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ON THE AVERAGE LOWER BONDAGE NUMBER OF A GRAPH

Tufan Turaci
1

Abstract. The domination number is an important subject that it has become one of the most
widely studied topics in graph theory, and also is the most often studied property of vulnerability of
communication networks. The vulnerability value of a communication network shows the resistance of
the network after the disruption of some centers or connection lines until a communication breakdown.
Let G = (V (G), E(G)) be a simple graph. The bondage number b(G) of a nonempty graph G is the
smallest number of edges whose removal from G result in a graph with domination number greater than
that of G. If we think a graph as a modeling of network, the average lower bondage number of a graph
is a new measure of the graph vulnerability and it is defined by bav(G) = 1

|E(G)|
∑

e∈E(G) be(G), where

the lower bondage number, denoted by be(G), of the graph G relative to e is the minimum cardinality
of bondage set in G that contains the edge e. In this paper, the above mentioned new parameter has
been defined and examined. Then upper bounds, lower bounds and exact formulas have been obtained
for any graph G. Finally, the exact values have been determined for some well-known graph families.
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1. Introduction

Graph theory has seen an explosive growth due to interaction with areas like computer science, operation
research, etc. Especially, it has become one of the most powerful mathematical tools in the analysis and study of
the architecture of a network. The study of networks has become an important area of multidisciplinary research
involving mathematics, informatics, chemistry, social sciences and other theoretical and applied sciences. A
network is described as an undirected and unweighted graph in which vertices represent the processing and
edges represent the communication channel between them [11,17, 18].

It is known that communication systems are often exposed to failures and attacks. So robustness of the
network topology is a key aspect in the design of computer networks. The stability of a communication network,
composed of processing nodes and communication links, is of prime importance to network designers. As the
network begins losing links or nodes, eventually there is a loss in its effectiveness. In the literature, various
measures were defined to measure the robustness of network and a variety of graph theoretic parameters have
been used to derive formulas to calculate network vulnerability. Graph vulnerability relates to the study of
graph when some of its elements (vertices or edges) are removed. The measures of graph vulnerability are
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usually invariants that measure how a deletion of one or more network elements changes properties of the
network. The best known measure of reliability of a graph is its connectivity. The vertex (edge) connectivity
is defined to be the minimum number of vertices (edges) whose deletion results in a disconnected or trivial
graph [11]. Then toughness [9], integrity [5], domination number [6, 14], bondage number [3,4,10,13], etc. have
been proposed for measuring the vulnerability of networks. Recently, some average vulnerability parameters such
as average lower independence number [2, 15], average lower domination number [1, 15], average connectivity
number [7] have been defined. The average parameters have been found to be more useful in some circumstance
than the corresponding measures based on worst-case situation [16].

Let G = (V (G), E(G)) be a simple undirected graph of order n. We begin by recalling some standard
definitions that we need throughout this paper. For any vertex v ∈ V (G), the open neighborhood of v is
NG(v) = {u ∈ V (G)|uv ∈ E(G)} and closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The degree of v in G
denoted by dG(v), is the size of its open neighborhood. The complement G of a graph G has V (G) as its vertex
sets, but two vertex are adjacent in G if only if they are not adjacent in G. A set of pairwise independent edges
of G is called a matching in G, while a matching of maximum cardinality is a maximum matching in G. If M is
a matching in a graph G with the property that every vertex of G is incident with an edge of M , then M is a
perfect matching in G. The smallest integer not less than x is denoted by �x�. A set S ⊆ V (G) is a dominating
set if every vertex in V (G) − S is adjacent to at least one vertex in S. The minimum cardinality taken over all
dominating sets of G is called the domination number of G is denoted by γ(G) [6, 14].

