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STRATEGIC INVESTMENTS IN R&D AND EFFICIENCY IN THE PRESENCE
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Abstract. We consider an industry composed of two types of firms, namely, innovators that invest in
process research and development (R&D), and surfers that do not but benefit from knowledge spillover.
We verify if the conclusions reached in the seminal paper by d’Aspremont and Jacquemin hold in this
setting. We obtain that cooperation among innovators still lead to higher R&D and output levels than
when they do not cooperate. Our main result is that the presence of surfers in an industry can be
welfare improving under some conditions.
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1. Introduction

In their seminal paper, d’Aspremont and Jacquemin [4] showed that cooperation in research and development
(R&D) leads to higher investment levels in R&D than does noncooperation, when the (exogenous) knowledge
spillover between firms is high enough (i.e., larger or equal to one half). They also established that R&D
cooperation is the most socially efficient arrangement. Our objective is to verify if these results still hold when
some firms in the industry do not invest in R&D at all, but benefit to some extent from the R&D done by the
other firms. It is an empirical fact that not all firms in an industry are active in R&D. As an illustrative example,
we note that less than one in five companies invested in R&D in [15] 2007 in the Canadian manufacturing sector,
which is the sector with the highest percentage of firms investing in R&D.4

Following d’Aspremont and Jacquemin [4], a series of subsequent studies investigated whether or not these
results still hold under different assumptions related to the types of R&D and spillover (exogenous or endogenous,
free or costly). Kamien et al. [12] considered various R&D cooperation scenarios, and obtained that a cartelized
research joint venture (RJV), that is, a situation where all firms share a single laboratory, yields the best
performance in terms of R&D investments, consumer surplus as well as producer surplus. The results in [4, 12]
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are based on a comparison of each scenario’s symmetric equilibrium. In contrast, Amir and Wooders [13] obtained
that noncooperation in R&D may result in higher profits than does cooperation in an asymmetric equilibrium.
Suzumura [20] established that, for a certain general demand function, neither competitive nor cooperative
R&D equilibria are socially efficient. Amir et al. [3] discussed different forms of cost functions for process R&D,
and showed, among many other things, that d’Aspremont and Jacquemin’s results still hold under a convex
cost function that includes a fixed cost component.

Kaiser [10] introduced an initial stage where firms decide whether to cooperate or not. When spillovers are
high, firms invest more under cooperation than under competition. Using an oligopoly model with differentiated
products, Hinloopen [10] showed that (i) R&D cooperation is socially profitable if there is no market collusion,
and (ii) that collusion increases investments and total surplus when research is complementary. Salant and
Shaffer [17] considered asymmetric R&D investments and demonstrated that, even when there is no spillover,
RJV increases social welfare. Silipo [18] looked at the factors affecting the incentives to cooperate in R&D,
and the effects of cooperation on the incentives to innovate. One result is that R&D uncertainty and spillovers
constitute the main factors leading to cooperation, and a second result is that RJV is the most preferred R&D
agreement.

Other authors have considered endogenous spillovers. Katsouolacos and Ulph [13] is one of the early attemps
and obtained the result that noncooperation can lead to maximal spillovers. Kamien and Zang [11] introduced
absorptive capacity into d’Aspremont and Jacquemin’s R&D production function. Absorptive capacity depends
on own firm’s R&D and on its R&D approach strategy. Firms adopt purely specific R&D strategies when they
compete to offset spillovers, and broad strategies when they cooperate to maximize knowledge flows. Leahy and
Neary [14] studied the effect of R&D on absorptive capacity and on a firm’s profitability. They showed that
R&D investments increase absorptive capacity but decrease the incentive to cooperate. Hammerschmidt [8]
distinguished between two kinds of R&D investments: production-cost-reducing R&D and absorptive-capacity-
improving R&D. She established that, when spillovers are high, firms invest more to improve their absorptive
capacity. Martin [16] considered input and output spillovers, or appropriabilty, and dealt with an uncertain
innovation process. The author established that social welfare is maximized when input spillovers are high
and appropriability is low. Silipo and Weiss [19] studied R&D cooperation with spillovers and uncertainty
and distinguished between incremental and offsetting spillovers. If spillovers are offsetting, then competition is
preferred to cooperation, and the reverse if spillovers are incremental. Shravan (2005) retained a dynamic model
where a laggard firm can spillover on the leader and characterized equilibrium strategies in this context. Ben
Youssef et al. [6] considered the case where firms can invest in both innovative and absorptive R&D to reduce
their unit production cost, and where they benefit from free spillovers between them. The authors obtained that
investment in innovative R&D is always the highest and that the efficiency of investment in absorptive research
has almost no impact on the equilibrium solution.

