
RAIRO-Oper. Res. 50 (2016) 995–1001 RAIRO Operations Research
DOI: 10.1051/ro/2015061 www.rairo-ro.org

AN IMPROVED BINARY SEARCH ALGORITHM
FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM ∗

Cheng He
1
, Joseph Y-T. Leung

2
, Kangbok Lee

3
and Michael L. Pinedo

4

Abstract. The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem with addi-
tional disjoint multiple-choice constraints. Gens and Levner presented for this problem an approximate
binary search algorithm with a worst case ratio of 5. We present an improved approximate binary
search algorithm with a ratio of 3 + (1

2
)t and a running time O(n(t + log m)), where n is the number

of items, m the number of classes, and t a positive integer. We then extend our algorithm to make it
also applicable to the Multiple-Choice Multidimensional Knapsack Problem with dimension d.

Mathematics Subject Classification. 68Q25, 90C10, 90C27.

Received July 15, 2015. Accepted September 24, 2015.

1. Introduction

The Multiple-Choice Knapsack Problem (MCKP) can be described as follows. We are given m classes N1,
N2, . . . , Nm of items, that are mutually disjoint, and that have to be packed into a knapsack with capacity b.
Class Ni contains ni items and we refer to the jth item of the ith multiple-choice class as item (i, j). Item (i, j)
has a profit cij and a weight aij , where cij , aij (1 ≤ i ≤ m and 1 ≤ j ≤ ni) and b are positive integers. Thus,
the total number of items is n =

∑m
i=1 ni. We are supposed to choose at most one item from each class such

that the total profit is maximized and the total weight does not exceed the capacity b. Therefore, the MCKP
may be formulated with X = (xij) as:

maximize f(X) =
m∑

i=1

∑
j∈Ni

cijxij

Keywords. Multiple-Choice Knapsack Problem (MCKP), Approximate binary search algorithm, Worst-case performance ratio,
Multiple-choice Multi-dimensional Knapsack Problem (MMKP).

∗ This work was supported by NSFC (grant No. 11201121) and CSC (201309895008) and (Young Backbone Teachers of Henan
Colleges 2013GGJS-079) and PSC CUNY (Grant TRADA-46-477).
1 School of Science, Henan University of Technology, Zhengzhou, Henan 450001, P.R. China. hech202@163.com
2 Department of Computer Science, New Jersey Institute of Technology, Newark NJ-07102, USA.
3 Department of Business and Economics, York College, The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica,
New York 11451, USA.
4 Department of Information, Operations and Management Sciences, Stern School of Business, New York University, 44 West
4th Street, New York 10012-1126, USA.

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2016

http://dx.doi.org/10.1051/ro/2015061
http://www.rairo-ro.org
http://www.edpsciences.org

996 CHENG HE ET AL.

subject to
m∑

i=1

∑
j∈Ni

aijxij ≤ b

∑
j∈Ni

xij ≤ 1, i = 1, 2, . . . , m

xij ∈ {0, 1}, i = 1, 2, . . . , m; j ∈ Ni.

MCKP has been extensively studied (see e.g., Armstrong et al. [1], Pisinger [9], and Lawler [6]). It has practical
applications in various areas such as capital investment and planning choice in transportation.

Lawler [6] developed a fully polynomial time approximation scheme (FPTAS) for the problem which runs in
time O(n log n+(mn)/ε). Thus, an approximation algorithm with the same or of higher time complexity would
not be of interest. We propose an approximation algorithm with a lower time complexity and a constant bound.

Gens and Levner [4] presented an approximate binary search algorithm for finding an approximate solution
for the MCKP. For every instance I of MCKP, let f0(I) and f∗(I) be the solution values obtained by the
algorithm and by an optimal algorithm, respectively. Gens and Levner proved that f∗(I)/f0(I) ≤ 5 and its
running time is O(n log m).

The multiple-choice multidimensional knapsack problem (MMKP) is a generalization of MCKP; the weight
of each item is now a vector and the total weight of selected items cannot exceed the capacity which is now also
a vector. Since MMKP is also related to the conventional multidimensional knapsack problem it has a variety
of applications in practice and is receiving more and more attention lately. Chen and Hao [2] summarized the
recent results and categorized them into two groups: exact methods (e.g., branch-and-bound) and heuristic
approaches (e.g., local searches, relaxation based heuristics, meta heuristics).