The study of domination in graphs is an important research area, perhaps also the fastest-growing area within
graph theory. The reason for the steady and rapid growth of this area may be the diversity of its applications
to both theoretical and real world problems. For instance, dominating sets in graphs are natural models for
facility location problems in operations research [14] or domination number is the one of the most important
vulnerability parameter for networks [1, 14]. When investigating the domination number of a given graph G,
one may want to learn the answer of the following question: How does the domination number increases in a
graph G? One of the vulnerability parameters known as bondage number in a graph G answers this question.
The bondage number b(G) was introduced by Fink et al. [10] and is defined as follows:

b(G) = min{|B| : B ⊆ E(G), γ(G − B) > γ(G)}.
We call such an edge set B that γ(G − B) > γ(G) the bondage set and the minimum one the minimum

bondage set. If b(G) does not exist, for example empty graphs, then b(G) = ∞ is defined.
In 2004, Henning introduced the concept of average domination and average independence [15]. Finding

largest dominating sets and independent sets in graphs is the problem which is closely in relation with the
concept of average domination and average independence. Also, the average lower domination and average
lower independence number are the theoretical vulnerability parameters for a network that is represented by a
graph [1, 2]. The average lower domination number of a graph G, denoted by γav(G), is defined as:

γav(G) =
1

|V (G)|
∑

v∈V (G)

γv(G),

where the lower domination number, denoted by γv(G), is the minimum cardinality of a dominating set of the
graph G that contains the vertex v [8, 15].

Our aim in this paper is to define a new vulnerability parameter, so called average lower bondage number. In
Section 2, some well-known basic results are given for bondage number. In Section 3, we define a new parameter
namely as average lower bondage number denoted by bav(G). In Section 4, we determine upper bounds, lower
bounds and exact solutions of the average lower bondage number for any graph G. Finally, the average lower
bondage numbers of the popular well-known graphs are computed in Section 5.

2. Basic results

In this section some well-known basic results are given with regard to bondage number.
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Figure 1. Graphs G and H .

Theorem 2.1 ([10]). For a complete graph Kn of order n ≥ 2, then b(Kn) = �n
2 �.

Theorem 2.2 ([10]). For a path graph Pn of order n ≥ 2, then

b(Pn) =

{
2 , if n ≡ 1(mod 3);

1 , otherwise.

Theorem 2.3 ([10]). For a cycle graph Cn of order n ≥ 3, then

b(Cn) =

{
3 , if n ≡ 1(mod 3);

2 , otherwise.

Theorem 2.4 ([10]). For a star graph K1,n of order n + 1, where n ≥ 2. Then,

b(K1,n) = 1.

Theorem 2.5 ([19]). If G is a nonempty graph with a unique minimum dominating set, then b(G) = 1.

3. The average lower bondage number

In this section, we introduce a new graph theoretical parameter: the average lower bondage number and it is
defined as:

bav(G) =
1

|E(G)|
∑

e∈E(G)

be(G),

where the lower bondage number, denoted by be(G), of the graph G relative to e is the minimum cardinality of
bondage set in the graph G that contains the edge e.

If we think a graph as a modeling of network, the average lower bondage number may be more sensitive than
other measures of vulnerability as like connectivity, domination number and bondage number for distinguish
two graphs whose number of the vertices and edges are the same. For example, consider two graphs G and H
in Figure 1, where |V (G)| = |V (H)| = 8 and |E(G)| = |E(H)| = 7. They have not only equal connectivity
but also equal domination number and bondage number such as k(G) = k(H) = 1, γ(G) = γ(H) = 3 and
b(G) = b(H) = 1. These values could be easily checked by readers. So, how can we distinguish between the
graphs G and H?

When the average lower bondage numbers of these two graphs G and H are computed, bav(G) = 12
7 and

bav(H) = 11
7 are obtained. The results could be checked by readers. Thus, the average lower bondage number

may be used for distinguish between these two graphs G and H .
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4. Upper bounds, lower bounds and exact formulas

Theorem 4.1. Let G be any connected graph of order n. Then,

b(G) ≤ bav(G) ≤ (b(G) + 1) − b(G)
|E(G)| ·

Proof. Let B be a set including minimum bondage sets. We have two cases depending on the cardinality of B.

