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Abstract. Time-of-use (TOU) electricity pricing has been a common practice to enhance the peak load
regulation capability of power grid. Meanwhile, it provides a good opportunity for industries to reduce
energy costs, especially for energy-intensive ones, where batch scheduling is often involved. Majority of
batch scheduling problems have been proved to be NP-hard, even for most single-machine environments.
Optimizing batch scheduling under TOU policy in these industries will be of great significance. Single-
machine batch scheduling is an important basis for more complicated shop scheduling problems. This
paper investigates a bi-objective single-machine batch scheduling problem under TOU policy: the first
objective is to minimize the makespan and the second is to minimize the total electricity costs. The
considered problem is first formulated as a bi-objective mix-integer linear programming (MILP) model
and is demonstrated to be NP-hard. Subsequently, the MILP is simplified by analyzing properties and
search space for a Pareto optimal solution is greatly reduced. Then, an exact ε-constraint method is
adapted to obtain its Pareto front, which is accelerated due to these properties. Finally, a preferable
solution is recommended for decision makers via a fuzzy-logic-based approach. Computational results
on randomly generated instances show the effectiveness of the proposed approach.
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1. Introduction

Electricity, as one of the most widely used energies, plays a very important role in modern industries. For
example, its consumption accounts for approximately 30% of the total industry energy consumption in APEC
area [1]. The rapid and ongoing growth of electricity demand has become a bottleneck for sustainable eco-
nomic development. Therefore, improving electric power efficiency and saving electricity have been important
issues for many countries. It usually can be achieved through three strategies: the first one is called structure
energy-saving, which is to reduce the share of high energy consumption industries; the second one is called
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Figure 1. An example of Time-of-Use electricity prices (Source: Ontario Energy Board).

technical energy-saving, which is to improve the techniques of production devices and decrease their energy
consumption; the third one is called management energy-saving, which is to reduce energy consumption by
management approaches. Compared with the first two strategies, the third one is the fastest, most inexpensive
and flexible one.

As a practical management energy-saving strategy, Demand Response (DR) strategy has been implemented
in many countries such as the United States, Canada, France and China [5]. Time-of-use (TOU) electricity
pricing policy (see Fig. 1) is one of the most important and popular DR strategies [29]. It aims to improve
the peak load regulation ability and promote the balance of electricity demand between on-peak and off-peak
periods by price control, so that the electricity demand in on-peak periods can be met without constructing
more costly backup facilities [29]. Under TOU policy, manufacturing industries, especially power-intensive ones,
are motivated to improve their competitiveness by reducing energy costs of production. For example, the total
electricity costs can be saved by processing high energy consumption operations in off-peak periods. Certainly,
considering electricity costs reduction together with traditional optimization criteria in production management
will be of huge significance.

Scheduling is an important part of production management and optimal scheduling scheme can significantly
improve production efficiency and reduce production costs. As an important branch of production scheduling,
batch scheduling has been extensively applied to high technology and modern industries such as semiconductor
manufacturing [13, 32], steel manufacturing [24], and aircraft industry [28]. Most of them are power-intensive
industries and the electricity cost accounts for 10∼50% of the final product costs [9]. Batch scheduling involves
batch-processing machines that can process multiple jobs simultaneously. Different from classical scheduling
problems, batch scheduling needs to allocate jobs into batches, and then schedule the formed batches. It
is known that majority of batch scheduling problems are NP-hard, even for most single-machine environ-
ments. Single-machine batch scheduling problem is an important foundation for studying more complex batch
scheduling problems and the makespan is a basic production optimization criterion. Interested readers can refer
to [11, 17, 20, 26, 27, 31] for batch scheduling optimization.

In recent years, optimizing production scheduling to save electricity costs under TOU policy has attracted the
attention of many researchers. Shrouf et al. [22] studied a single machine production scheduling problem under
TOU policy, to minimize the total electricity costs under traditional work shifts. A genetic algorithm (GA)
was proposed to obtain near-optimal solutions and 13 instances with up to 60 jobs were tested. Fang et al. [7]
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also focused on scheduling jobs on uniform-speed and speed-scalable single machine under TOU policy with the
same optimization criterion. Heuristics were developed for the problems. Moon et al. [18] examined a parallel
machine scheduling problem to minimize the weighted sum of the makespan and time-dependent electricity
costs. A hybrid GA was suggested to yield near-optimal solutions for 24 instances with up to 60 jobs under
two scenarios. Wang et al. [29] addressed scheduling with power-down strategy in manufacturing systems
considering TOU policy to minimize the total electricity costs. A particle swarm-optimization-based meta-
heuristic was proposed to solve the problem and 26 instances with up to three machines were tested. Luo
et al. [15] developed a novel ant colony based meta-heuristic algorithm to solve a bi-objective hybrid flow
shop scheduling problem with minimizing both makespan and total electricity costs under TOU policy. And the
method was tested on 18 instances with up to 50 jobs. Later, Zhang et al. [33] formulated a time-indexed integer
programming model for a bi-objective flow shop scheduling problem under TOU policy, in which the objectives
were to minimize total electricity costs and the carbon emissions, while simultaneously ensuring the production
throughput. In their paper, several electricity costs were simply selected for the electricity cost optimization,
and the carbon emissions was optimized with integer programming for each selected electricity cost to obtain
a set of Pareto optimal solutions. Only one instance involving one product and eight machines was tested. It
can be found that the above studies on production scheduling under TOU policy mainly focused on classical
scheduling problems, such as single machine scheduling, parallel machine scheduling, and flow shop scheduling.
Almost all these studies proposed meta-heuristic algorithms to obtain near-optimal solutions and relatively few
instances were tested.

To the best of our knowledge, our preliminary work [3] is the first study on batch scheduling under TOU
policy, in which the makespan and the total electricity costs are simultaneously considered. In [3], a nonlinear
bi-objective model was formulated. The ε-constraint method was used to solve the bi-objective model. The
corresponding single-objective models considered in the ε-constraint method were linearized via theoretical
properties, and 75 instances with up to 40 jobs were tested. However, the complexity of the considered problem
was not demonstrated and the proofs of the properties were not given in [3].