Frieze and Clarke [3] presented a polynomial time approximation scheme (PTAS) for the (single-choice)
multidimensional variant of knapsack, and Magazine and Chern [7] showed that obtaining an FPTAS for mul-
tidimensional knapsack is NP-hard. Patt-Shamir and Rawitz [8] developed an improved PTAS for MMKP and
its time complexity is O ((nm)q) where q = min{n, d/ε}. Thus, by setting ε to be d, a (1 + d)-approximation
solution can be obtained in O(nm) time. We propose an approximation algorithm with a lower time complexity
and a constant bound.

For more details on the knapsack problem and its variants, we refer the reader to [5].
In Section 2, we provide an improved branching algorithm and, based on this improved branching algorithm,

we present in Section 3 an improved algorithm with a ratio of 3+(1
2)t and with a running time O(n(t+log m)),

t being a positive integer. Furthermore, in Section 4, we generalize this solution approach to a multidimensional
version of the problem and present an approximate binary search algorithm with a ratio of 1 + 2d + (1

2)t and a
running time of O(n(t + log(m − 2d))), t being a positive integer.

2. An improved branching algorithm

In the (exact) binary search algorithm, when the optimum objective function value f∗ lies within a search
interval [L, U], for a given value x, there is a method M for determining whether f∗ < x or f∗ > x. Thus, if
one takes the value x = (U − L)/2 and applies method M, the length of the interval [L, U] will be reduced by
a factor of 2. The iterative process will then be terminated in no more than log2(U − L) steps.

Unlike the exact binary search, in the approximate binary search, we use a rougher computation that deter-
mines whether f∗ < x(1 + ε1) or f∗ > x(1 − ε2) for some positive ε1 and ε2.

Branching Algorithm BA(x)
Step 0. Let L ≤ f∗ ≤ U , and x ∈ [L, U] be a given value. Let i := 1 and J := ∅ and C(x) := 0.
Step 1. If i > m, then STOP. Otherwise let pij := cij/aij for any j ∈ Ni and N ′

i := {j|pij ≥ x/b}.
Step 2. If N ′

i = ∅, then let i := i + 1 and go back to Step 1. Otherwise choose the item ji with the largest ciji

from N ′
i . Let J := J

⋃{i} and C(x) := C(x) + ciji and i := i + 1 and go back to Step 1.

AN IMPROVED BINARY SEARCH ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM 997

Theorem 2.1. Suppose C(x) is the value obtained by Branching Algorithm BA(x).

(i) If C(x) ≥ 0.5x, then f∗ > 0.5x.
(ii) If C(x) < 0.5x, then f∗ < 1.5x.

Proof.
(i) Assume that C(x) ≥ 0.5x. If

∑
i∈J aiji ≤ b, then X = {xij |xij = 1 if i ∈ J and j = ji; otherwise xij = 0} is

a feasible solution for the MCKP. So f∗ ≥∑i∈J ciji ≥ 0.5x. On the other hand, if
∑

i∈J aiji > b, then let I ⊂ J
and k ∈ J\I with

∑
i∈I aiji < b and

∑
i∈I aiji + akjk

≥ b. Since piji = ciji/aiji ≥ x/b for any i ∈ J , we have

2f∗ ≥
∑
i∈I

ciji + ckjk
=
∑
i∈I

aijipiji + akjk
pkjk

≥ x/b(
∑
i∈I

aiji + akjk
) > x.

Hence f∗ > 0.5x.

(ii) Assume that C(x) < 0.5x. Let X∗ be an optimal solution for MCKP instance. Let

I1 = {(i, j) | x∗
ij = 1 and pij = cij/aij < x/b},

I2 = {(i, j) | x∗
ij = 1 and pij = cij/aij ≥ x/b}.

Then,

f∗ =
∑

1≤i≤m

∑
j∈Ni

cijx
∗
ij =

∑
(i,j):x∗

ij=1

cij =
∑

(i,j)∈I1

cij +
∑

(i,j)∈I2

cij .

Since ∑
(i,j)∈I1

cij < x/b
∑

(i,j)∈I1

aij < x and
∑

(i,j)∈I2

cij ≤
∑
i∈J

cij < 0.5x,

we have f∗ < 1.5x. This completes the proof. �

3. An improved approximate binary search Algorithm

For a positive integer t, we define the Binary Search Algorithm(t) as follows.

