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Abstract. We give sufficient conditions for deriving moderately exponential and/or parameterized
time approximation schemata (i.e., algorithms achieving ratios 1 ± ε, for arbitrarily small ε) for broad
classes of combinatorial optimization problems via a well-known technique widely used for deriving
exact algorithms, namely the branching tree pruning.
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1. Introduction

Polynomial time approximation, exponential time computation and fixed parameter tractability (FPT) are
three main fields aiming at coping with NP-hard problems.

In polynomial time approximation (see for instance [1]), one tries to devise polynomial time algorithms that
compute feasible solution that are as close as possible to the optimal one, under an a priori defined criterion,
called approximation ratio.

The goal of exponential time computation (see [19]) is to devise exact algorithms whose worst case complexity,
though not polynomially bounded, is as low as possible. For many NP-hard problems, the best known algorithm
works in exponential time O∗(γn) (meaning O(γnpoly(n)) for some polynomial poly), for some γ > 1. A natural
objective is then to minimize the value of γ.

Fixed parameter tractability is in some sense a complementary field where an instance is given together
with a parameter k ∈ N; the goal is to know whether the problem is solvable by an algorithm working in time
O(f(k)poly(n)) for some function f and some polynomial p [14]. Such an algorithm is called an FPT algorithm,
and if such an algorithm exists the problem is in the FPT class (for this particular parameterization). A
usual parameter (called standard parameter) is the value of the sought solution. Formally, for the standard
parameterization (we will use the standard parameterization in all this article), a problem is in FPT if there
exists an algorithm such that given an instance I of size n and an integer k, (i) it outputs YES if there is
a solution of value at least k (for a maximization problem, at most k for a minimization problem) and NO
otherwise; (ii) it works in time O(f(k)poly(n)) for some function f and polynomial p.
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Interestingly, negative results have been obtained in these three fields. For polynomial time approximation,
tight lower bounds are known for many optimization problem, under the hypothesis P �= NP. For instance,
Max 3SAT3 is well known to be approximable in polynomial time within ratio 7/8, and not approximable
in polynomial time within ratio 7/8 + ε unless P = NP for any ε > 0 [25]. Dealing with exponential time
computation, the Exponential Time Hypothesis (ETH ), introduced in [26, 27], conjectures that there is no
algorithm for Max 3SAT that works in time 2o(n) where n is the number of variables. Under ETH, many classical
optimization problems do not have subexponential time algorithms4. Finally, the parameterized complexity
theory considers the hypothesis W[1] �= FPT (see [14] for the definition of the class W[1]) under which it is
shown that many optimization problems do not admit FPT algorithms (under the standard parameterization
for instance).

In recent years several very interesting studies try to put together either polynomial approximation and exact
computation, or parameterized computation and polynomial approximation, in order to build new tools coping
with intractability (see, for example [5, 7, 8, 10, 11, 15, 16, 22, 30]. One of the basic goals of all these works is to
show how one can achieve ratios unachievable in polynomial time spending time that is much lower than the
best-known exact or parameterized time for the problems handled. Let us note that we say that a minimization
(maximization, respecitvely) problem Π , together with a parameter p, is parameterized ρ-approximable if there
exists an FPT-time algorithm which computes a solution of size at most (at least, respectively) ρp whenever
the input instance has a solution of size at most (at least, respectively) p; otherwise, the algorithm returns some
feasible solution.

Our aim in this paper is to study links between approximation and exact computation (whatever the parame-
ter measuring complexity is) by devising a unified framework that handles exact and parameterized computations
and approximation. Furthermore, rather than focusing on one particular optimization problem, we tackle the
question of giving sufficient conditions for any problem optimally solved by branching algorithms to admit good
approximation algorithms in exponential time, with respect to any parameter used to measure its complexity.

Our basic guideline here is the following. Consider a problem Π parameterized by some parameter p (that
can be the size n of its instance, the value k of its optimal solution, the treewidth of the input-graph, if it
is a graph-problem,. . . ). Suppose that Π is inapproximable within some ratio ρ (in polynomial time) and,
moreover, that the best-known algorithm for Π runs in O∗(F (p))5, for some function F that increases with p.
Does there exist an approximation algorithm for Π , achieving ratio better than ρ and running in time much
smaller than O∗(F (p))? Especially, we focus on the existence of “approximation schemata”, i.e., algorithms
with ratios 1 ± ε, for arbitrarily small ε, with running time O∗(Fε(p)), where Fε < F for a problem solvable
(exactly) in O∗(F (p)). Typically, if F (p) = γp for some γ, we seek Fε(p) = γp

ε for γε < γ.
The paper is organized as follows. In Section 2, we give sufficient conditions to derive approximation schemata

using branching algorithms. Then, in Section 3, we derive such schemata parameterized by n (the size of the
instance) and p (the standard parameter), for some well-known problems. Finally, in Section 4, we sketch a
formal framework of a structure for moderately exponential and parameterized approximation.

2. Approximation schemata by branching algorithms

In both exact and parameterized computation, a very popular technique for achieving exact algorithms with
non-trivial running-time results is the so-called “search-tree pruning”. So, a natural question that arises ant is
handled in this section, is whether its applicability can be extended for deriving good approximation results
or not.

3 Given a set of binary variables and a set of clauses, Max SAT is to find a truth assignment of variables that maximizes the
number of satisfied clauses. Max kSAT is a restricted version where each clause contains exactly k literals.

4 Note that speaking of (sub)exponential time algorithm requires to have defined a parameter representing the size of the instance,
such as the number of vertices in a graph, with respect to which the complexity is measured.

5 Note that in this article, with a slight abuse of notation, O∗(F (p)) means F (p)q(|I|) for some polynomial q.
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Figure 1. Branching rule.

