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ANALYSIS OF D-POLICY DISCRETE-TIME GEO/G/1 QUEUE WITH SECOND
J -OPTIONAL SERVICE AND UNRELIABLE SERVER ∗

Shaojun Lan
1

and Yinghui Tang
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Abstract. This paper is concerned with a discrete-time Geo/G/1 queueing system with D-policy and
J-optional services in which the service station may be subject to failures at random during serving
the customers. All the arriving customers require the first essential service, whereas some of them
may opt for a second service from the J additional services with some probability. As soon as the
system becomes empty, the server will not restart the service until the sum of the service times of
the waiting customers in the system reaches or exceeds some given positive integer D. Applying the
total probability decomposition law, renewal theory, and probability generating function technique,
the queueing indices and reliability measures are investigated simultaneously in our work. Both the
probability generating function of the transient queue length distribution and the explicit formulas of
the steady-state queue length distribution at time epoch n+ are derived. Meanwhile, the stochastic
decomposition property is presented for the proposed model. Various reliability indices, including the
transient and steady-state unavailability, the expected number of breakdowns during (0+, n+], and the
equilibrium failure frequency, are discussed. Finally, the optimum value of D for minimizing the system
cost is numerically discussed under a given cost structure.
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1. Introduction

With the fast development of information era, there has been an increasing interest in investigating discrete-
time queueing theory during the last few decades. Actually, since the digital computer and communication
systems, such as broadband integrated services digital network (BISDN), time division multiple access (TDMA)
and asynchronous transfer mode (ATM), operate on a discrete-time basis where the events (arrival of packets and
their forward transmissions) can only occur at regularly spaced epochs, discrete-time queues are more suitable
than their continuous-time counterparts for characterizing the behaviors of data communication and computer
networks, which has become a powerful inducement to the research of discrete-time queueing theory. More
comprehensive discussions and applications in the field of discrete-time queue can be found in the monographs
by Hunter [8], Bruneel and Kim [3], and Woodward [25].
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In recent years, considerable attention has been paid to the study of queueing systems in which the server can
provide the second optional service for the customers since the seminal paper was written by Madan [16]. The
queueing situations incorporating the second optional service occur in many real service systems. For example,
at a barber’s shop all arriving customers may require a hair-cut but only some of them may further demand a
shave after their hair-cut. In Madan [16], the first regular service time is assumed to be generally distributed,
while the second optional service time is governed by an exponential distribution. Later, as a generalization of
Madan [16], several researchers have extensively investigated the related topic concerning additional optional
service and interested readers may refer to Atencia and Moreno [1], Wang and Zhao [19], Zhang and Zhu [26], and
references therein. All the aforementioned papers suppose that the server provides two-phase optional service.
However, in the real world we often encounter various situations where the servers may provide multiple optional
services for all the units. Taking bank services as an example, a client may require some different types of services
like opening an account, deposits or withdrawals, checking account balance, credit transfer, and so forth. The
queueing models with multi-optional services not only improve the quality of the service and the satisfaction
of customers, but also increase the economic benefits of system. Li and Wang [14] studied an M/G/1 retrial
queue with feedback in which the server can provide the second multi-optional service for customers and the
service station is unreliable. The various steady-state solutions for queueing measures and reliability indices are
obtained by supplementary variable method. Ke [12] obtained some stationary results for an M [X]/G/1 queueing
model with startup time and J additional options for service. Jain and Upadhyaya [9] examined a batch arrival
queue with N -policy and Bernoulli vacation where the server may be subject to breakdowns during customer’s
service and the customers can demand for a second multi-optional service with some probability. Kumar [13]
investigated a discrete-time GeoX/G/1 retrial queue wherein all the arriving customer require the first essential
service and only a part of them may opt for one of other M -optional services. Some main performance measures
were derived and the sensitivity analysis for several system characteristics is conducted by some numerical
experiments. Recently, Jain et al. [10] provided an extensive analysis for an unreliable queueing system with
multi-optional services and multi-optional vacations.

On the other hand, in many real life scenarios such as computer and communication networks, flexible
manufacturing system, transportation system and production system, we often meet the case that the service
station may fail more or less frequently when rendering service to the customers. The breakdowns of service
facilities will result in a temporarily unavailable period of systems and therefore the performances of the systems
will be heavily affected. In this context, the research of repairable queueing system is well worth doing from
the viewpoint of queueing and reliability theory. In the recent past, remarkable contributions considering the
unreliable queueing systems have been made by many authors, such as Atencia and Moreno [2], Tang et al. [17],
Wang and Zhang [18], Lin and Ke [15], Gao et al. [7], Wang et al. [22], Gao and Liu [6], Wang [21].

In the present paper, we propose to investigate a discrete-time Geo/G/1 queueing model with J additional
options for service and unreliable server, where the system operates under the control of D-policy, i.e., the
system is turned off once the customers in the system are served exhaustively and is turned on when the sum
of the service times of all waiting customers exceeds a predetermined positive integer D. To the best of our
knowledge, there is no research work on the proposed model. Our study generalizes the discrete time version of
Choudhury [5] and Wang et al. [20] by assuming that the server can provide J-optional services and the service
station may break down randomly. Employing the total probability decomposition law, renewal theory and
probability generating function technique, we first discuss the queueing characteristics including the solutions
for the transient queue size distribution and the explicit formulas of the stationary queue length distribution
at time epoch n+. Then, some reliability measures such as the unavailability of service station, the expected
number of system failures during time interval (0+, n+], the steady-state breakdown frequency of service station
are derived. Further, in order to save the operating cost, we develop a long-run expected cost function per unit
time to discuss the optimum value of D and some numerical experiments are provided to illustrate the effect
of different system parameters and cost elements on the optimum value D∗ and the corresponding minimum
expected cost per unit time.
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The incorporation of J-optional services, unreliable service station and D-policy is not only a generalization in
mathematics, but also makes our model closer to real-world situations. A practical justification of the considered
model is the following pump manufacturing system based on the work of Ke [12]. A pump manufacturing industry
manufactures diverse types of pumps that require shafts of various dimensions. The shafts arrive at the Computer
Numerical Control (CNC) copy turning center according to a Bernoulli process. When the total workload of the
arriving shafts exceeds a given value D, the CNC machine commences the copy turning process. Some processed
shafts may be defective and need to be further processed to meet the required standard. The CNC machine
may break down at random and can be repaired. In this situation, the CNC machine, the workload D, the
reprocessing of the defective shafts and the failures of CNC machine are corresponding to the server, D-policy,
optional service and unreliable server, respectively, in the queueing terminology.

The remainder of this paper is structured as follows. In the following section, the considered mathematical
model is formulated and some preliminaries are presented. Section 3 analyzes some queueing characteristics
including the transient-state queue length distribution at arbitrary epoch n+, the steady-state queue size dis-
tribution, and the mean of stationary queue length. In Section 4, some reliability indices of the service station
are obtained. Moreover, in Section 5, we develop a long-run expected cost function per unit time to study
numerically the optimal value for minimizing the system cost. At last, some conclusions are drawn in Section 6.

