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A DESCENT HYBRID MODIFICATION OF THE POLAK–RIBIÈRE–POLYAK
CONJUGATE GRADIENT METHOD

Saman Babaie-Kafaki1 and Reza Ghanbari2

Abstract. Hybridizing self-adjusting approach of Dong et al. and three-term formulation of Zhang
et al., a nonlinear conjugate gradient method is proposed. The method reduces to the Polak–Ribière–
Polyak method under the exact line search and satisfies the sufficient descent condition independent of
the line search and the objective function convexity. Similar to the Polak–Ribière–Polyak method, the
method possesses an automatic restart feature which avoids jamming. Global convergence analyses are
conducted when the line search fulfills the popular Wolfe conditions as well as an Armijo-type condition.
Numerical experiments are done on a set of CUTEr unconstrained optimization test problems. Results
of comparisons show computational efficiency of the proposed method in the sense of Dolan–Moré
performance profile.
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1. Introduction

Optimization problems occur in most disciplines like engineering, physics, mathematics, economics, admin-
istration, commerce, social sciences, and even politics. As a topic of great significance in optimization and
nonlinear analysis, unconstrained optimization deals with the following problem:

min
x∈Rn

f(x), (1.1)

where f : R
n → R is called the objective function, here assumed to be continuously differentiable. Emphasizing

importance of unconstrained optimization, in a general strategy that has evolved in recent years, a constrained
optimization problem is reformulated as an unconstrained optimization problem, redefining the objective func-
tion such that the constraints are simultaneously satisfied when the objective function is minimized.

The most essential approach to optimization is based on computational methods in which iterative numerical
procedures are used to generate a series of progressively improved solutions to the problem, starting with an
initial estimate of the solution. The process is terminated when some convergence criteria are satisfied. Iterations
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of the line search–based numerical methods for solving (1.1) are in the following form:

x0 ∈ R
n, xk+1 = xk + αkdk, k = 0, 1, . . . , (1.2)

in which αk is a step length to be determined by a line search technique and dk is a descent search direction;
that is, dT

k gk < 0 in which gk = ∇f(xk) [19].
Among the iterative methods for solving large-scale cases of (1.1), conjugate gradient (CG) methods have

attracted especial attention since they require storage for only a few n-vectors. Search directions of the CG
methods are in the following form:

d0 = −g0, dk+1 = −gk+1 + βkdk, k = 0, 1, . . . , (1.3)

where βk is a scalar called the CG (update) parameter. Different CG methods mainly correspond to different
choices for βk [15].

As known, there exists a class of CG methods with an approximate restart feature which avoids jamming [15].
One of the efficient member of this class has been proposed by Polak, Ribière [17] and Polyak [18] (PRP), with
the following CG parameter:

βPRP
k =

gT
k+1yk

||gk||2 ,

where yk = gk+1 − gk, and ||.|| stands for the Euclidean norm. Note that if the iterations jam, then xk+1 −xk is
small. So, the factor yk in the numerator of βPRP

k tends to zero and consequently, βk becomes small. Therefore,
the search direction dk+1 tends to the steepest descent direction. This automatic restart feature is considerable
in the computational point of view. However, in theoretical point of view, it is remarkable that the PRP method
may fail to generate descent directions.

In a recent effort to achieve a descent version of the PRP method, based on the approach of [6] Babaie–Kafaki
and Ghanbari [4] proposed an extension of βPRP

k as follows:

βEPRP
k = βPRP

k − t
gT

k+1dk

||gk||2 , (1.4)

in which

t = p
||yk||2
||gk||2 + q

(
1
2

dT
k yk

||dk||||gk|| −
||gk||
||dk||

)2

,

with p >
1
4

and q ≥ −1. Note that if q = 0, then the method reduces to the DPRP method proposed by Yu

et al. [21] which satisfies the sufficient descent condition, i.e.,

gT
k dk ≤ −c||gk||2, ∀k ≥ 0, (1.5)

where c is a positive constant (see also [3,22]). In another attempt, Zhang et al. [23] (ZZL) proposed a three-term
CG method with the following search directions:

d0 = −g0, dZZL
k+1 = −gk+1 + βPRP

k dk − gT
k+1dk

||gk||2 yk, ∀k ≥ 0, (1.6)

satisfying the sufficient descent condition dT
k gk = −||gk||2, ∀k ≥ 0, independent of the line search and the

objective function convexity. Spectral PRP methods with sufficient descent property have been developed by
Andrei [1], Wan et al. [20], and Deng et al. [8]. Using the project of PRP search direction, Cheng [5] dealt with
a modified PRP method which satisfies (1.5).