Let us first note that a class of problems is already known to admit such exponential time approximation sche-
mata (with respect to n), the class of hereditary maximization problems6 (see, for instance, [5]): by partitioning
the instance, if a hereditary graph problem is solvable in O∗(γn) then it is ρ-approximable in time O∗(γρn)
for any ratio ρ. The same holds also for Max SAT in [11, 16]. In the second of these papers such schemata
are obtained with respect to both n (the number of variables), m (the number of clauses), and k the standard
parameter, i.e., the number of satisfied clauses.

Example 1. We give a basic overview of the schema for Max Independent Set (with respect to n). Using
classical reduction rules (including vertex folding, see for instance [21]), vertices of degree at most two can be
removed from the instance in polynomial time. When there is no such vertex, the naive exact algorithm is to
pick a vertex, and to branch on it in the following way: either we add the vertex in the final solution and remove
its neighbors, or we remove this vertex. In the first case, the size of the instance decreases by at least 4 (one
vertex in the solution and at least three vertices removed) ; in the second, the size decreases by 1, and this
gives a complexity O∗(1.38n) (solution of C(n) � C(n − 4) + C(n − 1)). In this situation we can achieve a
1/2-ratio by removing an additional vertex in the first branching case. The complexity of this new algorithm
satisfies C(n) � C(n− 5) + C(n − 1) � O∗(1.32n). Note that much better exact algorithms are known for Max
Independent Set, and that it is easy to improve this technique of approximation (remove a clique for instance).
The aim of this simple example is only to illustrate the basic idea that will be developed in the sequel.

Given an instance I of an optimization problem, we denote by S (I) the set of feasible solutions of I, by f(I)
the optimal value of I, and by f(I, S) ∈ N, or f(S) when no confusion is possible, the value of S ∈ S (I). We
adopt a measure function I �→ p. Note that p can be any parameter of the instance (including f(I), |I|,. . . ). We
just require that when f(I) = 0 the instance is solvable in polynomial time7. For clarity we will suppose that
p ∈ N but similar results can be obtained with p ∈ R+ (in particular p can be the weight associated to |I| in
the measure and conquer paradigm [21]).

A branching algorithm solves a given optimization problem by building a search tree. To each node of the
tree is associated an instance; a branching rule (such as “take a particular vertex in the solution or do not take
it”) gives rise to several instances that are the children of this node8. The leaves of the tree correspond to trivial
instances. This might be formalized as follows in the case of a maximization problem.

Definition 2.1 (Branching rule; Fig. 1). A branching rule of fan-out r is a mapping from an instancen I to
a set of r instances (I1, I2, . . . , Ir) and a set of algorithms (PB1, . . . ,PBr), called payback functions, with the
following properties:
(a) If Si is a solution for the instance Ii, then PBi(I, Ii, Si) is a solution for I (for simplicity, we will denote

PBi(I, Ii, Si) by PBi(Si)).

6 Maximization problems where, given an instance I, feasible solutions are subsets of a given set S that satisfy a given hereditary
property π (if S′ ⊆ S satisfies π, then any S′′ ⊆ S′ satisfies π), the goal being to maximize the size of the subset.

7 This is obviously the case for any parameterized problem in XP.
8 Note that branching algorithms usually use reduction rules that are polynomial time rules applied on each node to simplify

the instance. Reduction rules can be formally incorporated in the branching rule, so we do not need to state them explicitly.



982 B. ESCOFFIER ET AL.

(b) The branching and every payback function are computable in polynomial time with respect to the size of
the instance.

(c) (parameter reduction) There exists a sequence of positive numbers (ai)i=1,...,r giving a guarantee on the
instance size decreasing. This gives Rule (B1): ∀i, pi � p − ai.

(d) (exhaustiveness) For (at least) one of the instances Ii, the payback function increases the value of a feasible
solution by at least the difference in the optimum between I and Ii. This, gives Rule (B2): ∃i, ∀S ∈ S (Ii),
f(PBi(S)) − f(S) � f(I) − f(Ii).

Obviously, the larger the ai (in Rule (B1)), the faster the algorithm. Exhaustiveness ensures that an optimal
solution for an instance can be found with the branching rule. Indeed, exhaustiveness is satisfied in branching
algorithms in the branch corresponding to the choice of an optimum solution.

Example 2 (Example 1 continued). For Max Independent Set, if we branch on a vertex v and I1 (resp., I2) is
the branch where v is taken (resp., discarded), then PB1(I, I1, S) = S ∪ {v} and PB2(I, I2, S) = S.

Given an optimization problem P with such a branching rule, we define the branching Algorithm 1. The following
result is folklore. We give it for reasons of self-readability of the paper.

Algorithm 1: Naive branching algorithm.
Input : An instance I0

Output: An optimal solution for I0

1 Build a tree using the following rule:
a) Each node is labeled with an instance, the root’s label being I0.
b) Each node with a non-empty instance I has r children, given by the reduction rule.
c) Each node with an empty instance is a leaf.
2 for each leaf in the tree do
3 Compute an optimal solution. Use the payback functions to get a solution for the root of the tree in a bottom

up fashion: the solution for a node with instance I is the best solution among the r solutions computed by the
payback functions.

4 end
5 Output the solution of the tree’s root.

Proposition 2.2. Algorithm 1 gives an optimal solution in time O∗(γp0), with γ the only positive solution of
the equation 1 =

∑r
i=1 γ−ai .

Proof. Let us denote by I0 the instance in the root of the tree. At least one child of I0 satisfies Rule (B2).
We call this child I1. Then I1 has a child I2 that satisfies the same rule, and so on until we reach a leafk Ik.
The instance on the leaf is solvable exactly in polynomial time, giving a solution Sk such that f(Sk) = f(Ik).
Then, we use the payback functions to compute solutions for every instance from Ik to I0, and we call these
solutions Sk, Sk−1, . . . , S0. With these solution, we have, using (B2), f(Si) − f(Si+1) � f(Ii) − f(Ii+1), for
i = 0, . . . , k − 1. Summing these inequalities, we get f(S0) − f(Sk) � f(I0) − f(Ik). So, f(S0) = f(I0), which
proves the correctness of the algorithm.