2. Model formulation and some preliminaries

We deal with a discrete-time Geo/G/1 queueing system with D-policy and second J-optional service in which
the service station is unreliable. Different from the continuous-time queue, all the queueing activities (arrivals,
departures and repairs), in discrete time queue, are nonnegative integer-valued random variables. The time axis is
slotted into equal time intervals and the time axis is marked with 0, 1, 2, . . . , n . . . All the arrivals and departures
only happen at boundary epochs of time slots in discrete-time case. In view of this fact, one arrival and one
departure may take place simultaneously within a slot. So, it is necessary to stipulate the order of arrivals and
departures. Generally speaking, there are two types of discrete-time models, namely, the early arrival system
(EAS) and the late arrival system (LAS). And the late arrival system (LAS) can further be subdivided into
late arrival system with delayed access (LAS-DA) and late arrival system with immediate access (LAS-IA).
More details regarding these concepts can be referred to Hunter [8]. In the present research, we consider the late
arrival system with delayed access (LAS-DA), that is, the arrivals and the breakdowns take place within (n−, n),
n = 0, 1, 2, . . ., and the departures and the completion of the repairs occur within (n, n+), n = 1, 2, . . . Moreover,
we assume that there is no customer arrival within (0−, 0) and no departure within (0, 0+). To make it clearer,
the various time epochs at which queueing events occur are displayed in Figure 1. The detailed mathematical
model is described as follows.
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Figure 1. Various time epochs in a late arrival system with delayed access (LAS-DA).
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Assumption 1. Arrival process: The customers’ inter-arrival times {τk, k ≥ 1} are independent and identi-
cally distributed (i.i.d.) discrete-time random variables with the same geometrical distribution P {τk = j} =
λ (1 − λ)j−1, j = 1, 2, . . ., 0 < λ < 1. That is to say, a customer arrives with probability λ, and no customer
arrives with probability 1 − λ in every time interval (n−, n) , n = 1, 2, . . .

Assumption 2. Service process: There is only one service station in the system and the customers are served
one by one according to the first-come-first-served (FCFS) discipline. The server renders the first essential service
(FES) to all the arriving customers. The service times of FES, denoted by {χ(0)

k , k ≥ 1}, are i.i.d. discrete-time
random variables and arbitrarily distributed with the probability mass function (p.m.f.) P{χ(0)

k = j} = g
(0)
j ,

j ≥ 1, and probability generating function (p.g.f.) G0(z) =
∑∞

j=1 g
(0)
j zj , |z| < 1. The expected value of service

time is μ0 (1 ≤ μ0 < ∞) and the second moment E[(χ(0)
k )2] is finite. After the FES of a customer is completed,

the customer may opt for the ith (1 ≤ i ≤ J) type of second J-optional service with probability θi, in which
scenario the ith type service of the customer starts at once, or may leave the system forever with complementary
probability θ0 (i.e., θ0 = 1 − ∑J

i=1 θi), in which scenario the next customer (if any) will be served with FES.
The service times of the ith type of J additional services, designated by {χ(i)

k , k ≥ 1}, are i.i.d. with common
distribution P{χ(i)

k = j} = g
(i)
j , p.g.f. Gi(z) =

∑∞
j=1 g

(i)
j zj, |z| < 1, and finite mean μi and the second moment

E[(χ(i)
k )2].

Assumption 3. Control policy: Once all the customers in the queue are processed exhaustively, the server
remains in the system. When the total first essential service times of waiting customers is no less than a given
positive integer D, the server resumes its service immediately until the system empties again.

Assumption 4. Unreliable service station: When a customer is being served with any type service (FES or
second J-optional service), the service station may break down at random. The lifetime of service station,
denoted by X , is assumed to be geometrically distributed with parameter α, which means that a breakdown
probably occurs with probability α in a slot. The failures only take place in server’s busy state. As soon as the
service station fails, it is urgently sent to fix at a repair facility and the customer just being served before server
failure has to wait until the server is repaired. The repair time, denoted by R, follows a general distribution
with p.m.f. P {R = j} = rj , j = 0, 1, . . ., p.g.f. R (z) =

∑∞
j=0 rjz

j and finite mean β. It is supposed that
after repairing, the server functions as well as before the breakdown, and the remaining service of interrupted
customer will go on (i.e., the customer’s service time is cumulative). Also, we assume that the service station
is new at initial time n+ = 0+.

Assumption 5. As usual, we assume that various random variables involved in the system are mutually inde-
pendent of each other. It is also supposed that the server will stay standby and wait for the first arrival if there
is no customer at initial time n+ = 0+. After the first busy period, the system begins to take the D-policy.

For later discussions, we first present some preliminaries as follows.

Definition 2.1. “System idle period” is the time length from the instant when the system becomes empty
until the instant when the first customer arrives. Let τ̃k (k = 1, 2, . . .) be the kth system idle period. Thus,
τ̃k are independent mutually and satisfy the same geometric distribution with parameter λ (i.e., P {τ̃k = j} =
λ (1 − λ)j−1, j ≥ 1) due to the Markov property.

Definition 2.2. “Server idle period” commences when the system is completely empty and finishes when server
begins to deal with the waiting customers.

Definition 2.3. “Generalized service time” is the time length between the time when the service of a customer
commences and the time when the service of the customer is completed, which may contain some repair times
of the service station owing to its failures during the service period of the customer.



ANALYSIS OF D-POLICY DISCRETE-TIME GEO/G/1 QUEUE 105

Denote by χ̃(0) and χ̃(i) (i = 1, 2, . . .) the generalized service time of a customer in FES and the ith type service
of second J-optional service, respectively. For j ≥ 1, i ≥ 1, let g̃

(0)
j = P

{
χ̃(0) = j

}
be the distribution function

of generalized service time in FES and g̃
(i)
j = P

{
χ̃(i) = j

}
be the distribution function of generalized service

time in the ith type service of second J-optional service, respectively. Thus, from Tang et al. [17], we have

g̃
(0)
j = P

{
χ̃(0) = j

}

=
j∑

l=1

P
{
χ(0) = l

} l∑
k=0

P

{
k∑

s=1

Rs = j − l

}(
l
k

)
αk (1 − α)l−k

, (2.1)

g̃
(i)
j = P

{
χ̃(i) = j

}

=
j∑

l=1

P
{
χ(i) = l

} l∑
k=0

P

{
k∑

s=1

Rs = j − l

}(
l
k

)
αk (1 − α)l−k , i ≥ 1, (2.2)

where Rs represents the sth repair time. For |z| < 1, the probability generating functions of χ̃(0) and χ̃(i) are
given respectively by

G̃0 (z) =
∞∑

j=1

g̃
(0)
j zj = G0 (αzR (z) + z (1 − α)) (2.3)

and

G̃i (z) =
∞∑

j=1

g̃
(i)
j zj = Gi (αzR (z) + z (1 − α)) . (2.4)

The respective expected values of χ̃(0) and χ̃(i) are

E
[
χ̃(0)

]
=

d
dz

G̃0 (z) |z=1 = μ0 (1 + αβ) (2.5)

and

E
[
χ̃(i)

]
=

d
dz

G̃i (z) |z=1 = μi (1 + αβ) . (2.6)

Definition 2.4. “Total generalized service time” is the time length from the time when the service of a customer
begins until the time when the customer is served completely and leaves the system, which consists of the FES,
the probable second J-optional service and the potential repair times due to server breakdowns during every
service.

Let χ̂ be the total generalized service time of a customer and ĝj = P {χ̂ = j} be the corresponding p.m.f..
According to the model assumptions, we can get

χ̂ = θ0χ̃
(0) + θ1

(
χ̃(0) + χ̃(1)

)
+ θ2

(
χ̃(0) + χ̃(2)

)
+ . . . + θJ

(
χ̃(0) + χ̃(J)

)
.

Thus,

ĝj = P {χ̂ = j} = θ0P
{
χ̃(0) = j

}
+

J∑
i=1

θiP
{
χ̃(0) + χ̃(i) = j

}
, j ≥ 1. (2.7)



106 S. LAN AND Y. TANG

From the above equation, the p.g.f. of χ̂ is given by

Ĝ (z) =
∑∞

j=1
ĝjz

j = θ0G̃0 (z) +
J∑

i=1

θiG̃i (z)G̃0 (z) , |z| < 1, (2.8)

which implies that the mean of total generalized service time χ̂ is

E [χ̂] =

(
μ0 +

J∑
i=1

θiμi

)
(1 + αβ) . (2.9)

Definition 2.5. “Generalized busy period” denotes the time interval between the time when the server begins
to serve customers and the moment when the system becomes idle again.

Denote by b the length of the server’s generalized busy period initiated with only one customer. Then, similar
to the analysis in Bruneel and Kim [3], we have lemma as follows.