To the best of our knowledge, Ceccagnoli [7] and Ben Abdelaziz et al. [5] are the only studies to consider
within this literature an heterogenous industry, with some firms investing in R&D and others not, but they did
not look into the conditions under which the innovating firms formed a research joint venture. Ceccagnoli [7]
analyzed the impact of the knowledge spillover to non-innovating firms, on the incentives of innovating firms to
continue their cost-reducing R&D effort. Ben Abdelaziz et al. [5] obtained that the presence of non-innovating
firms in an industry leads, at equilibrium, to lower individual investments in R&D, to a lower collective level of
knowledge and to a higher product price.

We consider the case of cooperation among firms active in R&D, and compare it to the noncooperative case.
When surfers are present, we obtain that cooperation among innovators still leads to higher R&D investment
(by innovator) and market outputs. Our main result is that surfers presence in an industry could enhance R&D
investment level and welfare in some region of the parameter space.

The rest of the paper is organized as follows: in Section 2, we introduce the model and determine equilibrium
strategies in the two scenarios, namely, when firms cooperate and when they do not in setting their R&D
investments. Section 3 discusses social welfare implications of having surfers in an industry, and Section 4
briefly concludes.
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2. The Model

The model is an extension of [4, 5]. The difference with d’Aspremont and Jacquemin [4] is the assumption
that some firms do not engage in R&D, and the difference with Ben Abdelaziz et al. [5] is in the form of the
R&D cost function, that is, quadratic instead of linear.

Denote by N = {1, . . . , N} the set of firms producing a homogenous product. We distinguish between two
types of firms: a subset I of firms that invest in R&D, or the innovators, and a subset S of firms that do not
carry out any research activity, called the surfers. Denote by xi the investment in R&D of firm i ∈ I, and by
qi,the output of firm i ∈ N . Following the tradition initiated by d’Aspremont and Jacquemin [4], we model the
decision process as a two-stage game. In stage 1, the innovators choose their investment levels, and in stage 2,
all firms select their output levels. The innovators may cooperate or act noncooperatively when making their
R&D decisions in the first stage. The mode of play is noncooperative in the second stage.

We make the classical assumption that knowledge cannot be fully appropriated. Denote by β the exogenous
spillover rate between innovators, and by θ the rate of knowledge that spills over to the surfers, with 0 ≤ θ <
β ≤ 1. This ranking of parameters can be justified by the fact that, in the absence of any research effort, a
surfer cannot absorb as much knowledge as an innovator. Note that the special case where β = 1 corresponds to
research joint venture (RJV), which will be also considered. Denote by Xk the total level of knowledge available
to firm k ∈ N , that is,

Xk =
{

xk + β
∑

j∈I,j �=k xj , k ∈ I
θ
∑

j∈I xj , k ∈ S.
(2.1)

We suppose that the unit production cost decreases with the level of knowledge. To keep things simple while
still being able to make our point, we suppose as in [4] that the unit production cost can be well approximated
by the following linear function:

Fk (Xk) = A − Xk,

where A > 0 is the initial cost. The above cost function can be written equivalently as

Fk (x̄) =

{
A −

(
xk + β

∑
j∈I,j �=k xj

)
, k ∈ I

A − θ
∑

j∈I xj , k ∈ S,
(2.2)

where x̄ = (xi)i∈I . We assume that Fk (x̄) is positive in all computed solutions.5

We consider a linear inverse demand function p = a − Q, where Q is the total market-output level given by
Q =

∑
i∈N qi, and a > A. The R&D cost is quadratic and given by γ

2x2
k, with γ > 0. The profit function of

firm k reads as follows:

πk =

⎧⎨
⎩

(
a − ∑

j∈N qj − Fk (x̄)
)

qk − γ
2x2

k, k ∈ I(
a − ∑

j∈N qj − Fk (x̄)
)

qk, k ∈ S.
(2.3)

2.1. Equilibria

We analyze the two scenarios considered in the literature, namely, that firms (innovators) compete or cooper-
ate in the R&D stage. To derive a subgame-perfect Nash equilibrium, we solve the two-stage game backward.

5An alternative to this assumption is to suppose that the cost is given by an hyperbolic function, which is intrinsically positive
for all values of total knowledge. However, taking this route prevents us from making direct comparisons with the literature, which
is a main objective of this paper.
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2.2. Noncooperation in R&D

Suppose that the innovators decide on their R&D investment levels noncooperatively and maximize their
individual profits. The following proposition characterizes the resulting equilibrium, where the superscript n
stands for noncooperation in R&D.