Here, we deal with another extension of the PRP method with sufficient descent property, hybridizing self-
adjusting approach of Dong et al. [11] and three-term formulation of Zhang et al. [23]. The remainder of this
work is organized as follows. In Section 2, the method is proposed and its global convergence is discussed.
Numerical experiments are done in Section 3 and conclusions are drawn in Section 4.
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2. A modified Polak–Ribière–Polyak method

In a recent attempt to make a modification on the Hestenes–Stiefel [16] (HS) method in order to achieve the
descent property, Dong et al. [11] proposed the following CG parameter:

βCHS
k =

gT
k+1yk

dT
k yk︸ ︷︷ ︸

βHS
k

−t
max{gT

k+1dk, 0}
(dT

k yk)2

(
gT

k+1yk

||gk+1||

)2

,

where t is a real parameter in (
1
4
, +∞). It can be seen that the CHS search directions satisfy the descent

condition when gT
k+1yk ≥ 0. In [11] an adaptive version of CHS has been proposed which fulfills the sufficient

descent condition (see also [2,10,12] and the references therein to learn more about the recent extensions of the
HS method with sufficient descent property).

Here, considering similarity between βHS
k and βPRP

k , we suggest the following modification on βPRP
k :

βCPRP
k = βPRP

k − t
max{gT

k+1dk, 0}
||gk||4

(
gT

k+1yk

||gk+1||

)2

, (2.1)

with t ∈ (
1
4
, +∞). So, defining dCPRP

k+1 = −gk+1 + βCPRP
k dk, we get

dCPRP T

k+1 gk+1 = −||gk+1||2 +
gT

k+1yk

||gk||2 gT
k+1dk

− t
max{gT

k+1dk, 0}
||gk||4

(
gT

k+1yk

||gk+1||

)2

gT
k+1dk.

Now, assume that gT
k+1yk ≥ 0. If gT

k+1dk ≤ 0, then we have

dCPRP T

k+1 gk+1 ≤ −||gk+1||2. (2.2)

On the other hand, if gT
k+1dk > 0, then we have

dCPRP T

k+1 gk+1 = −||gk+1||2

+ ||gk+1||2
(

(gT
k+1yk)(gT

k+1dk)
||gk||2||gk+1||2 − t

(gT
k+1yk)2(gT

k+1dk)2

||gk||4||gk+1||4
)

. (2.3)

Note that for any real constant ξ we have

ξ − ξ2t ≤ 1
4t

.

Thus, from (2.3) we get

dCPRP T

k+1 gk+1 ≤ −
(

1 − 1
4t

)
||gk+1||2. (2.4)

So, from (2.2) and (2.4), if gT
k+1yk ≥ 0, then CPRP satisfies the descent condition (2.4). However, when

gT
k+1yk < 0, CPRP fails to guarantee the descent property. In such situation, we switch from dCPRP

k+1 to dZZL
k+1

given by (1.6) which satisfies the sufficient descent condition dZZLT

k+1 gk+1 = −||gk+1||2. So, based on this hybrid
scheme, we propose a class of one–parameter nonlinear CG methods with the following search directions:

d0 = −g0, dHCPRP
k+1 =

{
dCPRP

k+1 , gT
k+1yk ≥ 0,

dZZL
k+1 , gT

k+1yk < 0,
(2.5)
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with t ∈ (
1
4
, +∞) in (2.1). The following theorem is now immediate.

Theorem 2.1. For the HCPRP method, if t ≥ t̄ in which t̄ >
1
4

is a real constant, then the sufficient descent

condition (1.5) holds with c = 1 − 1
4t̄

.

Although search directions of other extended PRP methods which satisfy the sufficient descent condition
can be used instead of dZZL

k+1 in (2.5), our numerical experiments showed that hybridizing the CPRP and ZZL
methods seem to be reasonable in computational pint of view. When the line search is exact, since we have
gT

k+1dk = 0, the HCPRP method reduces to the PRP method. Also, it can be seen that HCPRP inherits the
automatic restart feature from the PRP method. So, in practical computations jamming does not occur for the
HCPRP method. In what follows, we deal with global convergence of the HCPRP method under the Wolfe line
search conditions, i.e.,

f(xk + αkdk) − f(xk) ≤ δαk∇f(xk)T dk, (2.6)

∇f(xk + αkdk)T dk ≥ σ∇f(xk)T dk, (2.7)

where 0 < δ < σ < 1 [19], being popular in convergence analysis and implementation of the CG methods [7].
The following basic assumptions are now needed [22].