Lemma 2.6. Let B (z) =
∑∞

j=1 P {b = j} zj be the p.g.f. of b. For |z| < 1, B (z) is the root of the equation
B (z) = Ĝ

((
λ̄ + λB (z)

)
z
)
, and the mean value is given by

E [b] =
{ ρ

λ(1−ρ) , ρ < 1,

∞, ρ ≥ 1,

where λ̄ = 1 − λ, ρ = λ
(
μ0 +

∑J
i=1 θiμi

)
(1 + αβ) represents the traffic intensify of the considered model.

Let b〈i〉 be the server’s generalized busy period initiated with i (i ≥ 1) customers. Due to the Markov property
of the arrival interval, b〈i〉 can be expressed as b〈i〉 = b1 + b2 + . . . + bi, where b1, b2, . . . , bi are independent of
each other and follow the same distribution as b. Thus, the p.g.f. of b〈i〉 is

∞∑
j=i

P
{

b〈i〉 = j
}

zj = Bi (z) , |z| < 1.

Let N (n+) designate the number of customers in the system at time epoch n+ and Qj (n+) =
P {b > n+, N (n+) = j} , j ≥ 1 denote the transient probability of there being j customers at epoch n+ in
generalized busy period b, where the epoch n+ = 0+ is the beginning of b. According to the meaning of b, we
have the boundary condition Q1(0+) = 1, Qj(0+) = 0, j = 2, 3, . . . With the similar discussion in reference Wei
et al. [23], we have the following lemma.

Lemma 2.7. Let q+
j (z) =

∑∞
n=0 Qj (n+) zn, |z| < 1 be the p.g.f. of Qj (n+), then the recursive formulas of

q+
j (z) can be expressed as

q+
1 (z) =

B (z)
[
1 − Ĝ

(
λ̄z

)]
(
1 − λ̄z

)
Ĝ

(
λ̄z

) ,

q+
j (z) =

1
Ĝ

(
λ̄z

)
⎧⎨
⎩B (z)

∞∑
n=j−1

zn
∞∑

k=n+1

ĝk

(
n

j − 1

)
λj−1λ̄n−j+1 +

j−1∑
i=1

q+
j−i (z)
Bi (z)

×
[

B (z) − Ĝ
(
λ̄z

)− i∑
m=1

∞∑
k=m

(
k

m

)
ĝkzk[λB (z)]mλ̄k−m

]}
, j = 2, 3, . . . ,

where B (z) is defined as in Lemma 2.6, ĝk is given by (2.7), Ĝ
(
λ̄z

)
=

∑∞
j=1 ĝj

(
λ̄z

)j,(
k
m

)
= k!

m!(k−m)! ,k ≥ m ≥ 1,
(
k
0

)
= 1 and

(
k
m

)
= 0 if k < m.

∑j
i=1 = 0 if j < i.
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3. Analysis of system queue length distributions

In this section, by total probability decomposition law and renewal theory, we first derive the p.g.f. of transient
queue length distribution at any epoch n+. Then, based on the transient analysis, the explicit formulas for
steady-state queue size are obtained.

3.1. The transient distribution of the queue length at epoch n+

Let Pij (n+) = P {N (n+) = j |N (0+) = i} be the conditional probability of there being j customers at
epoch n+ under arbitrary initial state N (0+) = i (i = 0, 1, . . .). The p.g.f. of Pij (n+) is given by p+

ij (z) =∑∞
n=0 Pij (n+) zn, (i, j = 0, 1, 2, . . .).

Theorem 3.1. For |z| < 1, we have

p+
00 (z) =

1
1 − λ̄z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 +
f (z)B (z)

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.1)

p+
i0 (z) =

1
1 − λ̄z

· Bi (z)

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k
, i ≥ 1, (3.2)

where f (z) = λz
1−λ̄z

, Ak(D) = Y (k−1) (D) − Y (k) (D), Y (k) (D) = P
{∑k

j=1 χ
(0)
j < D

}
, k =

1, 2, . . . , D, Y (0) (D) = 1, Y (D) (D) = 0.

Proof. Let Sk =
∑k

i=1 χ
(0)
i , lk =

∑k
i=1 τi, k = 1, 2, . . ., and S0 = l0 = 0. It is noted that P00 (n+) indicates that

there is no customer in the queue at epoch n+ under initial state N (0+) = 0, i.e., epoch n+ is located in the
system idle period. Based on the previous model assumptions, the beginning and ending epochs of the server’s
generalized busy period are renewal points. Employing renewal theory and the total probability decomposition
law, we obtain

P00

(
n+

)
= P

{
0 ≤ n+ < τ̃1

}
+ P

{
τ̃1 + b1 ≤ n+ < τ̃1 + b1 + τ̃2

}
+

D∑
k=1

P
{
τ̃1 + b1 + τ̃2 + lk−1 ≤ n+, Sk−1 < D ≤ Sk, N

(
n+

)
= 0

}
,

(3.3)

where τ̃k(k ≥ 1) represent the length of the kth system idle period, bk (k ≥ 1) denote the length of kth server’s
generalized busy period. The first term of (3.3) means that epoch n+ is located in the first system idle period,
which is equal to

∞∑
t=n+1

P {τ̃1 = t} =
∞∑

t=n+1

λλ̄t−1 = λ̄n. (3.4)

The second term of equation (3.3) is the probability that epoch n+ is in the second system idle period. Since
customers arrive at system according to Bernoulli process, the completion epoch of first generalized busy period
b1 is a renewal point. So we have

P
{
τ̃1 + b1 ≤ n+ < τ̃1 + b1 + τ̃2

}
=

n∑
t=2

P {τ̃1 + b1 = t} λ̄n−t. (3.5)
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The representation “τ̃1 + b1 + τ̃2 + lk−1 ≤ n+, Sk−1 < D ≤ Sk” in the third term of (3.3) means that there are
k customers at the starting point of the second server’s generalized busy period b2. As the initiation point of b2

is a renewal epoch, the third term of equation (3.3) is

D∑
k=1

Ak(D)
n∑

t=2

P {τ̃1 + b1 = t}
n−t∑
m=k

P {τ̃2 + lk−1 = m}Pk0

(
(n − t − m)+

)
. (3.6)

Substituting equations (3.4)–(3.6) into equation (3.3), and Multiplying (3.3) by zn and summing over n, it
finally leads to

p+
00 (z) =

1
1 − zλ̄

+
f (z)B (z)

1 − zλ̄
+ f(z)B (z)

D∑
k=1

Ak(D) [f(z)]kp+
k0(z). (3.7)

For i ≥ 1, Pi0 (n+) denotes there being no customer in the system at instant n+ under initial condi-
tion N (0+) = i. Similar to the analysis of P00 (n+), we can get

Pi0

(
n+

)
=

n∑
t=i

P
{
b〈i〉 = t

}
λ̄n−t +

D∑
k=1

Ak(D)
n∑

t=i

P
{

b〈i〉 = t
}

×
n−t∑
m=k

P {τ̃1 + lk−1 = m}Pk0

(
(n − t − m)+

)
. (3.8)

Multiplying (3.8) by zn and summing over n, it leads to

p+
i0 (z) =

Bi (z)
1 − zλ̄

+ Bi (z)
D∑

k=1

Ak(D) [f(z)]kp+
k0(z). (3.9)

From (3.7) and (3.9), the relationship between p+
00 (z) and p+

i0 (z) is given by

p+
i0 (z) =

Bi−1 (z)
f (z)

[
p+
00 (z) − 1

1 − zλ̄

]
, i = 1, 2, . . . (3.10)

Taking (3.10) into (3.7) gives (3.1). Furthermore, we can get (3.2) by substituting (3.1) into (3.10). �
Theorem 3.2. For |z| < 1, i ≥ 1, and j = 1, 2, . . . , D − 1, we get

p+
0j (z) = f (z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q+
j (z) +

θj (z)

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.11)

p+
ij (z) =

i∑
r=1

Br−1 (z) q+
j−i+r (z)+

Bi−1 (z) θj (z)

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k
, (3.12)

where q+
j (z) is determined by Lemma 2.7, and

θj(z) =
B (z) [f(z)]j Y (j) (D)

