term in (4.12) is

−
(

1 − α

α

) ∫ h

0

tD(t)dt, (4.14)

which is again fixed.

The cost in the last stage can be shown to be:

ch

⎧⎨
⎩

∫ H

h

(t − h)D(t)dt − 1
2p

{∫ H

h

D(t)dt

}2
⎫⎬
⎭ +

1
2
cp(1 − α)(tpn+1 − h)

∫ h

0

D(t)dt

= ch

⎧⎨
⎩

∫ H

h

(t − h)D(t)dt − 1
2p

{∫ H

h

D(t)dt

}2
⎫⎬
⎭ +

1
2p

cp

{∫ H

h

D(t)dt

}2

. (4.15)

Thus, the total inventory cost when n−regular production cycles are initiated:

set-up costs + holding costs + penalty costs + purchasing costs.
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nK + S +
n∑

i=1

{
ch +

(
1 − α

α

)
cp

}
W (ti−1, ti) + ch

⎧⎨
⎩

∫ H

h

(t − h)D(t)dt − 1
2p

{∫ H

h

D(t)dt

}2
⎫⎬
⎭

+
1
2p

cp

{∫ H

h

D(t)dt

}2

+
(

1 − α

α

)
cp

{
h

∫ h

0

D(t)dt −
∫ h

0

tD(t)dt

}
+ cc

∫ H

0

D(t)dt, (4.16)

where W (ti−1, ti) is given by (4.3). This is justified by (4.5) and

p(tpn+1 − h) =
∫ H

0

D(t)dt. (4.17)

As in Section 3 we drop the terms that are fixed (see Rem. 4.2). It follows that in order to determine the optimal
number of regular production stages as well as their starting times and finishing times, we need to solve the
following mixed integer non-linear programming problem:

D : min nK +
n∑

i=1

R̃(ti−1, ti),

subject to : t0 = 0 < t1 < . . . < tn = h, (4.18)

where

R̃(x, y) =
{

ch +
(

1 − α

α

)
cp

}
W (x, y), (4.19)

and the decision variables are n and (t1, . . . , tn−1).

4.1. Optimal inventory policy

Problem D is similar to Problem P of Section 3, and belongs to the class of problems treated in [1].
For fixed n, Problem D′ reduces to the consideration of the following nonlinear programming problem of

which the solution is given in Theorem 4.3 below.

D′ : min
n∑

i=1

R̃(ti−1, ti),

subject to : t0 = 0 < t1 < . . . < tn = h. (4.20)

Let

φ(x) = D(x) − D′(x)
αpD(x)

· (4.21)

The next result follows from [1].

Theorem 4.3. If the demand rate is log-concave and φ is a non-decreasing function on the interval [0, h], then
D′ has a unique solution. This solution is the stationary point of the objective function.

Note that if D is linear or exponential, then they are log-concave and φ is non-decreasing.
Write

Ṽn(t1, . . . , tn) =
n∑

i=1

R̃(ti−1, ti). (4.22)

Theorems 3.6, 3.7 and Remark 3.8 apply verbatim by taking Vn to be Ṽn and (S + K) to be K.
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5. Numerical experiments

This section is devoted to two sets of example: the linear and the exponential demand rates function. Both
demand rate function satisfy the hypotheses of Theorems 3.4 and 4.3, where r defined in (3.30) is strictly
negative. Also, cc is set to zero since it has no effect on the selection of the optimal inventory policies. The
numerical results below represent a sample of a much larger experiment.

Example 5.1. Let D(t) = a + bt, with a = 10, b = 10, H = 5, β = 0.05 (α = 0.95), ch = 10, cp = 12, K = 25,
S = 30, p = 100. The optimal times, number of stages, and costs for policies 1 and 2 are given in Table 1 below:
Note that in Policy 2, the last run is devoted to rework. Also, the sign(−) in the table means that no value is
assigned to the corresponding times in the row.

Table 1. The optimal inventory policy for the linear demand rate function.

Policy n∗ t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 TCn

1 7 0.874 1.639 2.347 3.025 3.685 4.341 5 − − − − 774.345
2 12 0.562 1.064 1.530 1.973 2.401 2.817 3.227 3.634 4.039 4.447 5 739.351

Policy 1 recommends 7 runs with a total cost of 774.345, while Policy 2 recommends 11 normal runs and 1
rework run with a total cost of 739.351. It is not surprising that Policy 2 does better than Policy 1 for some
parameters values of problem. However, it seems reasonable to expect that as the penalty cost cp increases,
Policy 1 will outperform Policy 2. In fact, there exists a threshold value for cp (c∗p) after which Policy 1 does
always better than Policy 2 (see Tab. 2):

Computations show that c∗p ≈ 14.32165.