The complexity is given by the number of nodes in the tree. For a parameter p, this number satisfies the
equation C(p) � C(p − a1) + C(p − a2) + . . . + C(p − ar), which gives the complexity claimed. �

In the case of a parameterized problem with the standard parameterization, the previous algorithm provides
(with the same complexity) an optimal solution if there is a solution of value at least p in the instance (with a
slight obvious modification in the leaves when there is no solution of the seek value).

Given a maximization problem, assume that a branching algorithm as Algorithm 1 has been devised. We are
interested in modifying it, in order to get an approximation algorithm with a better running time. We show that
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Figure 2. Diminution rule.

two properties are sufficient to reach this for any ratio ρ �= 1, i.e., to get an exponential time approximation
schema. The first condition, called strict monotonicity, deals with the branching rule. Note that it is generally
satisfied by most of the branching rules used in the literature for classical optimization problems. The other
condition, called diminution rule, is independent on the branching rule (it it directly linked to the problem and
not to a particular branching algorithm).

Definition 2.3 (Strict monotonicity). A branching rule is said to be strictly monotonic if for at least one
instance Ii the payback function increases (strictly) the value of such solutions (while the other ones do not
decrease the value of feasible solutions). Formally, there exists a sequence of nonnegative integers (si)i=1,...,r,
with at least one of them greater than 0 such that the following rule is satisfied: Rule (B3): ∀i, ∀S ∈ S (Ii),
f(PBi(S)) � f(S) + si.

Obviously, the greater the integers si, the faster the approximation algorithm. In Example 1, the branching rule
is strictly monotonic: the payback function will increase by one the value of the solutions in the branch where
we have taken v (and by 0 in the other branch).

Definition 2.4 (Diminution rule; Fig. 2). A diminution rule is a mapping from an instance I to another
instance I ′ together with an polynomial time algorithm (which we call payback function) PB′, with the following
properties:

(1) The parameter decreases by at least one. This gives Rule (D1): p′ � p − 1.
(2) The value of the optimal solutions does not decrease by more than one. This results in Rule (D2): f(I ′) �

f(I) − 1.
(3) The payback function PB′ preserves the value of the solutions. This gives Rule (D3): ∀S′ ∈ S (I ′),

f(PB′(S′)) � f(S′).

Example 3 (Example 1 continued). For Max Independent Set, using as parameter the number of vertices, the
diminution rule used consists of removing a vertex from the graph: from a graph G we obtain a graph G′ with
one vertex less (Rule (D1)). Obviously, the optimum value in G is at most the optimum value in G′ plus one
(Rule (D2)). The payback function is the identity function (an independent set in G′ is an independent set in G)
that satisfies Rule (D3).

Given a problem that has both a diminution rule and a strictly monotonic branching rule, we can define the
ρ-approximation Algorithm 2. As for the exact branching algorithm, the case of a parameterized problem with
standard parameter, a slight and obvious modification of Algorithm 2 allows to output a solution of value at
least ρp (and even at least ρf(I)) if there is a solution of value at least p in the instance.

Theorem 2.5. Algorithm 2 outputs a ρ-approximate solution in time O∗(γp
ρ), where γρ is the only positive root

of the equation 1 =
∑r

i=1 γ
−ai−si(1−ρ)/ρ
ρ .
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Algorithm 2: A ρ-approximation pruning algorithm.
Input : An instance I0 and a ratio ρ.
Output: A ρ-approximate solution for I0.

1 Define α0 such as α0 = ρ
1−ρ

.

2 Build a tree using the following rule:
a) Each node is labeled with an instance I and a number α. We write a node [I, α]. The root’s label is [I0, 0].
b) For each node [I, α], with I non-empty and α < α0, we create up to r children ([I1, α + s1], . . . , [Ir, α + sr]),

corresponding to the branching rule.
c) For each node [I, α], with I non-empty and α � α0, build one child. Its instance is obtained by applying the

diminution rule, and its integer is α − α0.
d) The leaves are the empty instances (with any number).
3 for every leaf in the tree do
4 Compute backward a solution in a bottom up fashion: in case b), the solution for a node with instance I is the

best solution among the r solutions computed by the payback functions. In case c), the solution for a node
with instance I is given by the payback function of the diminution rule.

5 end
6 Output the best solutions among those calculated.

I0

0

I1
α1

I2
α2

Ik
αk

Ik

αk − α0

Diminution rule

Ir
αr

. . .

Here, αk α0

'

Figure 3. Illustration of Algorithm 2.

Note that γ1 (for ρ = 1) corresponds to the complexity of the exact branching algorithm (its complexity
is O∗(γn

1 )). The fact that γρ < γ1 for any ρ �= 1 follows from the fact that at least one si is strictly positive by
hypothesis.

Proof. (Thm. 2.5). We first analyze the approximation ratio of the algorithm. Let us show that each internal
node [I, α] in the tree has at least one child [I ′, α′] with a payback function PB, and satisfying the following:

∀S′ ∈ S (I ′), f(PB(S′)) − f(S′) +
1

1 + α0
(α − α′) � α0

1 + α0
(f(I) − f(I ′)). (2.1)



SUPER-POLYNOMIAL APPROXIMATION BRANCHING ALGORITHMS 985

Concerning α and α0, we examine the following two cases.

(i) α � α0. Then I ′ is derived from I using the diminution rule. For any solution S′ ∈ S (I ′), we call
S = PB(S′). Then using Rule (D3), we have f(S) − f(S′) � 0. Also, as we used a diminution, we know
that α′ = α − α0, and so:

1
1 + α0

(α − α′) =
1

1 + α0
× α0 =

α0

1 + α0
·

Using Rule (D2), since f(I) − f(I ′) � 1, it holds that:

α0

1 + α0
(f(I) − f (I ′)) � 1

1 + α0
(α − α′) � f(S) − f (S′) +

1
1 + α0

(α − α′) .