1 − zλ̄
+

j∑
k=1

Ak(D) [f(z)]k
k∑

r=1

Br (z)q+
j−k+r (z)

+
D∑

k=j+1

Ak(D) [f(z)]k
k∑

r=k−j+1

Br (z)q+
j−k+r (z) .
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Proof. For j = 1, 2, . . . , D − 1, there are j customers in the system at epoch n+ if and only if time point n+ is
located in the generalized busy period of server or server idle period with j customers. With the same method
used in Theorem 3.1, it gives

P0j

(
n+

)
=P

{
τ̃1 ≤ n+ < τ̃1 + b1, N

(
n+

)
= j

}
+ P

{
τ̃1 + b1 + τ̃2 + lj−1 ≤ n+ < τ̃1 + b1 + τ̃2 + lj , Sj < D

}
+

D∑
k=1

P
{
τ̃1 + b1 + τ̃2 + lk−1 ≤ n+, Sk−1 < D ≤ Sk, N

(
n+

)
= j

}

=
n∑

t=1

P {τ̃1 = t}Qj

(
(n − t)+

)

+
n∑

t=2

P {τ̃1 + b1 = t}
n−t∑
m=j

P {τ̃2 + lj−1 = m}P
{

τj > (n − t − m)+
}
Y (j) (D)

+
D∑

k=1

Ak(D)
n∑

t=2

P {τ̃1 + b1 = t}
n−t∑
m=k

P {τ̃2 + lk−1 = m}Pkj

(
(n − t − m)+

)
. (3.13)

Analogously, for i ≥ 1, we obtain

Pij(n+) =
i∑

r=1

n∑
m=r−1

P {b1 + b2 + . . . + br−1 = m}Qj−i+r

(
(n − m)+

)

+
n∑

t=i

P
{
b〈i〉 = t

} n−t∑
m=j

P {τ̃1 + lj−1 = m}P
{

τj > (n − t − m)+
}
Y (j) (D)

+
D∑

k=1

Ak(D)
n∑

t=i

P
{
b〈i〉 = t

}n−t∑
m=k

P {τ̃1 + lk−1 = m}Pkj

(
(n − t − m)+

)
. (3.14)

Multiplying both equations (3.13) and (3.14) by zn and adding over n from 0 to 1, it gives

p+
0j (z) = f (z) q+

j (z) +
B (z)Y (j) (D) [f(z)]j+1

1 − zλ̄

+ f(z)B (z)
D∑

k=1

Ak(D) [f(z)]kp+
kj(z). (3.15)

p+
ij (z) =

i∑
r=1

Br−1 (z) q+
j−i+r (z) +

Bi (z)Y (j) (D) [f(z)]j

1 − zλ̄

+ Bi (z)
D∑

k=1

Ak(D) [f(z)]kp+
kj(z). (3.16)

Solving (3.15) and (3.16) leads to the expressions of p+
0j (z) and p+

ij (z). �
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Theorem 3.3. For |z| < 1, i ≥ 1 and j = D, D + 1, . . ., we have

p+
0j (z) = f (z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q+
j (z) +

σj (z)

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3.17)

p+
ij (z) =

i∑
r=1

Br−1 (z) q+
j−i+r (z)+

Bi−1 (z)σj (z)

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k
, (3.18)

where σj(z) =
∑D

k=1 Ak(D) [f(z)]k
∑r

r=1 Br (z)q+
j−k+r (z).

Proof. For j = D, D + 1, . . ., N(n+) = j indicates that epoch n+ is located in the server’s generalized busy
period with j customers in the system. Using the same derivation process as in Theorem 3.2, we can complete
the proof of Theorem 3.3. �

3.2. The recursive formulas for the steady-state distribution of queue length at epoch n+

On the basis of the transient distribution of the queue length at arbitrary epoch n+ derived in Theo-
rems 3.1−3.3, the recursive expressions of steady-state queue length distribution at epoch n+ will be investigated
in this subsection.

Theorem 3.4. Let p+
j = lim

n→∞ P {N (n+) = j} , j = 0, 1, 2, . . . be the probability that there are j customers in
the system under steady state. Then, we have

(a) If ρ = λ
(
μ0 +

∑J
i=1 θiμi

)
(1 + αβ) ≥ 1, then p+

j = 0, j = 0, 1, 2, . . .

(b) For ρ = λ
(
μ0 +

∑J
i=1 θiμi

)
(1 + αβ) < 1, the equilibrium distribution {p+

j , j ≥ 0} at epoch n+ exists and
forms a probability distribution. The recursive expressions are given by

p+
0 =

1 − ρ

1 +
D−1∑
k=1

Y (k)(D)
, (3.19)

p+
j =λp+

0

⎧⎨
⎩Y (j) (D)

λ
+

j∑
k=1

Ak(D)
k∑

r=1

q+
j−k+r (1) +

D∑
k=j+1

Ak(D)
k∑

r=k−j+1

q+
j−k+r (1)

⎫⎬
⎭ ,

j = 1, 2, . . . , D − 1, (3.20)

p+
j =λp+

0

D∑
k=1

Ak(D)
k∑

r=1

q+
j−k+r (1) , j = D, D + 1, . . . , (3.21)

where

q+
1 (1) =

1 − Ĝ
(
λ̄
)

λĜ
(
λ̄
) ,

q+
j (1) =

1
Ĝ

(
λ̄
)
⎧⎨
⎩

∞∑
n=j−1

∞∑
k=n+1

ĝk

(
n

j − 1

)
λj−1λ̄n−j+1

+
j−1∑
i=1

q+
j−i (1)

[
1 − Ĝ

(
λ̄
)− i∑

m=1

∞∑
k=m

(
k

m

)
ĝkλmλ̄k−m

]}
, j ≥ 2.
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Proof. Before discussing the steady-state queue length distribution, we first present the stability condition of the
system under study. To this end, we define ςm, m = 1, 2, . . . to be, after n+ = 0+, the mth time epoch at which
the service of a customer is just finished and the system becomes empty. Based on the model assumptions and
the memoryless property of the geometric distribution, the time interval Tm = ςm − ςm−1(m = 1, 2, . . . ; ς0 = 0)
is the length of the mth regeneration cycle. In order to keep the system stable, we should prove the expected
length of a regeneration cycle is finite by the theorem on generative process (see Wolff [24]). Thus, our aim is
to prove E[Tm] < ∞.

Obviously, a regeneration cycle in our system consists of a server’s generalized busy period and a server’s idle
period. Let Qb be the number of customers in the system at the initiation point of a server’s generalized busy
period, B be the server’s generalized busy period beginning with Qb customers, I be the server idle period.
Since one customer requires at least one time slot for serving in discrete-time queue, there are, based on the
D-policy, at most D customers in the system at the beginning of a server’s generalized busy period. Thus, we
have

P {Qb = r} =P

{
r−1∑
k=1

χ
(0)
k < D ≤

r∑
k=1

χ
(0)
k

}
, r = 1, 2, . . . , D − 1.

P {Qb = D} =P

{
D−1∑
k=1

χ
(0)
k < D

}
.

From the above two formulas, the mean of Qb is given by

E [Qb] =
D∑

k=1

kP {Qb = k} =
D−1∑
k=0

Y (k)(D).

Furthermore, the mean of the server’s generalized busy period is

E [B] = E [b] · E [Qb] , (3.22)

where E[b] is determined by Lemma 2.6. Since the inter-arrival times during server idle period follow independent
and identical geometric distribution with mean 1/λ, the expected length of server idle period is

E[I] =
E [Qb]

λ
· (3.23)

From (3.22), (3.23) and Lemma 2.6, E [Tm] can be expressed as

E [Tm] = E[B] + E[I] =

{ D−1∑
k=0

Y (k)(D)

λ(1−ρ) < ∞, ρ < 1,

∞, ρ ≥ 1.