Table 2. Sensitivity analysis with respect to cp.

cp 12 13 14 15 16 17 18
TCn : Policy 1 774.345 779.672 780.269 781.377 782.484 783.591 784.698
TCn : Policy 2 739.351 757.129 772.952 792.685 814.991 828.242 846.02

Table 2 reveals, that by taking the model with cp = 12 as a base model, the value of the optimal cost function
for Policy 2 is highly sensitive to changes in the penalty cost as compared to Policy 1. For example an increase
of around 33% in cp has an effect of 1% increase on the cost of Policy 1 and around 10% on Policy 2.

Table 3 contains the results sensitivity experiment analysis with respect to the set-up cost, S, for rework. It
is noticeable when S is small Policy 1 does better than Policy 2 but as S increases the balance shifts towards
Policy 2. Again, there is a critical value of the set-up cost S∗ ≈ 25 after which Policy 2 is the recommended
policy. It can also be deduced from the table that the optimal cost for Policy 1 is sensitive to changes in S,
whereas the optimal inventory policy for Policy 2 remains unchanged.

Table 3. Sensitivity analysis with respect to S.

S 0 10 20 30 40 50 60 70
TCn : Policy 1 477.388 601.093 685.31 774.345 865.31 917.21 968.941 1028.94
TCn : Policy 2 709.351 719.351 729.351 739.351 740.351 750.351 769.351 779.351

Tables 4 and 5 below present the results of sensitivity analysis with respect to β (the proportion of defective
items produced) and ch (the holding cost). The base model taken is that found in Table 1. Table 4 shows that
Policy 1 is not sensitive to changes in β. In fact an increase from 5% to 9% (a change of 80%) lead to an increase
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Table 4. Sensitivity analysis with respect to β.

β 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
TCn : Policy 1 772.295 772.793 773.300 773.818 774.345 774.881 775.427 775.983 776.548
TCn : Policy 2 538.990 621.210 661.273 698.921 739.351 778.700 818.265 858.053 898.07

Table 5. Sensitivity analysis with respect to ch.

ch 6 7 8 9 10 11 12 13 14
TCn : Policy 1 624.685 662.103 713.102 745.577 774.345 811.756 851.057 875.470 908.426
TCn : Policy 2 634.740 665.464 689.847 717.249 739.351 764.489 784.702 808.266 826.891

of less than 0.5% in the overall inventory costs. However, Policy 2 is sensitive to changes in β. For example
an increase of β from 5% to 9% lead to an increase of costs of around 21%. Moreover, Table 6 indicates that
Policies 1 and 2 are sensitive to changes in ch. For a change from 10% to 40% in ch, Policy 1’s costs varied from
approximately 4% to approximately 19 % while that of Policy 2 from 3% to 12%.

Example 5.2. Let D(t) = a exp(bt), with a = 1, b = 0.85, H = 5, β = 0.05 (α = 0.95), ch = 10, cp = 12,
K = 25, S = 30, p = 100. The optimal times, number of stages, and costs for policies 1 and 2 are given in
Table 6.

Table 6. The optimal inventory policy for the exponential demand rate function.

Policy n∗ t1 t2 t3 t4 t5 t6 t7 t8 TCn

1 6 1.599 2.621 3.375 3.982 4.508 5 − − 541.395
2 8 1.268 2.139 2.796 3.322 3.790 4.197 4.574 5 437.446

Policy 1 recommends 6 runs with a total cost of 541.395, while Policy 2 recommends 8 normal runs and 1
rework run with a total cost of 697.766, and hence the presence of the sign (−) for Policy 1. Here Policy 2
does better for this set of parameters. Also, similar computations to those undertaken for Example 5.1 can be
repeated here to get a value c∗p of cp where c∗p > 12 for which Policy 1 outperforms Policy 2 when cp < c∗p.
Likewise, there exists a value of S < 30 where Policy 1 again overtakes Policy 2. This is left for interested readers
to check. Finally, sensitivity analysis with respect to β and ch revealed similar behavior, as in Example 5.1, of
the total inventory costs.