Case 1. |B| = 1.
It is clear that the minimum bondage set is unique and it is denoted by B∗. Let e∗1, e

∗
2, . . . , e

∗
|B∗| be elements

of B∗. Then we get be∗
i
(G) = b(G), where i ∈ {1, . . . , |B∗|}. The lower bondage number is b(G) + 1 for every

edge of E(G) \ B∗. Thus, we have

bav(G) =
1

|E(G)|

⎛
⎝ ∑

e∗
i ∈B∗

be∗
i
(G) +

∑
ei∈E(G)\B∗

bei(G)

⎞
⎠

=
1

|E(G)| (|B
∗|b(G) + (b(G) + 1)(|E(G)| − |B∗|))

= b(G) + 1 − |B∗|
|E(G)| ·

Clearly, |B∗| = b(G). Then we have bav(G) = b(G) + 1 − b(G)
|E(G)| . It is an upper bound of bav(G).

Case 2. |B| > 1.
If the union of the minimum bondage sets is equal to E(G), then the lower bondage number is b(G) for every

edge of E(G). Thus, we get bav(G) = b(G) is also lower bound.
As a result, b(G) ≤ bav(G) ≤ (b(G) + 1) − b(G)

|E(G)| is obtained. Hence the proof is completed. �
Theorem 4.2. Let G be a connected graph of order n. If the graph G has unique minimum dominating set,
then

bav(G) ≥ 2 −
∑γ(G)

i=1 dG(v∗i )
|E(G)| ,

where minimum dominating set includes v∗i for 1 ≤ i ≤ γ(G).

Proof. Let S ⊆ V (G), and let S be a unique dominating set which includes vertices v∗i , where i ∈ {1, . . . , γ(G)}.
Clearly, |S| = γ(G). A set which includes edges that are incident to each vertex of S is denoted by B∗. Then let
e∗1, e

∗
2, . . . , e

∗
|B∗| be elements of B∗, and let e1, e2, . . . , e|E(G)|−|B∗| be elements of E(G) \ B∗. We have two cases

depending on the cardinality of S.

Case 1. |S| = 1.
The vertex of S is denoted by v∗1 . We know that be∗

i
(G) = 1 for all e∗i ∈ B∗, where i ∈ {1, . . . , |B∗|} by the

Theorem 2.5. It is not difficult to see that bei(G) = 2 for all ei ∈ E(G) \ B∗, where i ∈ {1, . . . , |E(G)| − |B∗|}.
Thus, we have

bav(G) =
1

|E(G)|

⎛
⎝ ∑

e∗
i ∈B∗

be∗
i
(G) +

∑
ei∈E(G)\B∗

bei(G)

⎞
⎠

=
1

|E(G)| (|B
∗| + 2(|E(G)| − |B∗|))

= 2 − |B∗|
|E(G)| ·

Clearly, |B∗| = dG(v∗1) = n − 1. Then bav(G) = 2 − n−1
|E(G)| is obtained.
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Case 2. |S| > 1.
We have two subcases depending on the intersection of closed neighborhood sets of each pair of vertices of S.

Subcase 1. If the intersection of closed neighborhood sets of each pair of vertices of S is empty, that is NG[v∗i ]∩
NG[v∗j ] = ∅ for all distinct i, j ∈ {1, 2, . . . , |S|}, then obviously we have be∗

i
(G) = 1 for all e∗i ∈ B∗. Furthermore,

we have bei(G) = 2 for all ei ∈ E(G) \ B∗. Then we know that bav(G) = 2 − |B∗|
|E(G)| by the Case 1. Clearly,

|B∗| =
∑γ(G)

i=1 dG(v∗i ). Thus, bav(G) = 2 −
∑γ(G)

i=1 dG(v∗
i )

|E(G)| is obtained.

Subcase 2. If at least one intersection of closed neighborhood sets of at least one pair of vertices of S is not
empty, then obviously the graph G has either at least one edge between any two vertices of S, or at least one
vertex which is adjacent to any two vertices of S. Then be∗

i
(G) = 2 is obtained for at least one edge e∗i ∈ B∗.