(3.24)

Therefore, we must have ρ < 1 for the system to be stable.
Now we analyze the steady-state queue length distribution. In discrete-time situation we have p+

j =
lim

z→1−
(1 − z) p+

ij (z) (see Jury [11]). Applying Lemma 2.6, Theorems 3.1−3.3 and L’Hospital rule, the expressions

of Theorem 3.4 can be derived. Further, by manipulating direct calculations, the formula
∑∞

j=0 p+
j = 1 holds,

i.e.,
{
p+

j , j = 0, 1, 2, . . .
}

is a probability distribution. �
Theorem 3.5. Let π+ (z) =

∑∞
j=0 p+

j zj, |z| < 1 be the p.g.f of stationary queue size distribution{
p+

j , j = 0, 1, 2, . . .
}

at epoch n+. Conditioning on ρ = λ(μ0 +
∑J

i=1 θiμi)(1 + αβ) < 1, we get

π+ (z) =
(1 − ρ) (1 − z) Ĝ

(
zλ + λ̄

)
Ĝ

(
zλ + λ̄

)− z
·
1 +

D−1∑
k=1

zkY (k)(D)

1 +
D−1∑
k=1

Y (k)(D)
, (3.25)
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and the mean of steady-state queue length, denoted by E [L+], is presented by

E[L+] = ρ +
λ2E [χ̂ (χ̂ − 1)]

2 (1 − ρ)
+

D−1∑
k=1

kY (k)(D)

1 +
D−1∑
k=1

Y (k)(D)
, (3.26)

where χ̂ denotes the total generalized service time, E [χ̂ (χ̂ − 1)] =
∑∞

j=2 j(j − 1)P {χ̂ = j}.

Proof. Utilizing the expressions of p+
j given in Theorem 3.4 and noticing that

∞∑
j=1

q+
j (1) zj =

z
[
1 − Ĝ

(
zλ + λ̄

)]
λ
[
Ĝ

(
zλ + λ̄

)− z
] ,

the expression (3.25) can be obtained by some algebraic simplifications on π+ (z) =
∑∞

j=0 p+
j zj. Meanwhile,

(3.26) can be derived by using E [L+] = d
dz [π+ (z)] |z=1 . �

Corollary 3.6. In the discrete-time Geo/G/1 repairable queue with second J-optional service and D-policy, the
steady-state queue size L+ can be decomposed into the sum of two independent random variables: L+ = L+

0 +L+
d .

L+
0 is the steady-state queue length of the Geo/G/1 queue with unreliable server and J-additional services and

the corresponding p.g.f. is ((1 − ρ)(1 − z)Ĝ(zλ + λ̄))/(Ĝ(zλ+ λ̄)− z). L+
d is the additional queue size caused by

D-policy, and the distribution of L+
d satisfies

P
{
L+

d = r
}

=
Y (r)(D)

1 +
D−1∑
k=1

Y (k)(D)
, r = 0, 1, 2, . . . , D − 1.

Proof. From (3.25), the steady-state queue length consists of two independent parts, and the p.g.f. of L+
d is

given by

π+
d (z) =

1 +
D−1∑
k=1

zkY (k)(D)

1 +
D−1∑
k=1

Y (k)(D)
· (3.27)

Hence the p.m.f. of additional queue size L+
d can be derived by P

{
L+

d = r
}

= 1
r! · dr

dzr

[
π+

d (z)
] |z=0 . �

Remark 3.7 (Special cases). In this remark, we consider some special cases of our model by taking specific
values for the parameters.

(1) When D = 1, θ0 = 1, α = 0, the considered model reduces to the standard Geo/G/1 discrete-time queueing
system. For ρ = λμ0 < 1 and |z| < 1, we obtain

π+ (z) =
(1 − ρ) (1 − z)G0

(
λ̄ + zλ

)
G0

(
λ̄ + zλ

)− z
,

which matches with the result in Hunter [8].
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(2) When D = 1, J = 1, our model is equivalent to a discrete-time Geo/G/1 queue with breakdowns and second
optional service. For ρ = λ(μ0 + θ1μ1)(1 + αβ) < 1 and |z| < 1, we have

π+ (z) =
(1 − ρ) (1 − z)G

(
λ̄ + zλ

)
G

(
λ̄ + zλ

)− z
,

where G
(
λ̄ + zλ

)
= (1 − θ1) G̃0

(
λ̄ + zλ

)
+ θ1G̃1

(
λ̄ + zλ

)
G̃0

(
λ̄ + zλ

)
, G̃0 (z) and G̃1 (z) are determined

by (2.3) and (2.4), respectively.
(3) When θ0 = 1, the model investigated in this paper becomes a discrete-time Geo/G/1 queue with D-policy

and unreliable server. For ρ = λμ0 (1 + αβ) < 1 and |z| < 1, we have

π+ (z) =
(1 − ρ) (1 − z) G̃0

(
λ̄ + zλ

)
G̃0

(
λ̄ + zλ

)− z
·
1 +

D−1∑
k=1

zkY (k)(D)

1 +
D−1∑
k=1

Y (k)(D)
,

where G̃0 (z) is given by (2.3), Y (k) (D) = P
{∑k

j=1 χ
(0)
j < D

}
.

4. Reliability indices of the service station

In this section, some reliability indices, including the transient and the steady-state unavailability of service
station, the expected number of service breakdowns during time interval (0+, n+] and the equilibrium failure
frequency of the service station, are investigated. In the interest of presenting the stochastic decomposition
property of these reliability measures, we first introduce a lemma.

Lemma 4.1. Let Hi (n+) = P{the time n+ is in the server’s generalized busy period |N (0+) = i}, i ≥ 0, and
the p.g.f. of Hi (n+) is hi (z) =

∑∞
n=0 Hi (n+) zn, |z| < 1. Then, we have

h0 (z) =
f (z)
1 − z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
B (z)

[
1 −

D∑
k=1

Ak(D) [f(z)]k
]

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.1)

hi (z) =
1

1 − z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −
Bi (z)

[
1 −

D∑
k=1

Ak(D) [f(z)]k
]

1 −
D∑

k=1

Ak(D) [f(z)B (z)]k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, i ≥ 1. (4.2)

And for all i = 0, 1, 2, . . .,

H = lim
n→∞Hi

(
n+

)
=

⎧⎨
⎩λ

(
μ0 +

J∑
i=1

θiμi

)
(1 + αβ) , ρ < 1,

1, ρ ≥ 1.
(4.3)
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Proof. Let Sk =
∑k

i=1 χ
(0)
i , lk =

∑k
i=1 τi, k = 1, 2, . . ., and S0 = l0 = 0. By a similar probabilistic argument to

the proof of Theorem 3.1, it follows that

H0

(
n+

)
=P{the time n+ is in the server’s generalized busy period

∣∣N (
0+

)
= 0}

=P
{
τ̃1 ≤ n+ < τ̃1 + b1

}
+

D∑
k=1

P{τ̃1 + b1 + τ̃2 + lk−1 ≤ n+, Sk−1 < D

≤ Sk, the time n+ is in the server’s generalized busy period}

=
n∑

t=1

λλ̄t−1
[
1 − P

{
b1 ≤ (n − t)+

}]

+
D∑

k=1

Ak(D)
n∑

t=2

P {τ̃1 + b1 = t}
n−t∑
m=k

P {τ̃2 + lk−1 = m}

× Hk

(
(n − t − m)+

)
. (4.4)

Using the analysis method of H0 (n+), for i ≥ 1, we get

Hi

(
n+

)
= P{the time n+ is in the server’s generalized busy period

∣∣N (
0+

)
= i}

= 1 −
n∑

t=i

P
{

b〈i〉 = t
}

+
D∑

k=1

Ak(D)
n∑

t=i

P
{
b〈i〉 = t

} n−t∑
m=k

P {τ̃2 + lk−1 = m}

× Hk

(
(n − t − m)+

)
. (4.5)

Multiplying both equations (4.4) and (4.5) by zn and adding over n from 0 to 1, it yields

h0 (z) =
f (z) [1 − B (z)]

1 − z
+ f(z)B (z)

D∑
k=1

Ak(D) [f(z)]khk(z). (4.6)

hi (z) =
1 − Bi (z)