6. Conclusions

This paper proposes a method for finding the optimal batch size for an inventory model with rework, time-
varying demand and finite planning horizon. Optimal inventory policies were developed under two operational
policies: in Policy 1 defective items are reworked within cycle while in Policy 2 defective items are reworked after
n cycles. The key in the derivation of the optimal policies is form (3.18) of the cost functions in policies 1 and 2.
Direct application of an earlier methodology in [1] leads to a complete characterization of the optimal policies.
Also, numerical experiments show that Policy 2 outperforms Policy 1 when the penalty cost is relatively small
or the set-up for rework is relatively large. Moreover, Policy 2 is sensitive to the set-up cost of rework unlike
Policy 1 which remains unchanged. Also, changes in the defect factor appears to have very little influence on the
overall costs for Policy 1, unlike that of Policy 2. However, both costs of policies 1 and 2 are slightly sensitive
to changes in the holding costs.

The model examined in this paper, although a simplification of reality, can provide inventory managers with
a mean of quantifying costs for time-varying demand inventory models with imperfect production. Insight can
also be gained from the optimal Policy suggested in this paper, which state that careful timing and schedule of
regular and rework runs could result in significant cost reduction.



186 L. BENKHEROUF AND M. OMAR

Possible extensions of the present paper may include:

(1) the possibility of variation of the defective rate β from cycle to cycle, throughout the planning horizon,
as in [21]. The form (3.18) will be a function of the a defective items which is cycle dependent. This will
not change fundamentally the problem as the general theory developed in [3] may be applied for this case.
Technical details remains to be worked out.

(2) the possibility of extension of the EPQ with production capacity limitation and breakdown as in [24].
(3) the possibility of variation within Policy 2 as discussed in Liu et al. [15]. Here, given n regular production

runs and m rework runs, it is desired to determine the sequence in which these runs are operated. Policy 2
is denoted as (n, 1) policy since it allows for n normal production run and one rework.

(4) deterioration of the product as in [27]. This will allow for extra flexibility in modeling items that may lose
quality over time. The form (3.18) for the present study will no longer be valid.

(5) inspection as in Ullah and Kang [25] or Konstantaras et al. [13]. In this case, form (3.18) of the total costs
is lost. It remains an open problem how the results of [1, 3] apply to this case.

(6) different detection scenarios of defective items. This is discussed in [4].

Appendix A. Proof of Lemma 1

Proof. Expressions (3.3), (3.7), and (3.10) show that A1 + A2 + A3 is equal to:

∫ τi

ti−1

(τi − t){αp − D(t)}dt +
∫ tp

i

τi

(tpi − t){p − D(t)}dt + (tpi − τi)
∫ τi

ti−1

{αp − D(t)}dt +
∫ ti

tp
i

(t − tpi )D(t)dt

= τi

∫ τi

ti−1

{αp − D(t)}dt −
∫ τi

ti−1

t{αp − D(t)}dt

+ tpi

∫ tp
i

τi

{p − D(t)}dt −
∫ tp

i

τi

t{p− D(t)}dt

+ tpi

∫ τi

ti−1

{αp − D(t)}dt − τi

∫ τi

tti−1

{αp − D(t)}dt

+
∫ ti

tp
i

tD(t)dt −
∫ ti

tp
i

tpi D(t)dt. (A.1)

Some algebra, using (A.1), lead to:

−αp

∫ τi

ti−1

tdt + tpi

{
p(tpi − τi) + αp(τi − ti−1) −

∫ ti

ti−1

D(t)dt

}
+

∫ ti

ti−1

tD(t)dt − p

∫ tp
i

τi

tdt.

Now (3.11) gives that A1 + A2 + A3 is equal to:

−αp

∫ τi

ti−1

tdt+
∫ ti

ti−1

tD(t)dt−p

∫ tp
i

τi

tdt = −1
2
αp(τi− ti−1)(τi + ti−1)− 1

2
p(tpi −τi)(t

p
i +τi)+

∫ ti

ti−1

D(t)dt. (A.2)

Expression (A.2) reduces, by (3.12), (3.14), and (3.15), to:

−1
2
α

{∫ ti

ti−1

D(t)dt

} {
2ti−1 +

1
p

∫ ti

ti−1

D(t)dt

}
− 1

2
(1 − α)

{∫ ti

ti−1

D(t)dt

} {
2τi +

1 − α

p

∫ ti

ti−1

D(t)dt

}

+
∫ ti

ti−1

tD(t)dt. (A.3)
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Again, after some algebra the above simplifies to:∫ ti

ti−1

(t − ti−1)D(t)dt − 1
2p

{1 + (1 − α)(2 − α)}
{∫ ti

ti−1

D(t)dt

}2

, (A.4)

which completes the proof. �
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