This paper is a natural extension of our previous work on the following aspects: 1) the complexity of the
considered problem is demonstrated; 2) the formulated bi-objective model is transformed into an equivalent
simplified one via new analytical properties and search space is greatly reduced; 3) an exact ε-constraint method
is adapted to generate the Pareto front for the problem, which is accelerated by new proposed properties; 4) a
fuzzy-logic-based method is employed to recommend a preferable Pareto optimal solution for decision makers;
and 5) 475 instances with up to 650 jobs (65 batches) are generated to evaluate the effectiveness and efficiency
of the proposed method and parameter sensitivity analysis is conducted.

The remainder of this paper is organized as follows. Section 2 describes the problem, formulates it mathe-
matically, analyzes its computational complexity, and proposes a simplified mix-integer linear program (MILP)
based on analytical properties. In Section 3, an exact ε-constraint method is adapted for generating the Pareto
front of the considered problem. Subsequently, a fuzzy-logic-based approach is employed to recommend a prefer-
able solution for decision makers. Section 4 reports the computational results. Section 5 concludes our work and
discusses future directions.

2. Problem formulation and complexity demonstration

2.1. Problem description and formulation

A bi-objective single-machine batch scheduling problem under TOU policy can be represented as
TOU, 1|B|Cmax, EC by using the three-field notation of Graham [8]. The problem can be described as follows:

A given set of n jobs J = {1, 2, . . . , n} is to be processed on a single batch processing machine within a
scheduling horizon I of m periods, I = {1, 2, . . . , m}. Each job j, ∀j ∈ J , is nonresumable and has a processing
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time pj . Any pj is less than the length of any period i, denoted by Ti; i.e., Ti � pj , ∀j ∈ J, ∀i ∈ I. Without loss
of generality, we assume that the jobs are numbered in nonincreasing order of the processing times; i.e.,

p1 ≥ p2 ≥ · · · ≥ pn.

The jobs can be regrouped to k (to be optimized) batches and each batch can contain at most C jobs. Therefore,
we must have �n/C� ≤ k ≤ n [12]. The processing time of a batch is determined by the longest processing time
of the jobs in the batch.

In the paper, the periods can be defined by electricity prices or work shifts. However, with the job nonresum-
able assumption in multiple periods, the processing of a batch should be completed before the end of a period
or it must wait the beginning of another period. In the case where the periods are defined by electricity prices,
the above assumption may lead that a batch waits a new electricity price period to be processed. This is not ap-
propriate and appreciated in manufacturing industry, while the case that each job has to be completed in a single
work shift exists in some production environments, for example, French Atomic Energy Industry, CEA. There-
fore, a work shift is regarded as a period and its average unit electricity cost is implemented here. One work day is
often composed of two or three work shifts according to the types of products, so-called two-shift and three-shift,
respectively. The average unit electricity cost Ei, ∀i ∈ I for each work shift can be calculated according to the
tariffs information in Figure 1. For example, for a three-shift in a work day: 8h–16h, 16h–0h, 0h–8h, the corre-
sponding unit electricity costs are as follows, E8h−16h = (11.4∗3+14.0∗5)/8(¢/kWh)∗1(kWh/h) = 13.0250 ¢/h,
E16h−0h = 9.4125 ¢/h, and E0h−8h = 8.1625 ¢/h. This problem can be easily extended to single-machine batch
scheduling problem with unavailability periods.

Before formulating the problem, the parameters and decision variables are summarized as follows:

Parameters:

J : set of all jobs, i.e., J = {1, 2, . . . , n};
C: capacity of a batch;
B: set of batches, i.e., B = {1, 2, . . . , k};
pj : processing time of job j, ∀j ∈ J ;
I: set of time periods on the planning horizon, i.e., I = {1, 2, . . . , m};
ti: ending time of period i, ∀i ∈ I;
Ti: duration of period i, ∀i ∈ I, in which Ti = ti − ti−1;
Ei: unit electricity cost of period i, ∀i ∈ I.

Decision Variables:

k: number of the batches;
xjbi: xjbi = 1, if job j is assigned to batch b and processed in period i; otherwise xjbi = 0; ∀j ∈ J, ∀b ∈ B, ∀i ∈ I;
ybi: ybi = 1, if batch b is assigned to period i; otherwise ybi = 0; ∀b ∈ B, ∀i ∈ I;
zi: zi = 1, if at least one batch is assigned to period i; otherwise zi = 0; ∀i ∈ I;
Pbi: Pbi = Pb = max{pj | j ∈ b}, if batch b is processed in period i, where Pb is the processing time of the

longest job in the batch, and otherwise Pbi = 0; ∀b ∈ B, ∀i ∈ I.

In the paper, the number of batches k is initially considered as its upper bound n. A batch is opened if
there is at least one job allocated to the batch. On the contrary, a batch is closed without any job and its
corresponding processing time equals to 0, i.e., Pb = 0. Now the considered problem can be formulated as the
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following bi-objective MILP model P [3].

P : min f1 = Cmax (2.1)

min f2 = EC =
m∑

i=1

Ei

n∑
b=1

Pbi (2.2)

s.t.

m∑
i=1

n∑
b=1

xjbi = 1, ∀j ∈ J (2.3)

m∑
i=1

ybi = 1, ∀b ∈ B (2.4)

n∑
j=1

xjbi ≤ Cybi, ∀b ∈ B, ∀i ∈ I (2.5)

xjbipj ≤ Pbi, ∀j ∈ J, ∀b ∈ B, ∀i ∈ I (2.6)
n∑

b=1

Pbi ≤ Tizi, ∀i ∈ I (2.7)

ti−1zi +
n∑

b=1

Pbi ≤ Cmax, ∀i ∈ I (2.8)

xjbi, ybi, zi ∈ {0, 1}, ∀j ∈ J, ∀b ∈ B, ∀i ∈ I (2.9)
Pbi ≥ 0, Cmax ≥ 0 (2.10)

Objective (2.1) is to minimize the makespan Cmax, which is the completion time of the last batch. Objec-
tive (2.2) is to minimize the total electricity costs EC on the horizon I. Constraint (2.3) ensures that job
j, ∀j ∈ J , is assigned to only one batch and one period. Constraint (2.4) guarantees that each batch b, ∀b ∈ B,
is processed in only one period. Constraint (2.5) aims to restrict the number of jobs assigned to any batch should
not exceed the batch capacity C, and any job j, ∀j ∈ J , cannot be assigned to period i if its corresponding
batch is not processed in this period. Constraint (2.6) determines the batch processing time. Constraint (2.7)
ensures that the total processing time of batches in period i, ∀i ∈ I, should not exceed its duration, and zi = 1
if there is at least one batch assigned to period i. Constraint (2.8) defines the makespan Cmax. Constraint (2.9)
and (2.10) enforce the restrictions on decision variables.