(ii) α < α0. Then, I has up to r children. Using Rule (B2), we immediately derive that, for one child [I ′, α′]
and for any solution S′ ∈ S (I ′), f(S) − f(S′) � f(I) − f(I ′), where S = PB(S′). In particular:

α0

1 + α0
(f(S) − f(S′)) � α0

1 + α0
(f(I) − f(I ′)) . (2.2)

Also, we use the definition of α and α′, and Rule (B3), and we have f(S) − f(S′) � α′ − α. So:

1
1 + α0

(f(S) − f(S′)) +
1

1 + α0
(α − α′) � 0. (2.3)

Summing (2.2) and (2.3), we get:

1 + α0

1 + α0
(f(S) − f (S′)) +

1
1 + α0

(α − α′) � α0

1 + α0
(f(I) − f (I ′))

which derives (2.1).

From the above cases, one can see that it is possible to find a branch in the tree, going from the root [I0, 0]
to a leaf [If , αf ], satisfying (2.1) at each step. We build in polynomial time a solution Sf for the instance If ,
and then apply the payback functions to build a solution S0 on I0. If we sum the equations derived from (2.1),
we get:

f (S0) − f (Sf ) +
1

1 + α0
(−αf ) � α0

1 + α0
(f (I0) − f (If )) .

Since αf � 0, and f(Sf ) = f(If ) � 0, we have:

f(S) − f (Sf ) � α0

1 + α0
f(I) − α0

1 + α0
f (If )

=⇒ f(S) � α0

1 + α0
f(I) + f (Sf ) − α0

1 + α0
f (If )︸ ︷︷ ︸

�0

� α0

1 + α0
f(I) = ρf(I)

that concludes the proof of the ratio.
We now study the running-time of the algorithm. Set, for each node [I, α], T ([I, α]) = |I| − α/α0.
When applying a branching rule, a node is replaced by at most r nodes of sizes |I| − a1, |I| − a2, . . . , |I| − ar,

and with α values α + s1, α + s2, . . . , α + sr. Note that, for each child, there are at most |I| (i.e., a polynomial
number) diminutions (the size decrease by one after a diminution).

In any diminution that transforms [I, α] into [I ′, α′], the quantity T becomes T ′ � T ; so, this will not affect
the overall computation time of the algorithm. Indeed, |I ′| � |I| − 1, because of Rule (D1). Also we have
α′ = α − α0, due to the definition of the algorithm. Then:

T ′ = |I ′| − α′

α0
� |I| − 1 − α − α0

α0
= |I| − α

α0
= T.
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With the branching rule, if the kth child of [I, α] is [Ik, αk], and the quantity T becomes Tk, then we have
Tk � T − ak − sk/α0. Indeed, using Rule (B1), |Ik| � |I| − ak. Also, by definition, αk = α + sk. Then:

Tk = |Ik| − αk

α0
� |I| − ak − α + sk

α0
= T − ak − sk

α0
·

So, the complexity according to the quantity T satisfies:

C(T ) �
r∑

k=1

C

(
T − ak − sk

α0

)
·

For the first node, the quantity T equals the parameter of the initial instance. Finally, we get a complexity
O∗(γ|I|

ρ ), where γρ is the largest real root of the equation 1 =
∑r

k=1 γ
−ak−sk(1−ρ)/ρ
ρ , as claimed. �

This technique can be adapted to work for minimization problems also. It suffices that Rule (B2) becomes
Rule (B2’): ∃i, ∀Si ∈ S (Ii), f(PBi(Si)) − f(Si) � f(I) − f(Ii).

For the diminution rule, we need the same properties with the following modifications:

• Rule (D2) becomes: Rule (D2’): f(I ′) � f(I).
• Rule (D3) becomes: Rule (D3’): ∀S′ ∈ S (I ′), f(PB′(S′)) � 1+f(S), i.e., the PB′ function will not increase

the parameter of a solution by more than one.

Example 4. For Min Vertex Cover, the branching rule “corresponding” to that of Example 1 is either to add
a vertex v to the vertex cover (and to remove it from the graph), or to take all its neighbors in the vertex cover
(and to remove them together with v from the graph). This branching rule clearly satisfies Rules (B2’) and (B3).
Now take the rule consisting of removing a vertex v in the graph G (thus getting a graph G′) and putting it into
the vertex cover under construction. Given a vertex cover on G′, the payback function simply adds v to G′, thus
producing a vertex cover of G. Then, Rules (D1), (D2’) and (D3’) are obviously satisfied. This example is also
a simple example (not leading to some interesting result) for illustrating the idea in minimization problems.

When setting α0 = 1
ρ−1 in Algorithm 2 (now ρ > 1) to deal with minimization problems, then the following

holds.

Theorem 2.6. For a minimization problem, with the new set of properties, Algorithm 2 outputs a ρ-approximate
solution in time O∗(γp

ρ), where γρ is the only positive root of the equation 1 =
∑r

i=1 γ
−ai−si(ρ−1)
ρ .

Proof. To prove the correctness, we have nearly the same property as in the demonstration of the maximization
case: each non-leaf node [I, α] in the tree has at least one child [I ′, α′] with a payback function PB, and satisfying:

∀S′ ∈ S (I ′), f(PB(S′)) − f(S′) +
α′ − α

α0
� α0 + 1

α0
(f(I) − f(I ′)). (2.1’)

Indeed, we have two cases with respect to α.