Thus, we get either be∗
i
(G) = 1, or be∗

i
(G) = 2 for all e∗i ∈ B∗. Furthermore, we have bei(G) = 2 for all

ei ∈ E(G) \B∗. Clearly, |B∗| ≤∑γ(G)
i=1 dG(v∗i ). Because of be∗

i
(G) ≤ 2 for all e∗i ∈ B∗ and |B∗| ≤∑γ(G)

i=1 dG(v∗i ),

we get bav(G) > 2 −
∑γ(G)

i=1 dG(v∗
i )

|E(G)| .

As a result, we obtain bav(G) ≥ 2 −
∑γ(G)

i=1 dG(v∗
i )

|E(G)| . The proof is completed. �

Theorem 4.3. Let G be a connected graph of order n and the domination number γ(G) = 1, and let s be the
number of vertices of degree n − 1, where s ≥ 2. Then,

bav(G) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s+2
2 −

(
s

2

)
|E(G)| , if s is even;

s+3
2 −

s(n−1)−
(

s

2

)
|E(G)| , if s is odd.

Proof. Let v∗i be vertices of degree n − 1, where i ∈ {1, . . . , s}. These vertices form a complete graph, and also

it is denoted by Ks. We know that b(Ks) = � s
2� by the Theorem 2.1 and |E(Ks)| =

(
s

2

)
. Let x be

(
s

2

)
, and

let e∗1, e
∗
2, . . . , e

∗
x be elements of E(Ks). We have two cases depending on s.

Case 1. s is even.
Since s is even, b(Ks) = s

2 is obtained. The removal of a perfect matching from the sub graph Ks reduces
the degree of each vertex to n− 2 and therefore yields the graph G with γ(G) = 2. Clearly, b(G) = s

2 . We know
that a perfect matching including any edge e∗i is removed from the subgraph Ks, the domination number of G
increases. Hence we have be∗

i
(G) = s

2 , where i ∈ {1, . . . , x}. Clearly, the lower bondage number is s
2 +1 for every

edge of E(G) \ E(Ks). Thus, we have

bav(G) =
1

|E(G)|

⎛
⎝ ∑

e∗
i ∈E(Ks)

be∗
i
(G) +

∑
ei∈E(G)\E(Ks)

bei(G)

⎞
⎠

=
1

|E(G)|
(
x
(s

2

)
+ (|E(G)| − x)

(s

2
+ 1
))

=
s + 2

2
− x

|E(G)|

=
s + 2

2
−

(
s

2

)
|E(G)| ·
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Case 2. s is odd.
Since s is odd, b(Ks) = s+1

2 is obtained. The removal of a maximum matching from the subgraph Ks leaves
the graph G having exactly one vertex of degree n − 1. Together with the maximum matching, when an edge
which is incident to the vertex of degree n− 1 is removed from the graph G yields the graph G with γ(G) = 2.
Clearly, b(G) = s+1

2 . Let B∗ be a set which includes edges that are adjacent to each edge of the subgraph Ks,
and let e′i ∈ E(Ks)∪B∗. Clearly, |E(Ks)∪B∗| = s(n− 1)−x. We know that a minimum bondage set including
any edge e′i is removed from the graph G, the domination number of G increases. Thus we have be′

i
(G) = s+1

2 ,
where i ∈ {1, . . . , (s(n−1)−x)}. Clearly, the lower bondage number is s+3

2 for every edge of E(G)\(E(Ks)∪B∗).
Thus, we have

bav(G) =
1

|E(G)|

⎛
⎝ ∑

e′
i∈E(Ks)∪B∗

be′
i
(G) +

∑
ei∈E(G)\(E(Ks)∪B∗)

bei(G)

⎞
⎠

=
1

|E(G)|
(

(s(n − 1) − x)
(

s + 1
2

)
+ (|E(G)| − (s(n − 1) − x))

(
s + 3

2

))