It is worth pointing out that this study mainly focuses on TOU, 1|B|Cmax, EC with multiple periods, i.e.,
m ≥ 2. Because the case with single period reduces to a classic single-machine batch scheduling problem with
release time rj = 0 to minimize the makespan, i.e., 1|B|Cmax [23], which can be solved in polynomial time.

2.2. Complexity and properties of TOU, 1|B|Cmax, EC

As mentioned above, the number of batch k equals to the number of jobs n in model P . we can observe that
the solution search space of the model is very large, since it is already time consuming even k is set as its lower
bound �n/C� in [3]. This subsection is devoted to reducing the search space via problem property analysis. We
show that the formation of batches can be solved independent of the scheduling of batches, with two objectives
we consider in this paper.

In the remainder, let w(W ) and P (W ) denote the least indexed (hence the longest) job and the processing
time of the batch made of set of jobs W ; i.e.

w(W ) = min(W ), P (W ) = max
j∈W

pj = pw(W )
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A solution of the problem is uniquely defined by (k, {Wb, 1 ≤ b ≤ k}, {τb, 1 ≤ b ≤ k}), where k is the
number of batches, Wb and τb are the set of jobs involved in the batch b and the period the batch is processed,
respectively.

We consider in particular those solutions where the batches are formed with a so-called LPT-based method.
In this method, any job j with (b− 1)C < j ≤ bC and 1 ≤ b ≤ �n/C�− 1 is put into batch b, and the remaining
jobs, to batch �n/C�. Let k∗ and W ∗

b denote the number of batches obtained with this method and the set of
jobs contained in the batch b (1 ≤ b ≤ k∗), respectively. We have

k∗ = �n/C�
W ∗

b = {(b − 1)C + 1, (b − 1)C + 2, . . . , bC}, b = 1, 2, . . . , k∗ − 1

W ∗
k∗ = {(k∗ − 1)C + 1, (k∗ − 1)C + 2, . . . , n}

By the construction, we have

w(W ∗
b ) = (b − 1)C + 1 (2.11)

P (W ∗
b ) = p(b−1)C+1 (2.12)

The following theorem shows that we only need to consider such solutions in order to find the Pareto front.

Theorem 2.1. Any solution in which the batches are different from those formed with the LPT-based method
is (at least weakly) dominated.

Proof. Consider a feasible solution (k̂, {Ŵb, 1 ≤ b ≤ k̂}, {τ̂b, 1 ≤ b ≤ k̂}) in which the batches are different from
those formed with the LPT-based method. Obviously, we must have

k̂ ≥ �n/C� = k∗ (2.13)

In other words, there are at least as many batches as those formed with the LPT-base method.
Without loss of generality, we renumber the batches in an increasing order of w(Ŵb)’s; i.e.,

w(Ŵ1) < w(Ŵ2) < · · · < w(Ŵk̂)

As a consequence, we have
w(Ŵb) = min{j ∈ Ŵβ |b ≤ β ≤ k̂} (2.14)

Considering the fact that
min(S) ≤ n − |S| + 1 ∀S ⊆ {1, 2, . . . , n},

(2.14) implies, for any b such that 1 ≤ b ≤ k̂,

w(Ŵb) ≤ n −
k̂∑

β=b

|Ŵβ | + 1

=
b−1∑
β=1

|Ŵβ | + 1

≤
b−1∑
β=1

C + 1

= (b − 1)C + 1

which implies that
P (Ŵb) = pw(Ŵb)

≥ p(b−1)C+1 = P (W ∗
b ), 1 ≤ b ≤ k∗ (2.15)
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In other words, the processing times of the batches are at least as long as those formed with the LPT-based
method.

Construct a new solution by removing batches k∗+1, . . . , k̂, if any, and replacing each batch Ŵb (1 ≤ b ≤ k∗)
by the corresponding one formed with the LPT-based method (i.e., batch W ∗

b ), without changing starting time.
In other words, consider solution (k∗, {W ∗

b , 1 ≤ b ≤ k∗}, {τ̂b, 1 ≤ b ≤ k∗}). Relation (2.15) implies that this new
solution is also feasible. Furthermore, due to the fact that some batches are removed and the processing times
of the remaining batches are reduced, neither the electrical consumption costs nor the makespan is increased,
which means that the initial solution is (at least weakly) dominated by the new one. �

As a consequence, by considering batches formed with the LPT-method as new jobs, the problem is trans-
formed into a classical production scheduling problem without batching machine. Due to the fact that each
batch (new job) should be entirely executed in one period, these new jobs are non-preemptive. There is an
(infinitely short) unavailability period between two successive periods. The latter problem has been proved to
be NP-hard in the strong sense, even when the single objective is to minimize the makespan. Hence, we have
the following theorem.

Theorem 2.2. The TOU, 1|B|Cmax, EC is strongly NP-hard.

2.3. An equivalent simplified model

According to Theorem 2.1, we can focus on scheduling problems of the batches. Therefore, the decision
variables can be restricted to ybi’ and zi’s. And Pb = p(b−1)C+1 with the LPT-based method. The initial model
can be simplified into the following model P ′.

P ′ : min f1 = Cmax

min f2 = EC =
m∑

i=1

k∗∑
b=1

EiPbybi (2.16)

s.t.
m∑

i=1

ybi = 1, ∀b ∈ B∗ (2.17)

k∗∑
b=1

Pbybi ≤ Tizi, ∀i ∈ I (2.18)

ti−1zi +
k∗∑

b=1

Pbybi ≤ Cmax, ∀i ∈ I (2.19)

ybi, zi ∈ {0, 1} (2.20)

where B∗ = {1, 2, . . . , k∗} denotes the set of batches formed with the LPT-based method. Constraint (2.17)
ensures that a formed batch b, ∀b ∈ B∗ is allocated to exactly one period. Constraint (2.18) guarantees that the
total processing time of the batches in period i does not exceed its duration and zi = 1 if there is at least one
batch allocated to period i, ∀i ∈ I. Constraint (2.19) restricts the makespan. Constraint (2.20) specifies binary
restrictions on the variables. Since part of variables and constraints are removed, the search space for Pareto
optimal solutions of the initial problem is significantly reduced.