Assumption 2.2.

(1) The level set Ω = {x ∈ R
n| f(x) ≤ f(x0)} is bounded, where x0 is a given starting point. That is, there

exists a positive constant B such that
||x|| ≤ B, ∀x ∈ Ω. (2.8)

(2) In an open convex set Ω0 that contains Ω, f has a lower bound and its gradient is Lipschitz continuous;
namely, there exists a positive constant L such that

||∇f(x) −∇f(y)|| ≤ L||x − y||, ∀x, y ∈ Ω0. (2.9)

The following global convergence theorem can be established similar to Theorem 3.2 of [22]. So, the proof is
omitted.

Theorem 2.3. Suppose that Assumption 2.2 holds. Consider the HCPRP method in which t ≥ t̄ with the

constant t̄ >
1
4
, and the step length αk is determined such that the Wolfe conditions (2.6) and (2.7) are

satisfied. If there exists a positive constant α∗ such that αk ≥ α∗, ∀k ≥ 0, then lim
k→∞

||gk|| = 0.

Next, we deal with global convergence of the HCPRP method under the following Armijo-type line search
strategy proposed in [23].

Line search 2.4. Choose the constants ρ and δ in the interval (0, 1). Compute the step length αk =
max{ρj, j = 0, 1, . . .}, satisfying the following condition:

f(xk + αkdk) ≤ f(xk) − δα2
k||dk||2. (2.10)

Assumption 2.2 implies that there exists a positive constant γ such that

||∇f(x)|| ≤ γ, ∀x ∈ Ω. (2.11)
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The line search condition (2.10) ensures that {xk}k≥0 ⊂ Ω and the sequence {f(xk)}k≥0 is decreasing. More-
over, from Assumption 2.2, the sequence {f(xk)}k≥0 is bounded below and hence, it is convergent. Therefore,
from (2.10) we get ∑

k≥0

α2
k||dk||2 < ∞,

which yields
lim

k→∞
αk||dk|| = 0. (2.12)

In what follows, we assume that there exists a positive constant Γ such that

max{gT
k+1dk, 0} ≤ Γ, ∀k ≥ 0. (2.13)

Considering the exact line search, if αk is near to the optimal step length, then inequality (2.13) may be satisfied
for the enough large values of Γ . The following lemma plays an essential role in our analyses.

Lemma 2.5. For the HCPRP method, suppose that Assumption 2.2 holds, t ≥ t̄ with the constant t̄ >
1
4
,

inequality (2.13) is satisfied, and the step length αk is determined using Line search 2.4. If there exists a
positive constant ε such that

||gk|| ≥ ε, ∀k ≥ 0, (2.14)

then there exists a positive constant M such that

||dk|| ≤ M, ∀k ≥ 0.

Proof. From Cauchy–Schwarz inequality, (1.6), (2.9), (2.11) and (2.14) we have

||dZZL
k+1 || ≤ ||gk+1|| +

|gT
k+1yk|
||gk||2 ||dk|| +

|gT
k+1dk|
||gk||2 ||yk||

≤ ||gk+1|| + 2
||gk+1|| ||yk|| ||dk||

||gk||2 ≤ γ + 2
Lγαk||dk||

ε2
||dk||. (2.15)

In addition, from (2.8) and (2.13) we get

||dCPRP
k+1 || ≤ ||gk+1|| +

|gT
k+1yk|
||gk||2 ||dk|| + t

max{gT
k+1dk, 0}

||gk||4
(gT

k+1yk)2

||gk+1||2 ||dk||

≤ ||gk+1|| + Lγαk||dk||
ε2

||dk|| + t
2ΓL2Bαk||dk||

ε4
||dk||. (2.16)

Now, from (2.5), (2.15) and (2.16) we have

||dHCPRP
k+1 || ≤ γ +

(
2
Lγ

ε2
+ t

2ΓL2B

ε4

)
(αk||dk||)||dk||.

Considering (2.12), there exists a constant r ∈ (0, 1) and a large enough integer k0 such that(
2
Lγ

ε2
+ t

2ΓL2B

ε4

)
αk||dk|| ≤ r, ∀k ≥ k0.

Hence, for any k > k0 we have

||dHCPRP
k+1 || ≤ γ + r||dk||

≤ γ(1 + r + r2 + . . . + rk−k0 ) + rk−k0+1||dk0 ||
≤ γ

1 − r
+ ||dk0 ||.
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So, if we let
M = max{||d0||, ||d1||, . . . , ||dk0−1||, γ

1 − r
+ ||dk0 ||},

then the proof is complete. �

Now, the following global convergence theorem can be established for HCPRP, similar to the proof of Theo-
rem 3.2 of [23].