Binary Search Algorithm(t)
Step 0. Let L := maxi,j{cij}, L0 := L, U0 := mL, x0 := 1

3U0 + L0 and k := 0.
Step 1. Perform the Branching Algorithm BA(xk). Determine whether C(xk) ≥ 0.5xk or C(xk) < 0.5xk. Let
k := k + 1.
Step 2. If C(xk−1) ≥ 0.5xk−1, then let Lk := 0.5xk−1 and Uk := Uk−1 and go to Step 3. Otherwise let
Uk := 1.5xk−1 and Lk := Lk−1 and go to Step 3.
Step 3. If Uk −3Lk ≤ (1

2)tL, then let f0 := Lk and STOP; otherwise let xk = 1
3Uk +Lk and go back to Step 1.

Note that if Uk − 3Lk > (1
2)tL, then Uk > 3Lk. Also, we have xk = 1

3Uk + Lk > Lk and xk = 1
3Uk + Lk <

1
3Uk + 1

3Uk = 2
3Uk < Uk. Hence, Lk < xk < Uk. And by Theorem 2.1, we note that Lk ≤ f∗ ≤ Uk at any step k.

And when the algorithm terminates, we find an approximation value f0 = Lk.

Theorem 3.1. The Binary Search Algorithm(t) can find an approximate value of the MCKP with a ratio of at
most 3 + (1

2)t in O(n(t + log m)) time.

998 CHENG HE ET AL.

Proof.
If C(xk−1) ≥ 0.5xk−1, then Lk := 0.5xk−1 and Uk := Uk−1. Thus, we have

Uk − 3Lk = Uk−1 − 3 · 1
2
×
(

1
3
Uk−1 + Lk−1

)
=

1
2
(Uk−1 − 3Lk−1).

If C(xk−1) < 0.5xk−1, then Uk := 1.5xk−1 and Lk := Lk−1. Thus, we have

Uk − 3Lk =
3
2
·
(

1
3
Uk−1 + Lk−1

)
− 3Lk−1 =

1
2
(Uk−1 − 3Lk−1).

Since Uk −3Lk = 1
2 (Uk−1−3Lk−1), Uk −3Lk will decrease exponentially and as k approaches infinity, Uk −3Lk

converges to zero. Thus, we have limk→∞ Uk = 3(limk→∞ Lk). Let the number of required iterations be p.
Since U0 − 3L0 = (m − 3)L and (m − 3)L · (1

2)p ≤ (1
2)tL, we have p ≥ t + log2 (m − 3). Thus, we can set

p = �t + log2 (m − 3)�. Therefore, the algorithm terminates with

f∗

f0
≤ Uk

Lk
≤ 3Lk + (1

2)tL

Lk
≤ 3 +

(
1
2

)t

after at most O(t + log m) iterations. As for the running time of the algorithm, we see that there are at most
O(t + log m) rounds and each round of Branching Algorithm BA(x) needs O(n) time. Hence the total running
time is O(n(t + log m)). �

Note that 3 < 3 +
(

1
2

)t ≤ 4. Even for t = 0, the worst case performance ratio is 4, which is better than the
one by Gens and Levner [4]. In order not to increase the time complexity, t should be at most O(log m).

4. Extension to d-dimensional MMKP

We can generalize the current approach to a d-dimensional problem, where d ≤ (m − 1)/2. This problem is
a special case of the Multiple-choice Multidimensional Knapsack Problem (MMKP). The special d-dimensional
MMKP can be formulated with X = (xij) as:

maximize f(X) =
m∑

i=1

∑
j∈Ni

cijxij

subject to
m∑

i=1

∑
j∈Ni

ah
ijxij ≤ b, h = 1, . . . , d

∑
j∈Ni

xij ≤ 1, i = 1, 2, . . . , m

xij ∈ {0, 1}, i = 1, 2, . . . , m; j ∈ Ni.

We generalize the Branching Algorithm and the Binary Search Algorithm as follows.

Branching Algorithm BA(x)
Step 0. Let L ≤ f∗ ≤ U , and x ∈ [L, U] be a given value. Let i := 1 and J := ∅ and C(x) := 0.
Step 1. If i > m, then STOP. Otherwise let pij := cij/(

∑d
h=1 ah

ij) for any j ∈ Ni and N ′
i := {j|pij ≥ x/(d · b)}.