α � α0. In this case, I ′ is derived from I using the diminution rule. For any solution S′ ∈ S (I ′), we call
S = PB′(S′). Then with Rule (D3’), we have f(S)−f(S′) � 1. Also, as we used a diminution, we know
that α′ = α − α0, and so:

f(S) − f (S′) +
α′ − α

α0
� 1 − 1 � 0

Using Rule (D2’), we know that f(I) − f(I ′) � 0, which gives (2.1’).
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α < α0. Then, I has up to r children, and using Rule (B2’), we know that for one child [I ′, α′], and for any
solution S′ ∈ S (I ′), f(S) − f(S′) � f(I) − f(I ′) where S = PB(S′). Also, f(S) − f(S′) � α′ − α
(cf. Rule (B3)). So, it holds that:

f(S) − f (S′) +
α′ − α

α0
� 1 + α0

α0
(f(S) − f (S′)) � 1 + α0

α0
(f(I) − f (I ′)) .

The end of the proof is therefore the same as previously. �

Let us conclude this section by the following remark. For simplicity, we have fixed differences in Rules (D1)
and (D2) to 1. It is worth noticing that similar results would immediately follow using other (constant) values.
In particular (this will be useful for the results given later), suppose that we simply replace Rule (D2) by a new
Rule (D2”): there exists k such that f(I ′) � f(I)− k. In this case, all we have to do is dividing the evaluation
function by k, which preserves the approximation ratio. Therefore, the parameters si will become si/k (see
Rule (B3)), and the complexity will now be O∗(γp), with γ root of 1 =

∑r
i=1 γ−ai−(si/k)(1−ρ)/ρ.

3. Using approximate branching to get approximation schemata

3.1. Parameterization by the instance size

3.1.1. Feedback vertex set

Given a graph of order n, Feedback Vertex Set consists of finding a minimum-size set of vertices whose
deletion makes the graph acyclic. This problem is NP-hard in both directed and undirected graphs [29] and
can be optimally solved in O∗(1.9977n) [32], and in O∗(1.7347n) [20], respectively. Both cases are approximable
in polynomial time within ratio 2 [2]. We show how our method can be used in order to obtain ratios between 1
and 2 with improved computation times.

To obtain a branching rule for this problem, we formalize an instance of Feedback Vertex Set as a graph
G(V, E) with a set D of vertices excluded from the solution (we set D = ∅ at the beginning of the algorithm).
The size of an instance is |V | − |D|. If we have an instance I = (G, D), we can pick a vertex v from V − D
and define I1 = (G[V − {v}], D) and I2 = (G, D ∪ {v}). Our payback functions are PB1(S) = S ∪ {v} and
PB2(S) = S. Note that if D ∪ {v} contains a cycle, then we can skip the I2 branch as this instance will not
have a solution. This branching has the desired properties: the size of the instance decreases by one on each
branch, the payback functions give a feasible solution, they can be computed in polynomial time and the optimal
solution can be reached (take the first branch only when the vertex v is in the optimal solution), which ensures
exhaustiveness.

We have the following diminution rule: in instance I = (G, D), pick any vertex v and we have I ′ = (G[V −
{v}], D) and PB′(S) = S ∪ {v}. We can see that the size of the instance decreases by one, the computations are
polynomial and the payback function does not increase the size of a solution by more than one.

Discussion above, immediately derives the following theorem.

Theorem 3.1. Feedback Vertex Set can be approximately solved within any ratio ρ in time O∗(γn), with γ
solution of the equation γ � γ−1 + γ−ρ (this result is summarized Fig. 4).

More generally, suppose that P is a minimization problem where given an instance I, feasible solutions are
subsets of a given set S that satisfy a given property π such that if S′ ⊆ S satisfies π, then any S′′ ⊇ S′

satisfies π, the goal being to minimize the size of the subset.
Then, we rephrase the problem as in the maximization case by considering the sets T and D of already taken

and discarded vertices. A feasible solution is a set S′ ⊆ S \ (T ∪ D) such that S′ ∪ T satisfies π, and its value
is |S′|. We can use as branching rule the same as above. The diminution rule is to take an element that and put
it in the solution, which satisfies Rule (D2’). This allow us to find,a s claimed, a ρ-approximation in O∗(γn), γ
being the solution of the equation 1 = γ−1 + γ−ρ.
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Figure 4. Approximating Feedback Vertex Set. The grey area represents the improvement
over the existing.

3.1.2. Max cut

Given a graph G(V, E), Max Cut consists of partitioning V into two subsets V1 and V2 such that the number
of edges having one endpoint in V1 and the other one in V2 is maximal. The set of these crossing edges is called
the cut (associated to V1).

The basic branching schema consisting of fixing, let say, set V1 and then of considering, for every vertex,
that either it belongs, or it does not belongs to V1, solves the problem in time O∗(2n). In sparse graphs, i.e., in
graphs with maximum degree bounded by d, the problem is solvable in time O∗(2(1−(2/d))n) [12]. On the other
hand, Max Cut is approximable in polynomial time within ratio 0.8785 [24], but it is APX-hard [31].

Consider a graph with maximum degree d. We will show how we can use the techniques developed above in
order to get non-trivial moderately exponential ratios.

To obtain a branching rule for this problem guaranteeing that, at least one child will increase the size of any
solution by one (cf. Rule (B3)), we first eliminate one pathological case. If the graph is not connected, then we
apply our algorithm on each connected component (which gives, of course, the optimal solution). Therefore, we
will suppose in the following that our graph is connected. In the initial instance, we pick one vertex arbitrarily,
and we assign it to V1. Then, the branching rule is to choose a vertex that is adjacent to another one in V1

or V2, and to make two children, placing this vertex in V1 or V2. If the first node was in V1, then placing the
node in V2 will guarantee an increasing of the solution of at least one.

For the diminution rule, if we consider a graph G of degree at most d, then we can use the following easy
result: in a graph of degree at most d, removing a vertex and all its edges decreases the size of the maximum cut
by at most d. So, the diminution rule is as follows: take a vertex, throw it away and remove every edge adjacent
to this vertex in the same time, and the following holds.