1 − z
+ Bi (z)

D∑
k=1

Ak(D) [f(z)]khk(z). (4.7)

Solving (4.6) and (4.7), the desired expressions h0 (z) and hi (z) can be obtained. Finally, by Final Value
Theorem (Jury [11]), it follows that lim

n→∞Hi (n+) = lim
z→1−

(1− z) · hi (z). By Lemma 2.6 and L’Hospital rule, we

can achieve the equilibrium result given by (4.3). �

4.1. The unavailability of service station

Before discussion, we consider a classical discrete-time repairable system with a single unit. The lifetime of
the unit, denoted by X , obeys a geometric distribution with parameter α. The system breaks down if and only
if failures happen to the unit. As soon as the unit is subject to unpredictable breakdowns, it is immediately sent
to mend. The repair time, denoted by R, has an arbitrary distribution with p.m.f. P {R = j} = rj , j = 0, 1, . . .,
p.g.f. R (z) =

∑∞
j=0 rjz

j and finite expected value β. When the unit is repaired, it renews and starts to operate
immediately. Also, suppose that the unit is new at initial point n+ = 0+, and X and R are independent of each
other. For n ≥ 0, |z| < 1, let

Ψ (n+) = P {the unit is under repair at time n+}, φ (z) =
∞∑

n=0
znΨ (n+).
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M (n+) = E { the number of unit failures during (0+, n+]}, m (z) =
∞∑

n=0
znM (n+).

Similar to the counterpart of continuous-time case in Cao and Cheng [4], we have the following lemma.

Lemma 4.2. If |z| < 1, then we have

φ (z) =
zα [1 − R (z)]

(1 − z) [1 − z + zα (1 − R (z))]
,

m (z) =
zα

(1 − z) [1 − z + zα (1 − R (z))]
,

and the steady-state unavailability and breakdown frequency are respectively given by

lim
n→∞Ψ

(
n+

)
= lim

z→1−
(1 − z) · φ (z) =

αβ

1 + αβ
,

lim
n→∞

M (n+)
n

= lim
z→1−

(1 − z)2 m (z) =
α

1 + αβ
.

We now set out to analyze the transient unavailability at time epoch n+ and the steady-state unavailability
(n → ∞). The unavailability of service station at time epoch n+ is the probability that the service station is
under repair at time point n+. Let Ψi (n+) = P { the unit is under repair at time n+ |N (0+) = i}, i ≥ 0, and
the p.g.f. of Ψi (n+) is φi (z) =

∑∞
n=0 znΨi (n+), |z| < 1.

Theorem 4.3. For |z| < 1, i = 0, 1, . . ., it follows that

φi (z) = φ (z) [(1 − z)hi (z)] , (4.8)

and the steady-state unavailability, denoted by Ψ , is

Ψ = lim
n→∞Ψi

(
n+

)
= lim

z→1−
(1 − z) · φi (z) =

⎧⎨
⎩λ

(
μ0 +

J∑
i=1

θiμi

)
αβ, ρ < 1,

αβ
1+αβ , ρ ≥ 1,

(4.9)

where ρ = λ
(
μ0 +

∑J
i=1 θiμi

)
(1 + αβ), hi (z) and φ (z) are determined by Lemmas 4.1 and 4.2, respectively.

Proof.

(1) Note that from the model assumptions, the failure of service station takes place only in server’s generalized
busy period. That is to say, the service station breaks down at time n+ if and only if the time n+ is located
in some generalized busy period of server and the service station is under repair at time n+. By the same
analysis method as in the proof of Theorem 3.1, Ψ0 (n+) is expressed as

Ψ0

(
n+

)
= P{the unit is under repair at time n+

∣∣N (
0+

)
= 0}

= P
{
τ̃1 ≤ n+ < τ̃1 + b1 , the unit is under repair at time n+}

+
D∑

k=1

P
{
τ̃1 + b1 + τ̃2 + lk−1 ≤ n+, Sk−1 < D ≤ Sk , the unit is under repair at time n+}

=
n∑

t=1

λλ̄t−1Γ1

(
(n − t)+

)

+
D∑

k=1

Ak(D)
n∑

t=2

P {τ̃1 + b1 = t}
n−t∑
m=k

P {τ̃2 + lk−1 = m}

× Ψk

(
(n − t − m)+

)
, (4.10)
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where Γi (n+) = P
{
0 ≤ n+ < b〈i〉 , the unit is under repair at time n+}, i ≥ 1. Similarly, for i ≥ 1, Ψi (n+)

is given by

Ψi

(
n+

)
=Γi

(
n+

)
+

D∑
k=1

Ak(D)
n∑

t=i

P
{
b〈i〉 = t

} n−t∑
m=k

P {τ̃2 + lk−1 = m}

× Ψk

(
(n − t − m)+

)
. (4.11)

(2) Since the service station behaves in renewal process alternating with failed state and normal state in
server’s generalized busy period and the lifetime X is governed by geometric distribution, we conduct the
total probability decomposition of Ψ (n+) with b〈i〉 and get that

Ψ
(
n+

)
=P{the unit is under repair at time n+, b〈i〉 > n+ ≥ 0}

+ P{the unit is under repair at time n+, b〈i〉 ≤ n+}

=Γi

(
n+

)
+

n∑
t=i

P
{
b〈i〉 = t

}
Ψ

(
(n − t)+

)
, i ≥ 1,

which leads to
∞∑

n=0

znΓi

(
n+

)
= φ (z)

[
1 − Bi (z)

]
, |z| < 1. (4.12)

Multiplying both (4.10) and (4.11) by zn and adding over n from 0 to 1, and utilizing (4.12), it leads to

φ0 (z) = f (z)φ (z) [1 − B (z)] + f(z)B (z)
D∑

k=1

Ak(D) [f(z)]kφk(z), (4.13)

φi (z) =φ (z)
[
1 − Bi (z)

]
+ Bi (z)

D∑
k=1

Ak(D) [f(z)]kφk(z). (4.14)

From the above two equations, (4.1) and (4.2), (4.8) can be obtained. Further, the stationary unavailability Ψ
in (4.9) can be gained by

lim
n→∞Ψi

(
n+

)
= lim

z→1−
(1 − z)φi (z) = lim

z→1−
(1 − z)φ (z) · lim

z→1−
(1 − z)hi (z)

= lim
n→∞ Ψ

(
n+

) · lim
n→∞ Hi

(
n+

)
,

where lim
n→∞Hi (n+) and lim

n→∞Ψ (n+) are presented by Lemmas 4.1 and 4.2, respectively. �

4.2. The expected number of service station failures during
(
0+, n+

]
In this subsection, we will study the expected number of service station breakdowns in time interval (0+, n+].

Denote by Mi (n+) = E { the number of service station failures during (0+, n+] |N (0+) = i} the mean of failure
number of service station during (0+, n+] under initial condition N (0+) = i, i = 0, 1, . . . The p.g.f. of Mi (n+)
is mi (z) =

∑∞
n=0 znMi (n+), |z| < 1.

Theorem 4.4. For |z| < 1, i = 0, 1, . . ., we have

mi (z) = m (z) · [(1 − z)hi (z)] , (4.15)
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and the steady-state failure frequency of service station, denoted by M , is given by

M = lim
n→∞

Mi (n+)
n

= lim
n→∞ (1 − z)2 mi (z) =

⎧⎨
⎩λ

(
μ0 +

J∑
i=1

θiμi

)
α, ρ < 1,

α
1+αβ , ρ ≥ 1,

(4.16)

where ρ = λ
(
μ0 +

∑J
i=1 θiμi

)
(1 + αβ), hi (z) and m (z) are given by Lemmas 4.1 and 4.2, respectively.

Proof.

(1) Similar to the analysis of (4.10) and (4.11), we have the following two equations.