3. Solution method

In this section, we first present the principles of multi-objective optimization and the ε-constraint method.
Then, an exact ε-constraint method is adapted to find the Pareto front for TOU, 1|B|Cmax, EC. Finally, a
fuzzy-logic-based approach is employed to recommend a preferable solution for decision makers.
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3.1. Multi-objective optimization and the principle of ε-constraint method

In general, a multi-objective optimization problem (MOOP) can be represented as follows:

min{f1(x), f2(x), . . . , fm(x)}, s.t. x ∈ χ

where m objectives have to be optimized simultaneously, and χ represents the feasible solution space. Generally,
due to the conflicting nature of the objectives, there exists no optimal solution for all the objectives but a set
of Pareto optimal solutions. x∗ is called a Pareto optimal solution if and only if no x ∈ χ exists such that
fi(x) ≤ fi(x∗) for i ∈ {1, 2, . . . , m} with at least one inequality being strict [25]. The objective vector of a
Pareto optimal solution x∗, i.e., {f1(x∗), f2(x∗), . . . , fm(x∗)} is called a non-dominated point. All the non-
dominated points constitute the Pareto front. Two particular points, namely, Ideal and Nadir points, define
the lower and upper limits of objective values of the Pareto front, respectively. For a bi-objective optimization
problem (BOOP), the two points can be defined as follows [2]:

Definition 3.1. The Vector (f I
1 , f I

2 ) with f I
1 = min{f1(x), x ∈ χ}, and f I

2 = min{f2(x), x ∈ χ}, denotes the
Ideal point; and the Vector (fN

1 , fN
2 ) with fN

1 = min{f1(x) : f2(x) = f I
2 , x ∈ χ}, and fN

2 = min{f2(x) : f1(x) =
f I
1 , x ∈ χ}, denotes the Nadir point.

Based on the above definition, we have
Definition 3.2. The Vector (f I

1 , fN
2 ) and (fN

1 , f I
2 ) are two extreme points on the Pareto front.

The weighted-sum method and the ε-constraint method are the two most popular methods for exactly
solving MOOPs. Compared with the former, the latter can avoid several drawbacks: 1) the former may be time-
consuming due to large number of redundant runs caused by inappropriate weights; 2) a part of non-dominated
points cannot be obtained when the Pareto curve is non-convex [4]; and 3) the weighted-sum method is not
appropriate to the case where the linear combination is not suitable for integrating different objectives into a
single one. Moreover, since the ε-constraint method was introduced by Haimes et al. [10], it has been successfully
used to solve many BOOPs, e.g., [2, 3, 16, 19, 30, 34]. These successful applications motivate us to apply it to
solve our problem.

The ε-constraint method aims to optimize a single preferred objective function while formulating the other
objectives as constraints, called ε-constraints. For the bi-objective case, the ε-constrained problem can be
illustrated as follows if the first objective is considered as the preferred one:

P(ε) : min f1(x), s.t. f2(x) ≤ ε, x ∈ χ

where ε ∈ [f I
2 , fN

2 ]. A widely used way for determining the values of ε is to uniformly divide the interval of ε into
a number of subintervals and take each subinterval’s upper limit as the value of ε. Such an ε-constraint method
is referred to as equidistant ε-constraint method. Due to its simplicity of implementation, it has been used in
our previous work [3] and many other papers, e.g., [14,21,34]. However, this method cannot guarantee that all
the obtained solutions are non-dominated and the Pareto front is found. In this paper, an exact ε-constraint
method introduced by Bérubé et al. [2] is adapted to generate the Pareto front, which solves a sequence of
ε-constrained problems based on a gradual reduction of the values of ε’s. Its framework is shown as follows.

Algorithm 1. Exact ε-constraint method for the Pareto front of BOOPs.
1. Compute f I = (f I

1 , f I
2 ) and fN = (fN

1 , fN
2 ).

2. Set F ′ ={(f I
1 , fN

2 )}, εl = fN
2 − � (� is set as the minimum unit value of f2 [30]).

3. While εl ≥ f I
2 , do:

3.1. Solve problem P(εl) to optimality, obtain an optimal solution x∗ and
add f(x∗) to F ′.

3.2. Reset εl = f2(x∗)− �.
4. Remove dominated points from F ′ if existing and obtain the Pareto front F .
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3.2. Exact ε-constraint method for TOU, 1|B|Cmax, EC

In this subsection, an exact ε-constraint method is adapted to obtain the Pareto front for TOU, 1|B|Cmax, EC.
Since this study mainly focuses on minimizing electricity costs under TOU policy, the total electricity cost is
considered as the preferred objective. With the ε-constraint method, TOU, 1|B|Cmax, EC can be transformed
into the following ε-constrained problem:

PE(ε) : min f2 = EC =
m∑

i=1

Ei

k∗∑
b=1

Pbybi

s.t. constraints (2.17), (2.18), (2.20), and

ti−1zi +
k∗∑

b=1

Pbybi ≤ ε, ∀i ∈ I, (3.1)

where ε denotes a given upper bound of Cmax.
It is easy to see that PE(ε) is strongly NP-hard. In fact, PE(ε) involves a constraint requiring that the

makespan be not larger than ε. It is therefore equivalent to minimizing the makespan from a computational
complexity point of view. Since the latter problem is known to be strongly NP-hard, as explained above Theo-
rem 2.2, PE(ε) is also strongly NP-hard.

From now on, we adapt the exact ε-constraint method to yield the exact Pareto front for the considered
problem. To be specific, we first determine the lower and upper limits of the Pareto front by the Ideal and Nadir
points; then we define the minimum unit value of Cmax.

3.2.1. Computation of Ideal and Nadir points

According to the framework of the exact ε-constraint method, we first need to compute the Ideal and Nadir
points by exactly solving the following four single-objective optimization problems by Definitions 3.1.

PI
Cmax

: CI
max = min f1 = Cmax

s.t. constraints (2.17)-(2.20)

PI
EC : ECI = min f2 = EC =

m∑
i=1

Ei

k∗∑
b=1

Pbybi

s.t. constraints (2.17), (2.18) and (2.20).