Proposition 3.2. Max Cut can be approximately solved within ratio ρ in time O∗(γ|V |), with γ the largest real
solution of 1 = γ−1 + γ−1−(1−ρ)/dρ.

3.1.3. Maximization hereditary problems

Let P be a maximization problem where, given an instance I, feasible solutions are subsets of a given set S
that satisfy a given hereditary property π, the goal being to maximize the size of the subset.

To make hereditary problems fitting the previous framework, we formulate P in a different (equivalent)
manner, defining a problem P ′ where an instance is given by: (i) an instance I for the problem P ; (ii) a set
of elements in the solution T ⊆ S; (iii) a set of elements not in the solution D ⊆ S with D ∩ T = ∅. Feasible
solutions of an instance (I, T, D) of P ′ are subsets S′ ⊆ S \ (T ∪ D) such that T ∪ S′ satisfies π (i.e., these are
the feasible solutions of I containing T ). The value of the solutions S′ is its size |S′|.

As already mentioned, for any instance (I, T, D) of this new problem P ′, we have a natural branching rule: we
take an element from S that is neither in T nor in D, and we add it either in T or in D. The branching continue
as long as T is a feasible solution. This gives a trivial branching algorithm in time O∗(2n), where n = |S|. This
branching rule is strictly monotonic. As a diminution rule, we only add one element to D. In the worst case,
the element was in the optimal solution, then its size decreases by one.
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So our algorithm applies, and gives an answer with approximation ratio ρ and computation time in O∗(γn
ρ ),

γρ being the greatest real solution of the equation 1 = γ−1
ρ + γ

−1−(1−ρ)/ρ
ρ .

Note that if this indicates that approximate branching algorithms seems to apply to more problems than
the technique of partitioning the instance, it is worth noticing that the latter technique derives better running
times for hereditary problems (compare γρn with the running time of Thm. 2.5).

3.1.4. Max k-coverage

In the Max k-coverage problem, given a graph G(V, E) and an integer k, we ask for finding a subset S of V
of size k that maximizes the number of edges incident to a vertex in S. Here again, we will consider graphs of
bounded degree d. Note that this problem is solvable in O∗(2(d−1)n/(d+1)) by the basic branching schema (take
a vertex or do not take it), in graphs with maximum degree d [9], and it is approximable in polynomial time
within ratio 3/4 [17, 28], but it is APX-hard as generalization of Min vertex cover.

Max k-Coverage problem is polynomial if k is bounded by a fixed constant. The branching rule is trivial:
take a vertex, add it in the solution or not. Stop branching when k vertex have been added. The diminution
rule is simply to take a vertex and eliminate it. As the degree of the graph is bounded, then this elimination
can’t decrease the solution’s size by more than d. We get a similar result as in the case of Max cut.

3.2. Standard parameterization and minimization problems

Let us consider the Min Vertex Cover problem with the standard parameterization. Here, there exists a naive
well known branching with complexity O∗(2p) that allows to determine if there is a vertex cover of size p (and
even to build one if so): consider an uncovered edge, and branch adding either one or the other of its extremities.
This branching fits our definition, and we use the following diminution rule: we consider any edge, and we add
both its endpoints in the solution, following the spirit of the modified version of Algorithm 2 for minimization
problems. When applying this diminution rule on an instance I we get an instance I ′ where f(I ′) � f(I) − 1,
p′ � p − 1 and f(PB(S)) � 2 + f(PB(S)), so the rule fulfills the requirements.

Note that this algorithm, leading to an approximation schema, is very similar in the case of vertex cover
to the works of [18] and [6]. Note also that the diminution rule can be combined with other parameterized
algorithms (better than O∗(2p)) to derive better running times exactly in the same way.

The discussion made above can be generalized to capture more FPT problems (parameterized by the standard
parameter). Consider, for instance, problems consisting of finding a minimum-size set of items satisfying some
property π such that every set containing a subset satisfying π, also satisfies π.

If there exists a branching rule that any time adds an item among r in the solution (that is the parameter
diminishes by at least 1 on any branch), this gives rise to an FPT exact algorithm running in time O∗(rp).
Then, a simple reduction rule consists of adding the r items of a given step in the solution. Using the same
analysis as in Theorem 2.6, we derive the following result.

Theorem 3.3. Problems satisfying properties as π are ρ-approximable, for any ρ > 1, in FPT-time
O∗(rk(r−ρ)/(r−1)).

The above discussion can be immediately generalized to enhance also maximization problems.

4. Towards a formal definition of structure for moderately exponential

and parameterized approximation

4.1. Approximation classes for moderately exponential approximation

We focus on the well known class NPO of optimization problems: an NPO problem Π is defined on a set I
of instances. To each instance I ∈ I corresponds a set S (I) of feasible solutions. A function f associates for
each instance I and each feasible solution S ∈ S (I) a value f(I, S) ∈ N, to be either maximized or minimized.
In the class NPO, the following assumptions are required:
• instances can be recognized in polynomial time;
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• the size of feasible solutions are polynomially bounded in the size of the instance; moreover, it can be checked
in polynomial time whether a given S is in S (I) or not;

• f is polynomially computable.

An optimal solution of an instance I will be denoted OPT(I), or simply OPT if there is no ambiguity. We use
the notation f(I) for f(I, OPT(I)).

Following the discussion in introduction, considering an optimization problem that is solvable in time O∗(γn),
we may wonder whether the problem is ρ-approximable in time O∗(γn

ρ ) with γρ < γ for some ratio ρ, or even for
any ratio ρ, or not. This motivates the definition of the following two classes. Note that we give the definition for
maximization problems, but everything said in this section can be easily translated to minimization problems.

Class 1 (EAS). For δ > 1, a maximization NPO problem is in EAS[δ] if, for any ρ < 1, there exists a
ρ-approximation algorithm with computation time O∗(δn

ρ ), with δρ < δ.