M0

(
n+

)
=

n∑
t=1

λλ̄t−1
[
W1

(
(n − t)+

)
+ T1

(
(n − t)+

)]

+
D∑

k=1

Ak(D)
n∑

t=2

P {τ̃1 + b1 = t}
n−t∑
m=k

P {τ̃2 + lk−1 = m}

× Mk

(
(n − t − m)+

)
. (4.17)

Mi

(
n+

)
=Wi

(
n+

)
+ Ti

(
n+

)
+

D∑
k=1

Ak(D)
n∑

t=i

P
{

b〈i〉 = t
} n−t∑

m=k

P {τ̃2 + lk−1 = m}

× Mk

(
(n − t − m)+

)
, i ≥ 1, (4.18)

where Ti (n+) = E{the number of service station failures during
(
0+, b〈i〉

]
, b〈i〉 ≤ n+}, Wi (n+) = E{the

number of service station failures during (0+, n+], b〈i〉 > n+}, i = 1, 2, . . ..
(2) Let

ti (z) =
∞∑

n=0

Ti

(
n+

)
zn, wi (z) =

∞∑
n=0

Wi

(
n+

)
zn.

By performing a similar discussion in (4.12), it gives

ti (z) + wi (z) = m (z)
[
1 − Bi (z)

]
, i = 1, 2, . . . , (4.19)

where m (z) is determined by Lemma 4.2. Multiplying (4.17) and (4.18) by zn and summing over n, respec-
tively, and applying (4.19), which leads to (4.15). Meanwhile, the occurrence rate of service station failures,
in steady state, can be obtained by

lim
n→∞

Mi (n+)
n

= lim
z→1−

(1 − z)2 mi (z) = lim
z→1−

(1 − z)2 m (z) · lim
z→1−

(1 − z)hi (z)

= lim
n→∞

M (n+)
n

· lim
n→∞Hi

(
n+

)
,

where lim
n→∞Hi (n+) and lim

n→∞
M(n+)

n are given by Lemmas 4.1 and 4.2, respectively. �

Remark 4.5. From (4.8) and (4.15), one can see that the transient behaviors of reliability indices of service
station meet the stochastic decomposition property. Also, (4.3), (4.9) and (4.16) reveal that the steady-state
results are independent of the initial state N (0+) = i, i ≥ 0 and D-policy.
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5. Optimization for system cost

In this section, for the sake of demonstrating the applicability of the results obtained in the previous discussion,
an optimization analysis is conducted from the economic point of view. We first develop an expected operating
cost function per unit time for the repairable queueing model discussed in this paper, in which D is decision
variable. Then, we give some numerical calculations to find the optimum D, say D∗, to minimize the long-run
expected cost per unit time. Let us define the cost structure as follows.

Ch ≡ holding cost per unit time for each customer present in the system (this cost originates from the
customer’s sojourn time that consists of the waiting time and the total generalized service time).

Cs ≡ fixed cost per unit time for per busy cycle (this cost is due to the switch-over between busy period and
idle period).

Cr ≡ repair cost per unit time of the broken service station (this cost originates from the unpredictable
breakdowns occurring in server’s generalized busy period).

Cd ≡ fixed cost incurred due to every failure of the service station (this cost may be from the depreciation
when the breakdown occurs).

Utilizing the definitions of each cost element listed above and the corresponding system performance measures
obtained previously, the total expected cost function per unit time is given by

C (D) = ChE
[
L+

]
+ Cs

1
E [Tm]

+ CrΨ + CdM

= Ch

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ +
λ2E [χ̂ (χ̂ − 1)]

2 (1 − ρ)
+

D−1∑
k=1

kY (k)(D)

1 +
D−1∑
k=1

Y (k)(D)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ Cs
λ (1 − ρ)

D−1∑
k=0

Y (k)(D)

+ Crλ

(
μ0 +

J∑
i=1

θiμi

)
αβ + Cdλ

(
μ0 +

J∑
i=1

θiμi

)
α, ρ < 1. (5.1)

From (5.1) we can see that the cost function is extremely complex and non-linear, which poses a hard task
to achieve the analytic results for the optimum value of D. Therefore, we will search the optimum value D∗

for C (D) through numerical examples.

Example 5.1. We consider a practical problem concerning the aforementioned pump manufacturing system.
Assume that the shafts of various dimensions arrive at CNC copy turning center according to a Bernoulli process
with parameter λ. From an economic point of view, it is desirable that the CNC machine begins to deal with the
shafts whenever the total service times of the waiting shafts reach a fixed value D. All the arriving shafts require
the first essential service (FES) that is a random variable χ(0) with a mean μ0. After the first essential service,
some shafts are of excellent quality, whereas some processed shafts may be defective. The imperfect shafts
may be one of the summarized J defective types and need to be reprocessed (re-served) to meet the required
specification. The defective shafts belonging to the ith (1 ≤ i ≤ J) type will demand a second service χ(i)

with a mean μi. Furthermore, the lifetime of the CNC machine has a random length X following a geometric
distribution with parameter α, which indicates that the CNC machine may break down with probability α in a
slot. Once the CNC machine is subject to failure, it emergently is sent to repair. The repair time R is a random
variable.

The production system can be modeled by the queueing system investigated in this paper. For convenience
of computations, the corresponding parameters are given as follows.

(1) The arrival rate of shafts is λ = 0.15.
(2) The FES χ(0) is geometrically distributed with parameter σ0 = 0.6.
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Table 1. The average cost per unit time for different values of D.

D C(D) D C(D) D C(D) D C(D) D C(D)
1 34.2770 9 32.2706 17 34.2383 25 36.4741 33 38.7877
2 32.6070 10 32.4815 18 34.5102 26 36.7605 34 39.0796
3 31.9998 11 32.7075 19 34.7848 27 37.0479 35 39.3721
4 31.7765 12 32.9451 20 35.0620 28 37.3361 36 39.6649
5 31.7355 13 33.1918 21 35.3412 29 37.6251 37 39.9581
6 31.7956 14 33.4456 22 35.6222 30 37.9148 38 40.2517
7 31.9174 15 33.7053 23 35.9048 31 38.2052 39 40.5456
8 32.0799 16 33.9698 24 36.1889 32 38.4962 40 40.8398

(3) It is assumed that there are two summarized defective types (i.e., J = 2), and the flawed shafts belonging
to the ith type receive a second service χ(i) following geometric distribution with parameter σi(i = 1, 2).
We take σ1 = 0.75, σ2 = 0.8.

(4) The repair time R of the broken service station obeys geometric distribution with parameter η = 0.67.
(5) Other variables are selected as α = 0.25, θ0 = 0.65, θ1 = 0.2, θ2 = 0.15, Ch = 1, Cs = 60, Cr =

100, Cd = 210.

Substituting these parameters into (5.1) and developing MATLAB program, the numerical results for different
value of D are reported in Table 1. With the information of Table 1, one can observe that the minimum long-run
expected operating cost per unit time is C(D) = 31.7355 at D = 5, which indicates that the system designers
should design the workload threshold D as 5.

Example 5.2. In this example, the sensitivity analyses of C(D) and D with respect to different system pa-
rameters and cost elements will be carried out, which can provide significant insight for decision makers to
make the system profitable. Suppose that there are FES and two additionally optional services for customers,
and the corresponding distributions are governed by geometric distributions with parameters σ0, σ1, and σ2,
respectively. The repair time of the broken service facility has geometric distribution with parameter η. Other
parameters and notations are identical to those given in previous sections. The following five cases are considered
in this example.