The problem PN
Cmax

is formed by adding to P I
Cmax

constraint (3.2) that fixes the optimal objective value of the
total electricity costs.

PN
Cmax

: CN
max = min f1 = Cmax

s.t. constraints (2.17)–(2.20), and
m∑

i=1

Ei

k∗∑
b=1

Pbybi = ECI . (3.2)

The problem PN
EC is formed by adding to P I

EC constraint (3.3) that fixes the optimal objective value of Cmax.

PN
EC : ECN = min f2 = EC =

m∑
i=1

Ei

k∗∑
b=1

Pbybi

s.t. constraints (2.17), (2.18), (2.20), and

ti−1zi +
k∗∑

b=1

Pbybi = CI
max, ∀i ∈ I. (3.3)

By Definition 3.2, (CI
max, ECN ) and (CN

max, ECI) are extreme points on the Pareto front of TOU, 1|B|Cmax, EC.
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3.2.2. Definition of parameter �
In this study, parameter � should be set as the minimum unit value of Cmax according to its definition in

Algorithm 1. The objective function Cmax has the following equivalent form: Cmax=maxi∈I{ti−1zi+
∑k∗

b=1 Pbybi}.
It is not difficult to find that the minimum unit value of Cmax is the minimal unit value of ti−1 and Pb, ∀i ∈ I
and ∀b ∈ B∗. Hence, parameter � is set as the minimal unit value of ti−1 and Pb.

3.3. Selection of the most preferable Pareto optimal solution

Among all the obtained nondominated points, a decision maker may desire to select a preferable one. In this
subsection, the fuzzy-logic-based approach [6] is employed to recommend a preferable solution, since it can
not only take into account the preferences of the decision maker, but also indicate the optimality degree each
obtained nondominated point for each objective.

With the fuzzy-logic-based approach, the membership function δi(fs
i ), which represents the optimality

degree of the sth Pareto optimal solution for the ith objective function, is presented as follows [6]:

δi(fs
i ) =

⎧⎪⎨
⎪⎩

1, if fs
i ≤ f I

i
fN

i −fs
i

fN
i −fI

i

, if f I
i < fs

i < fN
i , 1 ≤ i ≤ m, 1 ≤ s ≤ S

0, if fs
i ≥ fN

i

(3.4)

where f I
i and fN

i represent the lower and upper limits of the ith objective function, respectively, and fs
i expresses

the value of the ith objective of the sth Pareto solution. S denotes the total number of Pareto solutions.
On the basis of the membership functions δi(fs

i ), the membership degree δs of the sth solution can be
calculated as follows [6]:

δs =
∑m

i=1 ωiδi(fs
i )∑m

i=1 ωi
(3.5)

where ωi denotes the weight of objective i. It can be determined according to the preferences about the objectives
of the decision maker. The most preferable solution is the one giving the maximum value of δs.

3.4. Overall algorithm for TOU, 1|B|Cmax, EC

To sum up, the algorithm to obtain the Pareto front and recommend the most preferable solution for single-
machine batch scheduling under TOU policy is illustrated as follows.

Algorithm 2. Exact ε-constraint and fuzzy-logic combined method for
TOU, 1|B|Cmax, EC.

1. Transform model P ′ into PE(ε);
2. Obtain f I = (CI

max, ECI) and fN = (CN
max, ECN ) by exactly solving PI

Cmax
,

PI
EC and PN

Cmax
, PN

EC ;
3. Set F ′ ={(CN

max, ECI)}, εl = CN
max− �(� is set to the minimal unit value

of ti−1 and Pb);
4. While εl ≥ CI

max, do:
4.1. Solve problem PE(ε) exactly, obtain the optimal solution and its

corresponding objective vector (Cmax(ε), EC(ε));
4.2. Reset εl = Cmax(ε)− �;

5. Remove dominated points from F ′ if any and obtain the Pareto front F ;
6. Calculate the membership function δi(fs

i ) and membership degree δs;
7. Recommend a preferable solution.



SINGLE BATCH SCHEDULING UNDER TOU PRICES 725

Table 1. Computational results for the instances in [3].

Set n m F ′ F CT ′ CT CT/CT ′

1 20 3.0 3.0 2.442 0.246 0.101
2 25 6.2 6.2 6.123 0.347 0.057
3 30 3 4.6 4.6 9.900 0.328 0.033
4 35 7.0 7.0 22.583 0.658 0.029
5 40 8.8 9.0 194.547 0.797 0.004

6 20 3.0 3.0 4.827 0.278 0.058
7 25 6.2 6.2 7.530 0.449 0.060
8 30 4 11.2 11.2 9.860 0.747 0.076
9 35 16.2 16.2 30.387 1.320 0.043

10 40 17.2 18.2 536.743 1.526 0.003

11 20 8.6 8.6 5.333 0.446 0.084
12 25 14.8 14.8 8.373 0.983 0.117
13 30 5 15.8 16.0 10.193 1.161 0.114
14 35 18.0 24.2 30.857 1.912 0.062
15 40 16.4 26.4 675.913 2.172 0.003

Average 10.467 11.640 103.707 0.891 0.009

4. Computational results

In this section, the performance of the proposed algorithm is evaluated by 475 randomly generated instances
(95 sets × 5 instances) in which 15 sets were proposed by [3]. The proposed algorithm is implemented in Visual
C++ embedded with commercial optimization software CPLEX 12.4. All the single-objective optimization
problems, i.e., PI

Cmax
, PI

EC , PN
Cmax

, PN
EC and PE(ε), are solved by CPLEX in default setting and CPLEX is

allowed to run until the optimal solution is output. All the numerical experiments are performed on a Personal
Computer with 1.7 GHz processor and 4.0 GB RAM in windows seven environment. The computational time
of each instance is limited to 18 000 s.

4.1. Comparison with the work [3]

In order to evaluate the performance of the proposed algorithm, we first test the instances in [3] and compare
the computational results with that reported in [3] in terms of solution quality (number of nondominated points)
and computational time. Let F and F ′ represent the number of nondominated points found by the proposed
exact ε-constraint method and that by the equidistant ε-constraint method proposed in [3]. Besides, let CT
and CT ′ denote the computational time by the proposed method and that by the method proposed in [3],
respectively. Table 1 presents the results.