This defines a notion of approximation schema, the existence of which of course depends on the parameter δ
which is the “target” basis of the exponential function expressing the running time. Dealing with approximation
for a specific ratio, we define the class EAX[γ, ρ].

Class 2 (EAX). For δ > 1, an NPO problem is in EAX[γ, ρ] if there exists a ρ approximation algorithm with
computation time O∗(γn).

Let us begin with some properties of these classes. First, note that, obviously, any problem that can be solved
exactly in time O∗(δn) is in EAS[δ′] for any δ′ > δ. On the other hand, one may expect at first sight that if
a problem is in EAS[δ], then the problem will be solvable in O∗(δn). This is the case for several exponential
approximation schemata obtained so far in the literature, but the following result is worth being mentioned:
Max Unused Colors9 can be approximated with ratio (1− ε) in time O∗(2n) and polynomial space for any ε > 0,
whereas the best known exact algorithm in polynomial space is in O∗(2.25n) [4].

To get this “reverse” property, we need to enforce the notion of approximation schema. As in the polytime
approximation framework, we may say that a problem has a full γ-exponential approximation schema if it is
possible to perform a (1− ε) approximation in time p(1/ε, n)× γn

ε for some polynomial p and γε < γ. Then, we
have the following easy property.

Property 4.1. If an NPO maximization problem has a full γ-exponential approximation schema and is poly-
nomially bounded10, then it can be solved in time O∗(γn).

Proof. If the value is bounded by q(n), with q a polynomial, then using the schema, we can get a (1+1/(q(n)+1))-
approximation in time O(p(q(n)+1, n)γn), which is a computation time O∗(γn). With this ratio, the difference
between the optimal solution and the obtained solution would be less than one, which means that we have an
exact solution. �

Now, let us make some observation on the classes EAS and EAX. The following inclusions are trivial.

Property 4.2. The following holds:

(i) ∀δ < δ′EAS[δ] ⊆ EAS[δ′];
(ii) ∀γ < γ′, ∀ρ,EAX[γ, ρ] ⊆ EAX[γ′, ρ];
(iii) ∀γ, ∀ρ′ < ρ,EAX[γ, ρ] ⊆ EAX[γ, ρ′].

An interesting question is whether these inclusions are strict or not. Let us consider the strong exponential time
hypothesis (SETH) [26], which claims that there is no constant γ < 2 such that SAT is solvable in time O∗(γn).

9 Given a graph G on n vertices, the goal is to find a proper coloring of G maximizing n − k where k is the number of colors of
the coloring.

10 This means that the value of a solution is bounded by a polynomial in the size of the instance.
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Property 4.3. Assuming SETH:

(i) ∀δ < δ′EAS[δ] � EAS[δ′];
(ii) ∀γ < γ′, ∀ρ,EAX[γ, ρ] � EAX[γ′, ρ];
(iii) ∀γ, ∀ρ′ < ρ,EAX[γ, ρ] � EAX[γ, ρ′].

Proof. We first deal with the first inclusion Let δ and δ′ be two real numbers such that 1 < δ < δ′. We create
a problem where the value of solutions is either 0 or 1, and such that it is solvable in O∗(δ”n) for some δ′′,
δ < δ′′ < delta′ (and hence is in EAS[δ′]) but not in O∗(δn) under SETH (and hence not in EAS[δ] since
obviously any approximate solution allows to solve optimally the problem).

Let Pδ,δ′′ be the following problem. An instance of the problem is a set of n variables (x1, . . . xn),
n non-negative integers (a1, . . . , an) such that the average value ai =

∑n
i=1 ai/n lies in the interval

(ln(δ)/ ln(2), ln(δ′′)/ ln(2)], and a polynomially computable function f : Nn → {0, 1}. Every variable xi can take
values from 0 to 2ai − 1 (this defines the set of feasible solutions), and the value of a solution is f(x1, . . . , xn),
to be maximized. This problem is obviously in NPO.

Note that
∏n

i=1 2ai = 2
∑n

i=1 ai ≤ δ′′n, so an exhaustive search allows to solve the problem in time O∗(δ′′n).
Now, take an instance of SAT with N variables. Let n = �ln(2)N/ ln(δ′′)�. Note that:

ln(2)N
ln (δ′′)

≤ n <
ln(2)N
ln (δ′′)

+ 1 =⇒ ln(2)
ln (δ′′)

≤ n

N
<

ln(2)
ln (δ′′)

+
1
N

≤ ln(2)
ln(δ)

for N large enough. Then choose n nonnegative integers ai such that
∑n

i=1 ai = N . Intuitively, if for instance
ai = 2 this means that our variable xi will have value in {0, 1, 2, 3} which allows to simulate 2 variables of the
SAT instance. In this way, since

∑n
i=1 ai = N , each variable of the SAT instance is simulated in our set of n

variables with value in {0, . . . , 2ai − 1}. The function f is now trivial: its value is 1 if (x1, . . . , xn) corresponds
to a truth value that satisfies the SAT instance, and 0 otherwise. Now, note that δn < 2

∑n
i=1 ai = 2N , so an

algorithm solving Pδ,δ′′ in O∗(δn) would contradict SETH.
The same argument shows the second claimed inclusion. Take a problem that is not solvable in O∗(γn) under

SETH like in the above construction but define the values to be either 1 or ρ (instead of either 1 or 0).
For the third one, simulate with the previous trick SAT by a problem not solvable in O∗(δn) under SETH,

and state f(x1, . . . , xn) = 1 if this corresponds to a satisfying assignment, and f(x1, . . . , xn) = ρ′ otherwise.
Any solution is a ρ′ approximation, while getting a ρ approximation would solve SAT. �

4.2. FPT and exponential time approximation schemata

As pointed out in Section 1, our main concern in this article is to provide sufficient conditions for a problem
solvable in time O∗(γn) to be in EAS[γ]. To this aim, we provided in Section 2 and 3 a general method to
derive exponential time approximation schemata. We now show that schemata can be also derived in an easy
way for FPT problems having some basic properties.