Step 2. If N ′
i = ∅, then let i := i + 1 and go back to Step 1. Otherwise choose the item ji with the largest ciji

from N ′
i . Let J := J

⋃{i} and C(x) := C(x) + ciji and i := i + 1 and go back to Step 1.

Theorem 4.1. Suppose C(x) is the value obtained by the Branching Algorithm BA(x).

(i) If C(x) ≥ 1
2dx, then f∗ > 1

2dx.

AN IMPROVED BINARY SEARCH ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM 999

(ii) If C(x) < 1
2dx, then f∗ < (1 + 1

2d)x.

Proof.
(i) Assume that C(x) ≥ 1

2dx. We consider two sub-cases (a) and (b):
(a) If

∑
i∈J ah

iji
≤ b for all h = 1, . . . , d, then X = {xij | xij = 1 if i ∈ J and j = ji; otherwise xij = 0} is a

feasible solution for the MMKP. So f∗ ≥∑i∈J ciji ≥ 1
2dx.

(b) Otherwise, we can define sets of items ∅ = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ IK ⊂ J for some 2 ≤ K ≤ d such that

∣∣∣∣∣
{

h |
∑
i∈Ik

ah
iji

> b

}∣∣∣∣∣ ≥
∣∣∣∣∣∣
⎧⎨
⎩h |

∑
i∈Ik−1

ah
iji

> b

⎫⎬
⎭
∣∣∣∣∣∣+ 1 and

∑
i∈Ik\Ik−1

ah
iji

≤ b for k = 1, . . . , K.

Since Ik \ Ik−1 corresponds to a feasible solution, we have

f∗ ≥
∑

i∈Ik\Ik−1

ciji for k = 1, . . . , K,

and thus we have

Kf∗ ≥
K∑

k=1

∑
i∈Ik\Ik−1

ciji .

Since ciji/(
∑d

h=1 ah
iji

) ≥ x/(d · b) for any i ∈ J , we have

K∑
k=1

∑
i∈Ik\Ik−1

ciji ≥
x

d · b

⎛
⎝ K∑

k=1

∑
i∈Ik\Ik−1

d∑
h=1

ah
iji

⎞
⎠

>
x

d · b (b + 2b + . . . + (K − 1)b) =
x

d · b
(

K(K − 1)
2

b

)
=

K(K − 1)
2d

x.

By combining the above two inequalities, we have

Kf∗ ≥
K∑

k=1

∑
i∈Ik\Ik−1

ciji >
K(K − 1)

2d
x.

Hence, since K ≥ 2,

f∗ >
K − 1

2d
x ≥ 1

2d
x.

(ii) Assume that C(x) < 1
2dx. Let X∗ be an optimal solution for the MMKP, and

I1 =

{
(i, j) | x∗

ij = 1 and cij/

(
d∑

h=1

ah
iji

)
< x/(d · b)

}
,

I2 =

{
(i, j) | x∗

ij = 1 and cij/

(
d∑

h=1

ah
iji

)
≥ x/(d · b)

}
.

1000 CHENG HE ET AL.

Then,

f∗ =
m∑

i=1

∑
j∈Ni

cijx
∗
ij =

∑
(i,j):x∗

ij=1

cij =
∑

(i,j)∈I1

cij +
∑

(i,j)∈I2

cij .

Since ∑
(i,j)∈I1

cij <
x

d · b
∑

(i,j)∈I1

d∑
h=1

ah
iji

=
x

d · b

⎧⎨
⎩
∑

(i,j)∈I1

d∑
h=1

ah
ij

⎫⎬
⎭ ≤ x

d · b (d · b) = x

and ∑
(i,j)∈I2

cij ≤
∑
i∈J

cij <
1
2d

x,

we have f∗ <
(
1 + 1

2d

)
x. This completes the proof. �

For a positive integer t, we define the following Binary Search Algorithm(t).

Binary Search Algorithm(t)
Step 0. Let L := maxi,j{cij}, L0 := L, U0 := mL, x0 := d

1+2dU0 + dL0 and k := 0.
Step 1. Apply the Branching Algorithm BA(xk). Determine whether C(xk) ≥ 1

2dxk or C(xk) < 1
2dxk. Let

k := k + 1.
Step 2. If C(xk−1) ≥ 1

2dxk−1, then let Lk := 1
2dxk−1 and Uk := Uk−1 and go to Step 3. If C(xk−1) < 1

2dxk−1,
then let Uk :=

(
1 + 1

2d

)
xk−1 and Lk := Lk−1 and go to Step 3.