Case 1. σ0 = 0.9, σ1 = 0.85, σ2 = 0.88, α = 0.1, η = 0.8, θ0 = 0.86, θ1 = 0.13, θ2 = 0.01, Ch = 10, Cs =
300, Cr = 550 and Cd = 660 for different values of λ (see Tab. 2).
Case 2. λ = 0.25, α = 0.1, η = 0.8, θ0 = 0.86, θ1 = 0.13, θ2 = 0.01, Ch = 10, Cs = 300, Cr = 550 and Cd = 660
for different values of σ0, σ1 and σ2 (see Tab. 3).
Case 3. λ = 0.25, σ0 = 0.9, σ1 = 0.85, σ2 = 0.88, θ0 = 0.86, θ1 = 0.13, θ2 = 0.01, Ch = 10, Cs = 300, Cr = 550
and Cd = 660 for different values of α and η (see Table 4).
Case 4. λ = 0.25, σ0 = 0.9, σ1 = 0.85, σ2 = 0.88, α = 0.1, η = 0.8, θ0 = 0.86, θ1 = 0.13, θ2 = 0.01, Cs = 300
and Cd = 660 for different values of Ch and Cr (see Tab. 5).
Case 5. λ = 0.25, σ0 = 0.9, σ1 = 0.85, σ2 = 0.88, α = 0.1, η = 0.8, θ0 = 0.86, θ1 = 0.13, θ2 = 0.01, Ch = 10
and Cr = 550 for different values of Cs and Cd (see Tab. 6).

Tables 2−4 display the effect of various system parameters on the optimum threshold value D∗ and its cor-
responding minimum average cost C(D∗). From Table 2, it is observed that both C(D∗) and D∗ increase as
arrival rate λ increases. This is due to the fact that with the growth of λ, the number of customers in the system
becomes larger and therefore the total holding cost increases. One can see from Table 3 that C(D∗) decreases
with an increasing σ0, σ1 or σ2 but D∗ increases as σ0 or σ1 increases. Actually, the increment of service rate
will lead to the decrease of average system size, which in turn reduces the holding cost of customers. Table 4
reveals that there is an increase in C(D∗) but a decrease in D∗ as the failure rate α increases. The reverse trend
is shown with the increase of repair rate η. Such situations match with many real life congestion scenarios.
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Table 2. The optimal threshold value D∗ and its minimum average cost C(D∗) for different
values of λ.

λ ρ D∗ C(D∗)
0.10 0.1435 3 34.7392
0.15 0.2152 3 47.5912
0.20 0.2870 3 59.7395
0.25 0.3587 4 71.0741
0.30 0.4305 4 81.6169
0.35 0.5022 4 91.7493
0.40 0.5739 4 101.5580
0.45 0.6457 4 111.1997

Table 3. The optimal threshold value D∗ and its minimum average cost C(D∗) for different
values of σ0, σ1, and σ2.

σ0 σ1 = 0.75, σ2 = 0.8 σ1 σ0 = 0.79, σ2 = 0.8 σ2 σ0 = 0.79, σ1 = 0.75
ρ D∗ C(D∗) ρ D∗ C(D∗) ρ D∗ C(D∗)

0.33 0.9054 2 183.6507 0.26 0.5002 3 89.8115 0.2 0.4188 4 78.3768
0.39 0.7734 3 130.3424 0.32 0.4738 4 85.8590 0.3 0.4141 4 77.6939
0.45 0.6773 4 112.5890 0.38 0.4557 4 83.2393 0.4 0.4118 4 77.3816
0.51 0.6037 4 101.7851 0.44 0.4426 4 81.4181 0.5 0.4104 4 77.2034
0.57 0.5457 4 94.0253 0.50 0.4327 4 80.0779 0.6 0.4095 4 77.0883
0.63 0.4987 4 88.0206 0.56 0.4248 4 79.0501 0.7 0.4088 4 77.0080
0.69 0.4599 4 83.2066 0.62 0.4185 4 78.2367 0.8 0.4083 4 76.9488
0.75 0.4273 4 79.2320 0.68 0.4133 4 77.5768 0.9 0.4079 4 76.9033

Table 4. The optimal threshold value D∗ and its minimum average cost C(D∗) for different
values of α and η.

α η = 0.8 η α = 0.1
ρ D∗ C(D∗) ρ D∗ C(D∗)

0.15 0.3786 4 92.5206 0.27 0.4369 3 114.9561
0.20 0.3986 3 113.8532 0.34 0.4126 3 101.1224
0.25 0.4185 3 135.1991 0.41 0.3966 3 92.1368
0.30 0.4384 3 156.5619 0.48 0.3853 3 85.8268
0.35 0.4584 3 177.9435 0.55 0.3768 4 81.1369
0.40 0.4783 3 199.3461 0.62 0.3703 4 77.4898
0.45 0.4982 3 220.7721 0.69 0.3651 4 74.5921
0.50 0.5181 3 242.2245 0.76 0.3608 4 72.2342

In fact, the higher the failure rate is, the more repair cost the system managers have to be charged. And under
a relatively higher repair rate, the waiting customers have a greater chance to be served, which can reduce the
system queue length and the system cost.

Tables 5 and 6 exhibit the influence of the cost elements Ch, Cr, Cs and Cd on C(D∗) and D∗. We can see
from Tables 5 and 6 that C(D∗) increases with an increase in Ch, Cr , Cs, or Cd while D∗ decreases as Ch

increases, which is quite obvious. In addition, it is noted that D∗ is insensitive to Cr and Cd. This is because
the failure and repair of the system are not related to the threshold D.

From the numerical results and the corresponding analysis, we overall conclude the following observations
which may provide some insight for system designers and decision makers so as to help them model real time
system.



ANALYSIS OF D-POLICY DISCRETE-TIME GEO/G/1 QUEUE 121

Table 5. The optimal threshold value D∗ and its minimum average cost C(D∗) for different
values of Ch and Cr.

Ch Cr = 500 Cr Ch = 10
ρ D∗ C(D∗) ρ D∗ C(D∗)

5 0.3587 5 61.0794 100 0.3587 4 53.1386
10 0.3587 4 69.0813 300 0.3587 4 61.1099
15 0.3587 3 74.7446 500 0.3587 4 69.0813
20 0.3587 3 80.2761 700 0.3587 4 77.0526
25 0.3587 2 84.5318 900 0.3587 4 85.0240
30 0.3587 2 88.1808 1100 0.3587 4 92.9953
35 0.3587 2 91.8298 1300 0.3587 4 100.9667
40 0.3587 2 95.4788 1500 0.3587 4 108.9380

Table 6. The optimal threshold value D∗ and its minimum average cost C(D∗) for different
values of Cs and Cd.

Cs Cd = 600 Cd Cs = 300
ρ D∗ C(D∗) ρ D∗ C(D∗)

200 0.3587 3 63.4873 450 0.3587 4 62.3854
240 0.3587 3 65.7776 500 0.3587 4 63.9796
280 0.3587 3 68.0679 550 0.3587 4 65.5739
320 0.3587 4 69.9479 600 0.3587 4 67.1682
360 0.3587 4 71.6811 650 0.3587 4 68.7624
400 0.3587 4 73.4143 700 0.3587 4 70.3567
440 0.3587 4 75.1475 750 0.3587 4 71.9510
480 0.3587 4 76.8807 800 0.3587 4 73.5452

• The system designers may introduce an admission control policy to regulate the arrival rate. Thus, the
average system size can be controlled to economize the system cost.

• By increasing the service rate, repair rate, or reducing the failure rate, the system designers can improve the
quality of service at reasonable cost.

• It is also beneficial for system managers to lower properly the values of cost elements Ch, Cr, Cs and Cd.

6. Conclusions

This paper explored a discrete-time Geo/G/1 queue with J-optional services, D-policy, and unreliable service
station. Employing the total probability decomposition law, renewal theory and probability generating function
technique, the analytical expressions for transient queue length distribution and steady-state queue length dis-
tribution were derived. Especially, the recursive formulas of the steady-state queue length distribution (given by
Thm. 3.4) are computationally tractable to handle the congestion problems in real-life scenarios. Furthermore,
some main reliability indices were discussed, which may be useful for system designers and engineering man-
agers to improve the reliability and availability of systems. Finally, a cost model is established to investigate cost
optimization problem for the system and some numerical examples are conducted to show the effect of different
system parameters and cost elements on the optimum value of D and its corresponding minimum expected cost
per unit time. The analysis of this paper provides a potentially practical application in telecommunication sys-
tems, queueing networks, flexible manufacturing systems, inventory problems and so forth. For future research,
using the analytical technique in our discussion, one can extend the present work to more complex queueing
models by taking the concepts of bulk arrival and server vacations.
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