It can be observed from Table 1 that the average number of non-dominated points obtained by the equidistant
ε-constraint method, i.e., F ′, is less than that obtained by the proposed exact ε-constraint method, i.e., F . It
means that the equidistant ε-constraint method fails to obtain the Pareto front. This demonstrates that the
proposed method in this paper is more effective than that in [3] in terms of solution quality.

In terms of computational time, we can see that CT ′ varies from 2.44 to 675.91 s, while CT varies from 0.25
to 2.17 s. The proposed method spends much less time than the method proposed in [3]. This indicates that
the proposed algorithm is much more efficient than that in [3] in terms of computational time. This may be
because new derived properties in this paper significantly reduce the search space for Pareto optimal solutions.

In summary, the proposed method in this paper dramatically outperforms the method proposed in [3] in
terms of both solution quality and computational time.
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Table 2. Computational results for the instances with Ei = {30, 15, 5}, rm ∈ [0.6, 1.0], C = 10,
pj ∈ (100, 200].

Set n m F CT (s) CT REC(%) INCmax(%)
16 50 2.0 12.0 1.122 0.094 19.79 21.88
17 60 2.6 16.0 2.114 0.147 21.03 15.02
18 70 3.0 34.8 4.942 0.142 36.55 28.85
19 80 3.0 43.4 7.197 0.166 22.67 16.81
20 90 3.8 45.2 8.569 0.186 41.62 28.51
21 100 4.0 61.0 10.127 0.166 32.51 20.09
22 110 4.2 89.6 14.730 0.163 24.89 16.10
23 120 4.6 76.2 15.242 0.198 22.91 14.78
24 130 5.0 120.2 27.363 0.228 26.02 15.26
25 140 5.2 148.2 43.454 0.318 21.80 15.68
26 150 6.0 211.4 80.817 0.387 29.48 23.90
27 160 6.6 246.6 215.775 0.899 32.19 25.11
28 170 6.6 253.0 1461.130 6.318 21.47 16.52
29 180 7.0 320.0 3169.854 9.799 30.79 22.73
30 190 7.6 304.2 6996.100 23.836 29.39 22.04
31 200 7.8 353.4 16390.878 45.039 22.07 16.81
32 210 8.4 − − − − −
Average 144.988 1777.831 5.473 26.78 19.71

4.2. Larger-size instances

To further evaluate the effectiveness of the proposed algorithm, we test our algorithm by 80 new larger-size
problems sets. The instances are randomly generated in a similar way with [3]. The processing times pj , ∀i ∈ J ,
are randomly and uniformly generated from (100, 200] and (50, 100] respectively. Batch capacity C is set as 10
and 5, respectively. The duration of each period Ti, ∀i ∈ I, is taken as 480, which corresponds to one period of
three work shifts in each day, i.e., 8*60 min. The number of periods m is set as rmmaxj∈J{pj×k∗/Ti}, where rm

is a given number, which is randomly generated from the interval [0.6, 1.0] in the default case to avoid overmuch
idle periods in scheduling horizon and to make it closer to reality. Three different average unit electricity cost
in a work day are set as 30, 15 and 5, respectively. Considering that the both objectives have importance in
industrial production, the weights in fuzzy-logic-based method are set to be equal, i.e., ω1 = ω2 = 0.5, to
select the most preferable solution. In addition, to more comprehensively evaluate the proposed algorithm, the
sensitivity analysis for input parameter rm as well as Ei, ∀i ∈ I is conducted.

Let CT and (CS
max, ECS) denote the average computational time of each nondominated point, i.e., CT =

CT/F , and the objective vector of the selected preferable solution calculated by fuzzy-logic-based approach,
respectively. To evaluate the electricity cost reducing effectiveness of the selected solution, we will compare its
objective value vector with the vector (CI

max, ECN ), where CI
max can be regarded as the optimal makespan

without constraint of electricity costs and ECN is the corresponding cost. Thus, we calculate the reduced
electricity costs REC as (ECN − ECS)/ECN . Similarly, the increased makespan is calculated as (CS

max −
CI

max)/CI
max, denoted by INCmax . With these notations, the computational results are reported in Tables 2–6

and Figures 2 and 3. Note that each value in these tables is the average value of five instances.
Table 2 reports the computational results for instances with n varying from 50 to 200 and average m varying

from 2.0 to 7.8 in default case. From the table, we can see that the proposed exact ε-constraint method can
find the Pareto front for all the instances with up to 200 jobs, i.e., 20 batches, within 16 391 s with the
average time being 1777.831 s. This work aims to obtain the Pareto front, i.e., all the non-dominated points,
with exact ε-constraint method. The computational time mainly depends on two factors: the actual number of
non-dominated points of the instance, i.e., F , and average computational time for solving each ε-constraint
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Table 3. Computational results for the instances with Ei = {30, 15, 5}, rm ∈ [0.6, 1.0], C = 5,
pj ∈ (100, 200].

Set n m F CT (s) CT REC(%) INCmax(%)
33 50 4.0 74.4 11.616 0.156 35.51 21.52
34 60 5.6 136.8 24.231 0.181 35.17 31.28
35 70 6.0 277.8 63.971 0.229 38.74 35.34
36 80 6.2 239.8 226.190 1.003 28.47 22.00
37 90 6.8 276.6 2488.884 8.638 25.94 18.70
38 100 7.8 436.4 16954.372 38.851 20.46 17.09
39 110 8.2 − − − − −
Average 240.300 3294.877 8.176 30.71 24.32

Table 4. Computational results for the instances with Ei = {30, 15, 5}, rm ∈ [0.6, 1.0], C = 10,
pj ∈ (50, 100].

Set n m F CT (s) CT REC(%) INCmax(%)
40 50 1.2 6.8 0.494 0.062 13.33 23.02
41 100 2.2 229.4 21.576 0.092 26.82 30.16
42 150 3.0 280.6 43.826 0.156 30.96 24.09
43 200 4.0 370.8 207.734 0.557 39.67 25.32
44 250 4.2 101.8 205.057 0.676 9.14 5.92
45 300 5.0 104.2 55.265 0.543 7.81 4.51
46 350 7.0 617.0 505.571 0.813 34.46 26.55
47 400 7.4 502.2 1283.992 2.006 23.91 17.42
48 450 8.6 660.8 1424.866 2.496 25.20 21.13
49 500 9.4 554.4 2357.996 3.377 22.55 18.21
50 550 9.8 386.8 4066.906 6.750 15.72 12.65
51 600 11.4 674.4 11323.212 15.511 20.62 20.85
52 650 12.0 659.8 16353.410 25.084 17.90 15.81
53 700 13.2 – – – – –
Average 396.231 2911.531 4.471 22.16 18.89

problem, i.e., CT . It can be seen from Table 2 that CT rapidly increases with the problem size since both
factors increase. Moreover, it is not difficult to find that the increase of CT is mainly caused by CT due to the
NP-hard nature of the problem. Take sets 16 and 31 for example, CT increases 479.14 (45.039/0.094) times
while the number of F only increases 29.45 (353.4/12.0) times. We note that because of the problem complexity,
the proposed algorithm cannot obtain the Pareto front within 18000s when the number of jobs increases to 210.