Step 3. If Uk − (1 + 2d)Lk ≤ (1
2)tL, then let f0 := Lk and STOP; otherwise let xk := d

1+2dUk + dLk and go
back to Step 1.

Note that if Uk − (1 + 2d)Lk > (1
2)tL, then Uk > (1 + 2d)Lk. Also, xk = d

1+2dUk + dLk > 2dLk > Lk and
xk = d

1+2dUk + dLk < d
1+2dUk + d

1+2dUk = 2d
1+2dUk < Uk. Thus, Lk < xk < Uk.

Theorem 4.2. The Binary Search Algorithm(t) can find an approximate value of the d-dimensional MMKP
with a ratio of at most 1 + 2d + (1

2)t in O(n(t + log(m − 2d))) time.

Proof.
If C(xk−1) ≥ 1

2dxk−1, then Lk := 1
2dxk−1 and Uk := Uk−1. Thus, we have

Uk − (1 + 2d)Lk = Uk−1 − (1 + 2d)
1
2d

(
d

1 + 2d
Uk−1 + dLk−1

)

=
1
2
{Uk−1 − (1 + 2d)Lk−1} .

If C(xk−1) < 1
2dxk−1, then Uk := (1 + 1

2d)xk−1 and Lk := Lk−1. Thus, we have

Uk − (1 + 2d)Lk =
(

1 +
1
2d

)(
d

1 + 2d
Uk−1 + dLk−1

)
− (1 + 2d)Lk−1

=
1
2
{Uk−1 − (1 + 2d)Lk−1} .

Since Uk − (1 + 2d)Lk = 1
2{Uk−1 − (1 + 2d)Lk−1}, Uk − (1 + 2d)Lk will decrease exponentially and as k

approaches infinity, Uk − (1 + 2d)Lk converges to zero. Thus, we have limk→∞ Uk = (1 + 2d)(limk→∞ Lk).

AN IMPROVED BINARY SEARCH ALGORITHM FOR THE MULTIPLE-CHOICE KNAPSACK PROBLEM 1001

Let the number of required iterations be p. Since U0−(1+2d)L0 = (m−(1+2d))L and (m−(1+2d))L·(1
2)p ≤

(1
2)tL, we have p ≥ t + log2 (m − (1 + 2d)). Thus, we can set p = �t + log2 (m − (1 + 2d))�. Therefore, the

algorithm terminates with

f∗

f0
≤ Uk

Lk
≤ (1 + 2d)Lk + (1

2)tL

Lk
≤ 1 + 2d +

(
1
2

)t

after at most O(t + log(m − 2d)) iterations.
As for the running time of the algorithm, we see that there are at most O(t + log(m − 2d)) rounds and each

round of Branching Algorithm BA(x) needs O(n) time. Hence the total running time is O(n(t+log(m−2d))). �

References

[1] R.D. Armstrong, D.S. Kung, P. Sinha and A.A. Zoltners, A computational study of a multiple-choice knapsack algorithm.
ACM Trans. Math. Software 9 (1983) 184–198.

[2] Y. Chen and J.-K. Hao, A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem. Eur. J.
Oper. Res. 239 (2014) 313–322.

[3] A.M. Frieze and M.R.B. Clarke, Approximation algorithms for them-dimensional 0-1 knapsack problem: worst-case and prob-
abilistic analyses. Eur. J. Operat. Res. 15 (1984) 100–109.

[4] G. Gens and E. Levner, An approximate binary search algorithm for the multiple-choice knapsack problem. Inf. Process. Lett.
67 (1998) 261–265.

[5] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack problems. Springer (2004).

[6] E.L. Lawler, Fast Approximation Algorithms for Knapsack Problems. Math. Oper. Res. 4 (1979) 339–356.

[7] M.J. Magazine and M.-S. Chern, A note on approximation schemes for multidimensional knapsack problems. Math. Oper. Res.
9 (1984) 244–247.

[8] B. Patt-Shamir and D. Rawitz, Vector bin packing with multiple-choice. Discrete Appl. Math. 160 (2012) 1591–1600.

[9] D. Pisinger, A minimal algorithm for the Multiple-Choice Knapsack Problem. Eur. J. Oper. Res. 83 (1995) 394–410.

	Introduction
	An improved branching algorithm
	An improved approximate binary search Algorithm
	Extension to d-dimensional MMKP
	References