Property 4.4. Let Π be a maximization (resp., minimization) problem in FPT solvable in O∗(δk) such that:

1. the value of any feasible solution is at most n (n is the size of the instance);
2. if there exists a solution of value k, then there is a solution of value l, for any l � k (resp., for any k � l � n).

Then Π is also in EAS[δ], and it is possible to reach any approximation ratio ρ in computation time O∗(δρn)
(resp., O∗(δn/ρ)).

Proof. Let us first consider that Π is a maximization problem. Given a ρ ∈ (0, 1), we apply the parameterized
algorithm with every value for k between 0 and ρn. If the best solution has value at most ρn, we find it.
Otherwise, the optimum value is between ρn and n, hence there is a solution of value ρn. We will find such a
solution, that trivially achieves an approximation ratio ρ. The complexity is clearly in O∗(δρn).
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If Π is a minimization problem, for ρ ≥ 1, we apply the parameterized algorithm with every value for k
between 0 and n/ρ. If no solution is found, we output any feasible solution (by hypothesis we know how to
compute a feasible solution in polynomial time). If the optimal value is at most n/ρ we find it. Otherwise, any
feasible solution achieves an approximation ratio ρ. The complexity is O∗(δn/ρ). �

The conditions in Property 4.4 are not very restrictive and applies to a large range of problems, including
for instance Min Vertex Cover, Max SAT, . . .

On the basis of what has been discussed in this section, we conclude the paper by sketching a class-landscape
for parameterized approximation. As mentioned in introduction, several recent articles aim at combining pa-
rameterized complexity and approximation algorithms (see, for instance, [30]). Note that we only consider here
the standard parameterization.

Class 3 (AFPT). A problem is in AFPT[ρ] if there exists a function f such that, for any instance of size n,
it is possible in time O∗(f(k, ρ)) either to find a solution of value at least ρk or to show that there is no solution
of value k.

A similar definition can be given for minimization problems.

Class 4 (ASFPT). A problem is said to have an ASFPT if it is in AFPT[ρ] for any ρ �= 1.

Clearly, we know that FPT ⊆ AFPT[ρ] for any ρ. Though there does not exist to our knowledge a “natural”
problem that distinguishes between these classes, the inclusion is indeed strict. Take a ρ > 1 and the following
problem: given a graph G, feasible solutions are proper colorings of G, and a coloring has value 3 if it uses at
most 3 colors and 3ρ otherwise. Clearly, this problem is ρ approximable in polynomial time (hence in FPT time)
and is not in XP (so not in FPT) unless P = NP.

Property 4.5. ∀ρ, FPT � AFPT[ρ], unless P = NP.

We also know that APX[ρ] ⊆ AFPT[ρ] (where APX[ρ] denotes the set of problems ρ-approximable in poly-
nomial time). Note that Min Vertex Cover is in FPT but is NP-hard to approximate with ratio ρ < 1.36 [13].
This shows strict inclusion for ratios ρ < 1.36. An amplification of the value of solutions allows to extend the
strict inclusion for any ratio ρ: take t such that 1.36t > ρ, and define a modified vertex cover problem where the
value of a vertex cover V ′ is |V ′|t. Then the problem is still FPT but a polytime approximation ratio smaller
than 1.36t would solve vertex cover within ratio 1.36.

Property 4.6. ∀ρ, APX[ρ] � AFPT[ρ] unless P = NP.

Finally, in the field of approximation parameterized algorithms, strong negative results have been obtained for
Min Independent Dominating Set11 by [15], leaving as open questions the existence of approximation param-
eterized algorithms for Max Independent Set and Min Dominating Set. As a last result, we deduce from the
self-improvement property of Max Independent Set [23] that either Max Independent Set has a parameterized
approximation schema or it does not admit constant approximation parameterized algorithms for any ratio. Note
that this result has been used in [3] to obtain conditional negative results for the existence of parameterized
approximation algorithms for Max Independent Set.

Theorem 4.7. If there is a ratio ρ such as Max Independent Set is in AFPT[ρ], then it is also in AFPT[1−ε],
for any ε.

Proof. We suppose that Max Independent Set is AFPT[ρ], which means that we have an algorithm with
complexity O(f(k)poly(n)) (with poly a polynomial function) that either outputs an independent set of size at
least ρk or outputs no (and in this latter case there is no independent set of size k). Let G(V, E) be a graph

11 Given a graph G, find the minimum size vertex subset which is both an independent set and a dominating set.
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of size n. We build a new graph G′ [23] with n2 vertices Vi,j , with 1 � i � n and 1 � j � n. There is an edge
between (i1, j1) and (i2, j2) if:

• i1 = i2 and (j1, j2) ∈ E;
• i1 �= i2 and (i1, i2) ∈ E.

First, we remark that if we have an independent set of size k in G, then we have an independent set of size k2

in G′. Reciprocally, if we have an independent set of size k in G′, then we can find an independent set of size√
k in G:

• either this independent set has vertices in more than
√

k copy of G, and then the numbers of these copy
give an independent set on G;

• or is has vertices in less than
√

k copy of G, and then there is at least
√

k vertices in one of them, which
gives an independent set on G too.

When given a graph G and a parameter k, we apply our parameterized algorithm to G′ with the parameter k2.
If the algorithm outputs no, then we know that there is no independent set of size k in G and we output no too.
Else, the algorithm outputs an independent set of size ρk2 on G′. We know that this leads to an independent
set of size

√
ρk on G. The complexity of this new algorithm O(f(k2)p(n2)). In other words, we know that Max

Independent Set is now AFPT[
√

ρ]. Iterating this process proves the claimed result. �
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