In addition, we can see that REC ranges from 19.79% to 41.62% with its average value being 26.78%. In other
words, the total electricity costs under the TOU policy can reduced from 19.79% up to 41.62% with appropriate
scheduling. This shows that appropriate scheduling under TOU policy can offer great benefits to reduce energy
costs for industrial users. INCmax varies from 10.09% to 28.85% with its average value being 19.71%, which
means that the total electricity costs and the makespan are two conflicting objectives. However, note that REC

is greater than INCmax for almost all the problem sets, which indicates that industrial users can benefit more
than loss with the selected preferable solution.

Now we set the batch capacity as 5 and other parameters in Table 2 remain unchanged. Note that the
optimal number of batches k∗ = �n/C� has increased due to the reduction of batch capacity C, which leads
that it is necessary to increase the number of periods m such that all the jobs can be completed in the scheduling
horizon. Thus, m is regenerated according to rmmaxj∈J{pj × k∗/Ti}. The computational results are presented
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Table 5. Comparison for sensitivity analysis of rm m = rmmaxj∈J{pj × k∗/Ti}.

Set rm n m F CT (s) CT REC(%) INCmax(%)
54 90 3.6 45.0 8.321 0.183 31.03 21.73
55 100 4.0 65.0 12.942 0.200 33.50 20.79
56 110 4.2 91.0 19.332 0.210 23.81 15.44
57 [0.6, 1.0] 120 4.8 116.4 22.567 0.196 31.49 21.63
58 130 5.0 119.0 29.596 0.249 27.39 16.49
59 140 5.4 166.2 62.309 0.367 24.74 19.28
60 150 5.8 193.6 102.540 0.527 25.71 20.54
Average 113.743 36.801 0.276 28.24 19.41
61 90 4.0 64.4 9.578 0.149 49.55 34.36
62 100 4.8 106.8 17.086 0.161 32.89 28.87
63 110 5.0 134.0 21.403 0.160 35.27 28.05
64 [1.1,1.5] 120 5.8 197.0 34.427 0.175 46.17 46.50
65 130 7.0 220.6 54.315 0.252 35.40 33.26
66 140 7.4 248.4 67.485 0.273 26.07 22.69
67 150 8.4 322.6 104.918 0.321 16.05 11.93
Average 184.829 44.173 0.213 34.49 29.38
68 90 5.0 85.4 12.966 0.152 25.83 31.17
69 100 5.2 119.4 19.031 0.159 32.89 37.00
70 110 6.0 140.8 24.971 0.179 30.72 26.98
71 [1.6,2.0] 120 6.8 165.2 24.532 0.151 13.17 12.90
72 130 7.8 222.8 52.482 0.239 37.18 32.02
73 140 8.6 345.4 79.176 0.235 30.51 25.65
74 150 9.4 413.6 145.823 0.355 37.01 32.65
Average 213.229 51.283 0.210 29.62 28.34

in Table 3. By comparing the two Tables, it can be observed that for the instances with the same number of jobs,
CT increases when the batch capacity reduces. This is because the number of batches increases. Take sets 16
and 33 for example, both sets have 50 jobs while their computational time are 1.122s and 11.616s, respectively.
Moreover, we can find from Tables 2 and 3 that computational time of most instances with same number of
batches are almost the same, such as sets 21 and 33, sets 27 and 36, etc.

The number of batches per work shift is relatively few due to the relatively large job processing time. To test
the performance of the proposed algorithm for instances with more batches per work shift, we have additionally
conducted the experiments on the instances with pj ∈ (50, 100]. The computational results are reported in
Table 4. It can be seen that the proposed algorithm is able to obtain the Pareto fronts for instances with up
to 650 jobs, i.e., 65 batches, and 12.0 periods within 16 354 s with average time being 2911.531 s. Due to the
complexity of the problem, the proposed method is not able to obtain the Pareto front for the instances with
700 jobs within 18000 s. We can also find that CT rapidly increases with the number of jobs. For example, CT
for set 40 is 0.494 s while for set 52 is 16 353.410 s. Similar to Table 2, the increase of CT is mainly caused
by CT since it increases more times than that of F . For example, by comparing sets 52 and 40, we can see
that CT increases 404.58 (25.084/0.062) times while F only increases 97.03 (659.8/6.8) times. Moreover, by
comparing Table 4 with Table 2, it can be observed that for the instances with the same number of jobs, CT in
Table 4 is less than that in Table 2. This may be because the instances in Table 2 have more periods. Besides,
we can find that CT in Table 2 increases faster than that in Table 4. Take sets 16 and 31 in Table 2 and sets
40 and 50 in Table 4 for example, for sets 16 and 31 CT increases 14051.93 (15766.264/1.122) times when the
number of jobs and periods increase from 50 to 200 and 2.0 to 7.8, respectively, while for sets 40 and 50 CT
increases 8232.60 (4066.906/0.494) times when the number of jobs and periods increase from 50 to 550 and 1.2
to 9.8, respectively. This indicates that the proposed algorithm is more efficient for the instances with less job
processing time.
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Table 6. Comparison for sensitivity analysis of Ei