=
s + 3

2
− s(n − 1) − x

|E(G)|

=
s + 3

2
−

s(n − 1) −
(

s

2

)
|E(G)| ·

The proof is completed. �

Corollary 4.4. Let G be a connected graph of order n and the domination number γ(G) = 1, and let s be the
number of vertices of degree n − 1. If s = 1, then

bav(G) = 2 − n − 1
|E(G)| ·

Proof. Since the minimum dominating set is unique, the proof is done as in the Case 1 of Theorem 4.2. �

Definition 4.5 ([12]). Let p1, p2, . . . , pn be a non-negative integers and the graph G be such a graph, where
|V (G)| = n. The thorn graph of the graph G, with parameters p1, p2, . . . , pn is obtained by attaching pi new
vertices of degree one to the vertex ui of the graph G, where i ∈ {1, . . . , n}. The thorn graph of the graph G
will be denoted by G∗, or if the respective parameters need to be specified, by G∗(p1, p2, . . . , pn).

Theorem 4.6. Let G be any connected graph of order n. If G∗ is a thorn graph of G with pi ≥ 2. Then,

bav(G∗) = 1 +
|E(G)|
|E(G∗)| ·

Proof. The domination number of thorn graph G∗ is γ(G∗) = |V (G)|. Let S ⊆ V (G∗) and NG∗ [S] = V (G∗).
Clearly, S is equal to the complement of V (G∗) \ V (G) and it is unique dominating set. So, we have b(G∗) = 1
by the Theorem 2.5. When an edge which belongs to the set E(G∗) \ E(G) removed from G∗, this value
is obtained. Let e∗1, e

∗
2, . . . , e

∗
|E(G∗)\E(G)| be elements of E(G∗) \ E(G). Clearly, we have be∗

i
(G∗) = 1, where

i ∈ {1, . . . , |E(G∗) \ E(G)|}. Furthermore, let e1, e2, . . . , e|E(G)| be elements of E(G). Then we get bei(G∗) = 2,
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where i ∈ {1, . . . , |E(G)|}. Thus, we have

bav(G∗) =
1

|E(G∗)|

⎛
⎝ ∑

e∗
i ∈E(G∗)\E(G)

be∗
i
(G∗) +

∑
ei∈E(G)

bei(G
∗)

⎞
⎠

=
1

|E(G∗)| ((|E(G∗)| − |E(G)|) + 2(|E(G)|))

= 1 +
|E(G)|
|E(G∗)| ·

The proof is completed. �

Corollary 4.7. Let G be any connected graph of order n. If G∗ is a thorn graph of G with pi ≥ 2. Then,

bav(G∗) =

(∑|V (G)|
i=1 (pi)

)
+ 2|E(G)|

|E(G∗)| ·

Proof. Because of the definition of thorn graph G∗, we have |E(G∗)|−|E(G)| = |V (G∗)|−|V (G)|. So, |E(G∗)| =
|V (G∗)| − |V (G)| + |E(G)| is obtained. Clearly, |V (G∗)| − |V (G)| =

∑|V (G)|
i=1 (pi).

Hence we get bav(G∗) = (
∑ |V (G)|

i=1 (pi))+2|E(G)|
|E(G∗)| by the Theorem 4.6. �

5. The average lower bondage number of some well-known graphs

In this section we calculate the average lower bondage number of some well known graphs such as the path
graph Pn, the cycle graph Cn, the complete graph Kn, the star graph K1,n and the wheel graph W1,n.

Theorem 5.1. Let Pn be a path graph of order n ≥ 2. Then,

bav(Pn) =

⎧⎪⎪⎨
⎪⎪⎩

4n−6
3n−3 , if n ≡ 0(mod 3);

2, if n ≡ 1(mod 3);
5n−7
3n−3 , if n ≡ 2(mod 3).

Proof. While we are calculating the average lower bondage number of the path graph Pn, we have three cases
according to the number of vertices of Pn.