Theorem 2.6. For the HCPRP method, if Assumption 2.2 holds, t ≥ t̄ with the constant t̄ >
1
4
, inequal-

ity (2.13) is satisfied, and the step length αk is determined using Line search 2.4, then

lim inf
k→∞

||gk|| = 0. (2.17)

Proof. If lim inf
k→∞

αk > 0, then Theorem 2.1, (2.11) and (2.12) lead to (2.17). Assume that lim inf
k→∞

αk = 0. That

is, there exists an infinite index set K such that

lim
k∈K, k→∞

αk = 0. (2.18)

So, considering Line search 2.4, for enough large values k ∈ K, ρ−1αk does not satisfy (2.10), i.e.,

f(xk + ρ−1αkdk) − f(xk) > −δρ−2α2
k||dk||2. (2.19)

Also, from the mean-value theorem, for some ζ ∈ (0, 1) we can write

f(xk + ρ−1αkdk) − f(xk) = ρ−1αk∇f(xk + ζρ−1αkdk)T dk,

which by considering Theorem 2.1 and inequalities (1.5) and (2.9) we get

f(xk + ρ−1αkdk) − f(xk) = ρ−1αkgT
k dk + ρ−1αk(∇f(xk + ζρ−1αkdk) − gk)T dk

≤ −cρ−1αk||gk||2 + Lρ−2α2
k||dk||2. (2.20)

So, from (2.19) and (2.20) we get

||gk||2 ≤ L + δ

c
ρ−1αk||dk||2. (2.21)

Now, if (2.17) does not hold, then there exists a positive constant ε such that (2.14) holds. Therefore, from
Lemma 2.5, ||dk|| is bounded above and as a result, (2.21) leads to a contradiction with (2.18). So, the proof is
complete. �

3. Numerical experiments

Here, we present some numerical results obtained by applying C++ implementations of the HCPRP and
ZZL methods, and also, the DPRP method proposed by Yu et al. [21] in which, as mentioned in Section 1, the
CG parameter is computed by (1.4) with

t = μ
||yk||2
||gk||2 , (3.1)

where μ >
1
4

is a real constant. The codes were run on a PC with 3.6 GHz Intel I7–4790 of CPU, 4 GB of
RAM and Centos 6.2 server Linux operation system. Since CG methods are appropriate for solving large-scale
problems, the experiments were performed on a set of 64 unconstrained optimization test problems of the
CUTEr collection [13] with default dimensions being at least equal to 1000, as specified in [4].
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Figure 1. Total number of function and gradient evaluations performance profiles.

Figure 2. CPU time performance profiles.

For the HCPRP method, we set t = 1.0 because of promising numerical results obtained among the different
values t ∈ {0.1k}20

k=3. Also, for the DPRP method we set μ = 0.5 in (3.1), as suggested in [21]. We used the
effective approximate Wolfe conditions proposed by Hager and Zhang [14] in the line search procedure, with the
same parameter values as specified in [14]. Moreover, all attempts to solve the test problems were terminated
when ||gk||∞ < 10−6(1 + |f(xk)|).

Efficiency comparisons were made using the Dolan–Moré performance profile [9] on the running time and the
total number of function and gradient evaluations being equal to Nf +3Ng, where Nf and Ng respectively denote
the number of function and gradient evaluations. Performance profile gives, for every ω ≥ 1, the proportion
p(ω) of the test problems that each considered algorithmic variant has a performance within a factor of ω of
the best. Figures 1 and 2 show the results of comparisons. As the figures show, HCPRP is preferable to ZZL
and DPRP both in the perspectives of the total number of function and gradient evaluations, and the running
time. Thus, our hybridization scheme seem to be practically effective. It is interesting that averagely in 83.39%
of the iterations search directions of the HCPRP method is equal to search directions of the CPRP method.
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The figures also show that DPRP is generally preferable to ZZL, especially with respect to the total number of
function and gradient evaluations.

4. Conclusions

Based on a recent modification of the Hestenes–Stiefel conjugate gradient method made by Dong et al., a
modified Polak–Ribière–Polyak method, namely HCPRP, has been proposed. The method can also be considered
as an adaptive version of the three-term conjugate gradient method proposed by Zhang et al. which retains the
sufficient descent property without convexity assumption on the objective function. A brief global convergence
analysis has been made when the line search fulfills the Wolfe conditions. Also, the method has been shown to
be globally convergent under an Armijo-type line search condition. Preliminary numerical results showed that
the method is computationally promising.
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