Set Ei n m F CT (s) CT REC(%) INCmax(%)
75 90 3.0 32.2 4.274 0.153 5.00 4.35
76 100 4.0 86.0 12.858 0.150 33.30 27.38
77 110 4.0 57.0 9.752 0.168 6.20 4.69
78 {20, 12, 5} 120 5.0 92.8 16.382 0.180 22.64 19.36
79 130 5.0 109.8 25.377 0.230 13.55 11.55
80 140 5.0 99.4 43.517 0.360 12.10 9.21
81 150 6.0 148.4 64.410 0.409 18.28 16.33
Average 89.371 25.224 0.236 15.87 13.27
82 90 3.0 21.0 2.705 0.129 3.82 2.58
83 100 4.0 68.4 11.928 0.175 35.21 21.58
84 110 4.0 64.0 11.353 0.178 17.62 10.35
85 {30, 15, 5} 120 5.0 113.0 23.687 0.210 37.85 25.62
86 130 5.0 124.4 29.671 0.239 28.09 17.25
87 140 5.0 123.0 36.473 0.296 17.77 10.59
88 150 6.0 217.2 92.663 0.441 29.06 23.40
Average 104.429 29.783 0.238 24.20 15.91
89 90 3.0 21.0 2.824 0.135 4.29 2.58
90 100 4.0 68.6 11.148 0.163 40.02 21.58
91 110 4.0 64.4 10.477 0.166 20.47 10.47
92 {50, 25, 5} 120 5.0 114.0 20.486 0.280 42.03 25.62
93 130 5.0 124.2 27.214 0.219 31.53 17.25
94 140 5.0 124.5 35.885 0.287 20.51 10.85
95 150 6.0 218.0 92.543 0.439 31.89 23.40
Average 104.957 28.654 0.227 27.25 15.96

To further evaluate the performance of the combined approach, sensitive analysis experiments for input
parameters m and Ei are conducted. Since the performance of the instances with pj ∈ (100, 200] (Tab. 2) is
worse than that with pj ∈ (50, 100] (Tab. 4), to better test the stability of the proposed algorithm, we conduct
the sensitive analysis experiments based on the former job processing time generation scheme.

Table 5 reports the computational results for three scenarios regrading number of periods m. m is defined as
rm maxj∈J{pj ×k∗/Ti}. Parameter rm is generated from [0.6, 1.0], which is regarded as the baseline. Other two
cases rm are generated from [1.1, 1.5] and [1.6, 2.0], respectively, and the other parameters remain unchanged.

From Table 5, we can see that for each type of rm, the computational time CT and number of nondominated
points F increase with n and m. Moreover, we can see in Figure 2 that the changing trends of CT and F more
obviously for larger rm. More precisely, we can observe that given the number of jobs n, the computational
time increases with the number of periods m. Take sets 67 and 74 as an example, both sets have 150 jobs but
different periods, while CT of set 74 is greater than that of set 67, which is mainly because that F increases
from 322.6 to 413.6. This shows that the increasing of m adds the complexity of the problem, since more periods
result in more nondominated points. On the other hand, we can also find that given m, CT increases with n.
Take sets 63 and 58 for example, both of them have five periods, but CT are 21.403 and 29.596 s, respectively.
This implies that the complexity of the problem increases with the number of jobs. Besides, by comparing REC

and INCmax under three different scenarios, we can find that they slightly increases when rm increases. This
shows that more periods may result in more electricity costs reduction, but may incur a longer makespan.

Table 6 presents the results of sensitivity analysis of unit electricity cost Ei, which are set as {20, 12, 5}, {30,
15, 5} and {50, 25, 5}, respectively. The computational time of the three scenarios range between 4.274 and
64.410 s, 2.705 and 92.663 s, 2.824 and 92.543 s, respectively. Moreover, it can be found in Figure 3 that the
changing trends of CT for the three scenarios are almost the same. Furthermore, the average computational time
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Figure 2. Computational time for sensitivity analysis of m. m = rmmaxj∈J{pj × k∗/Ti}.
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Figure 3. Computational time for sensitivity analysis of Ei.

of the proposed algorithm for all scenarios are 25.224 s, 29.783 s and 28.654 s, respectively, which are almost the
same. These results indicate that our proposed algorithm is insensitive to the changes of unit electricity cost.

Besides, by comparing REC of the three scenarios, we can see that given the number of jobs and periods,
in general the greater difference of unit electricity cost among different periods, the more electricity costs can
be reduced. Take sets 81 and 95 for example, both problem sets have 150 jobs and six periods, set 81 reduces
18.28% electricity costs while the electricity costs in the latter set is reduced up to 31.89%. This demonstrates
that industrial users may benefit more from the TOU policy when the differences of electricity prices among
different periods are bigger.

5. Conclusion

In this paper, we have investigated a bi-objective single-machine batch scheduling problem under TOU
electricity prices. The two objectives are to minimize the makespan and to minimize the electricity costs. New
properties are firstly analyzed for the problem, which greatly reduce its search space for a Pareto optimal
solution. With such properties, the problem is demonstrated to be NP-hard and a simplified MILP is proposed.
Then, we propose an exact ε-constraint method to obtain its Pareto front and a fuzzy-logic-based approach
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is employed to help decision makers derive a most preferable solution. Computational results show that the
proposed approach can efficiently solve instances with up to 650 jobs within reasonable time and obtain the
Pareto front.

In future research, on one hand we may resort to efficient problem-specific heuristics to generate well-
distributed nondominated points for larger-size problems within a shorter time. We will also extend our mathe-
matical model to the case where the assumption of a job must be completed in single work shift is relaxed. On
the other hand, we may extend our study from the following aspects: 1) from the perspective of energy saving,
power off and speed scaling strategies can be introduced to reduce energy consumption and costs. For example,
when the processing is completed in a period, the machine may be idle for a certain amount of time until the
next processing begins, then the machine can be turned off with power off strategy to decrease the total energy
consumption; 2) from the perspective of machine environment, this study can be extended from single machine
to parallel and flow shop machines; and 3) from the perspective of job characteristics, we may extend this work
to those considering non-identical job sizes and non-identical job release times. Finding effective and efficient
approaches for these potential problems requires more work.
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[14] M. Leitner, I. Ljubić and M. Sinnl, Solving the bi-objective prize-collecting steiner tree problem with the ε-constraint method.
Electron. Notes Discrete Math. 41 (2013) 181–188.

[15] H. Luo, B. Du, G.Q. Huang, Huaping Chen and Xiaolin Li, Hybrid flow shop scheduling considering machine electricity
consumption cost. Int. J. Prod. Econ. 146 (2013) 423–439.

[16] G. Mavrotas, Effective implementation of the ε-constraint method in multi-objective mathematical programming problems.
Appl. Math. Comput. 213 (2009) 455–465.
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