Case 1. n ≡ 0(mod 3).
It is clear that the dominating set of Pn is unique. By the Theorem 4.2, we have

bav(Pn) =
4n − 6
3n − 3

·

Case 2. n ≡ 1 (mod 3).
We know that γ(Pn) = �n

3 � (see [14]). The removal of an edge from Pn leaves a graph H consisting of two
paths Pn1 and Pn2 , where n1 +n2 = n. Then either n1 ≡ 1 (mod 3) and n2 ≡ 0 (mod 3), or n1 ≡ n2 ≡ 2 (mod 3).
In the former case,

γ(H) = γ(Pn1) + γ(Pn2) =
⌈n1

3

⌉
+
⌈n2

3

⌉
=

n1 + 2
3

+
n2

3
=

n + 2
3

=
⌈n

3

⌉
= γ(Pn).
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e3k e3k+1

Graph P3k+2

e3k-1

v3k v3k+1
v3k+2v4v3v2v1

v3k-1

Figure 2. The path graph Pn of order n = 3k + 2.

In the latter case,

=
n1 + 1

3
+

n2 + 1
3

=
n + 2

3
=
⌈n

3

⌉
= γ(Pn).

In either case, we get b(Pn) ≥ 2.
Let H be a graph obtained from the deletion of two adjacent edges of Pn. Then either H may consist of two

isolated vertices and a path of order n − 2, or H may consist of an isolated vertex and two paths Pn1 and Pn2 ,
where n1 + n2 = n − 1. Furthermore, we get either n1 ≡ 2(mod 3) and n2 ≡ 1(mod 3), or n1 ≡ n2 ≡ 0(mod 3).

If H consists of two isolated vertices and a path of order n − 2, then we have

γ(H) = 2 + γ(Pn−2) = 2 +
⌈

n − 2
3

⌉
= 2 +

n − 1
3

= 2 +
(⌈n

3

⌉
− 1
)

= 1 +
⌈n

3

⌉
= 1 + γ(Pn),

whence b(Pn) ≤ 2, and so b(Pn) = 2. To calculate the lower bondage number of every edge of Pn, the examining
of two subcases is sufficed. These subcases as below:

Subcase 1. If H consists of two isolated vertices and a path of order n − 2. This case is done above.
Subcase 2. If H consists of an isolated vertex and two paths P3m+2 and P3s+1, where m ≥ 0 and s ≥ 0. Clearly,

(3m + 2) + (3s + 1) = n − 1. So we have m + s = n−4
3 . Thus,

γ(H) = 1 + γ(P3m+2) + γ(P3s+1) = 1 +
⌈

3m + 2
3

⌉
+
⌈

3s + 1
3

⌉
= 1 + (m + 1) + (s + 1)

= 3 + (m + s) = 3 +
n − 4

3
= 3 +

(⌈n

3

⌉
− 2
)

= 1 +
⌈n

3

⌉
= 1 + γ(Pn).

Let ei be any edges of the graph Pn. As a result, we obtain bei(Pn) = 2 for all ei ∈ E(Pn) by the Subcases 1
and 2. Hence bav(Pn) = 2 is obtained.

Case 3. n ≡ 2(mod 3).
We know that the graph Pn has (n − 1)- edges also are labeled by ei, where i ∈ {1, . . . , n − 1}. The graph

P3k+2 whose vertices and edges are labeled is shown in Figure 2.
We have b(Pn) = 1 for n = 3k + 2 by the Theorem 2.2. This value is obtained when an edge {e3k+1} is

removed from the Pn, where k ∈ {0, . . . , n−2
3 }. Thus, we have bei(Pn) = 1 for these edges. Clearly, the lower

bondage number of the remaining edges is bei(Pn) = 2. If we think that the edge set of Pn be E(Pn) = E1 ∪E2,
as follows:

E1: The set contains edges which are labeled by {e3k+1}, where k ∈ {0, . . . , n−2
3 }.

E2: The set contains edges of E(Pn) \ E1.
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Clearly, |E1| = n+1
3 and |E2| = 2n−4

3 . Thus, we have

bav(Pn) =
1

|E(Pn)|

( ∑
ei∈E1

bei(Pn) +
∑

ei∈E2

bei(Pn)

)

=
1

n − 1

((
n + 1

3

)
+ 2

(
2n − 4

3

))

=
5n− 7
3n− 3

·

The proof is completed. �

Theorem 5.2. Let Cn be a cycle graph of order n ≥ 3. Then,

bav(Cn) =

{
3, if n ≡ 1(mod 3);

2, otherwise.

Proof. Let ei be any edges of the graph Cn. We know that γ(Cn) = �n
3 � (see [14]). We have two cases depending

on n.

Case 1. n ≡ 0, 2 (mod 3).
Due to γ(Cn) = γ (Pn), we have b (Cn) ≥ 2. The removal of two adjacent edges from the graph Cn leaves a

graph H consisting of an isolated vertex and a path of order n − 1. Thus,

γ(H) = 1 + γ(Pn−1) = 1 +
⌈

n − 1
3

⌉
= 1 +

⌈n

3

⌉
= 1 + γ(Cn),

so that b(Cn) ≤ 2. Thus, b(Cn) = 2. Since b(Cn) = 2 is obtained when any two adjacent edges are removed
from the graph Cn, we get bei(Cn) = 2 for all ei ∈ E(Cn). Hence bav(Cn) = 2 is obtained.

Case 2. n ≡ 1(mod 3).
We know that b(Cn) ≥ 3 for n = 3k + 1 by the definition of Cn and the Case 2 of Theorem 5.1. Furthermore,

we know that the domination number of Cn increases when any three consecutive edges of Cn are removed by
the Theorem 2.3. Due to b(Cn) ≤ 3, we have b(Cn) = 3. Clearly, we get bei(Cn) = 3 for all ei ∈ E(Cn). Hence
bav(Cn) = 3 is obtained.

The proof is completed. �

Theorem 5.3. Let Kn be a complete graph of order n ≥ 2. Then,

bav(Kn) =
⌈n

2

⌉
·

Proof. Theorem 4.3 is ensured for the graph Kn. We have two cases in the proof according to the parity of the

number of vertices of Kn. Therefore, we know that |V (Kn)| = n, |E(Kn)| =
(

n

2

)
, and also the graph Kn has

n-vertices of degree n − 1. By the Theorem 4.3, the average lower bondage number is n
2 and n+1

2 for n is even
number and odd number, respectively. Thus, bav(Kn) = �n

2 � is obtained. �

Theorem 5.4. Let K1,n be a star graph of order n + 1, where n ≥ 2. Then,

bav(K1,n) = 1.

Proof. Since dominating set is unique, |V (K1,n)| = n + 1 and |E(K1,n)| = n, we have bav(K1,n) = 1 by the
Case 1 of Theorem 4.2. �
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Theorem 5.5. Let W1,n be a wheel graph of order n + 1, where n ≥ 3. Then,

bav(W1,n) =
3
2
·

Proof. Since dominating set is unique, |V (W1,n)| = n + 1 and |E(W1,n)| = 2n, we have bav(W1,n) = 3
2 by the

Case 1 of Theorem 4.2. �

6. Conclusion

In this study, a new graph theoretical parameter namely the average lower bondage number has been presented
for the network vulnerability. The present parameter has been constructed by summing of the lower bondage
number of every edge of a graph divided by the number of edges of the graph. Additionally, the stability
of popular interconnection networks has been studied and their average lower bondage numbers have been
computed. These networks have been modeled with the complete graphs, the path graphs, the cycle graphs, the
star graphs and the wheel graphs. Then upper bounds, lower bounds and exact formulas of the average lower
bondage number have been obtained for any given graph G. As a further study, exact formulas or bounds may
be obtained for graph operations and trees.

Acknowledgements. The author would like to express their deepest gratitude to the anonymous referees for the construc-
tive suggestions and comments that improve the quality of this paper.
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