Proposition 2.1. Assuming an interior solution, the unique symmetric subgame-perfect equilibrium is given by

xn =
2(a − A)Z

γ(N + 1)2 − 2ZY
,

qn
i = (a − A)

γ(N + 1)
γ(N + 1)2 − 2ZY

, i ∈ I,

qn
s = (a − A)

(
γ(N + 1) − 2ZW

γ(N + 1)2 − 2ZY

)
, s ∈ S,

where

Y = (S + 1)(1 − β) + I((β − θ)S + β) > 0,

Z = N − βI − θS + β > 0,

W = I(β − θ) + 1 − β > 0,

with I being the number of innovators and S, the number of surfers.

Proof. See Appendix. �

The following corollary states the result for the case where the firms compete, while seeking maximum spillover
in knowledge (β = 1). This corresponds to a competitive RJV in the terminology of [12].

Corollary 2.2. Under RJV competition, the unique symmetric subgame-perfect equilibrium is given by

x̃n =
2(a − A)Z̃

γ(N + 1)2 − 2Z̃Ỹ
,

q̃n
i =

(a − A)
N + 1

γ(N + 1)2

γ(N + 1)2 − 2Z̃Ỹ
, i ∈ I,

q̃n
s = (a − A)

[
γ(N + 1) − 2Z̃W̃

γ(N + 1)2 − 2Z̃Ỹ

]
, s ∈ S,

where

Ỹ = I((1 − θ)S + 1) > 0,

Z̃ = S (1 − θ) + 1 > 0,

W̃ = I(1 − θ) > 0.

Proof. It suffices to set β = 1 in the proof of Proposition 2.1 to get the results. �

2.3. Cooperation in R&D

Assume now that the innovators cooperate in the first stage, i.e., they select the R&D levels that maximize
their joint profit. The following proposition characterizes the resulting equilibrium, where the superscript c
stands for cooperation in R&D.
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Proposition 2.3. Assuming an interior solution, the unique symmetric subgame-perfect equilibrium when the
innovators cooperate in R&D is given by

xc =
2(a − A)Y

γ(N + 1)2 − 2Y 2
i ∈ I,

qc
i = (a − A)

(
γ(N + 1)

γ(N + 1)2 − 2Y 2

)
, i ∈ I

qc
s = (a − A)

[
γ(N + 1) − 2WY

γ(N + 1)2 − 2Y 2

]
, s ∈ S.

The profits are given by

πc
i =

(Y − 2Z) (N + 1)2 + 4Z2 (a − A)
4Y Z2

, i ∈ I, (2.4)

πc
s =

(
Y (N + 1) − W

(
(N + 1)2 − 2Z (a − A)

))2

4Y 2Z2
, s ∈ S, (2.5)

Proof. See Appendix. �

The following corollary states the results in the scenario of a cooperative RJV.

Corollary 2.4. When innovators form a research joint venture, i.e., β = 1, the unique symmetric subgame-
perfect equilibrium when the innovators cooperate in the first stage is given by

x̃c =
2(Z̃ + T̃ )(a − A)

γ(N + 1)2 − 2(Z̃ + T̃ )Ỹ
i ∈ I,

q̃c
i = (a − A)

(
γ(N + 1)

γ(N + 1)2 − 2(Z̃ + T̃ )Ỹ

)
, i ∈ I

q̃c
s = (a − A)

⎡
⎣ γ(N + 1) − 2

(
Z̃ + T̃

)
W

γ(N + 1)2 − 2
(
Z̃ + T̃

)
Ỹ

⎤
⎦ , s ∈ S,

where
T̃ = (I − 1) (S (1 − θ) + 1) > 0.

The profits are given by

πc
i =

(Y − 2(Z + T ))(N + 1)2 + 4(Z + T )2(a − A)
4Y (Z + T )2

, s ∈ I, (2.6)

πc
s =

(
Y (N + 1) − W

(
(N + 1)2 − 2 (Z + T ) (a − A)

))2

4Y 2(Z + T )2
, s ∈ S. (2.7)

Proof. It suffices to set β = 1 in Proposition 2.3 to get the results. �

The above two propositions are stated under the assumption that the solution is interior. Now, we derive the
conditions on parameter values needed for that. In the noncooperative scenario, the following two conditions
are required:

xn and qn
i > 0 ⇔ γ(N + 1)2 − 2ZY > 0,

qn
s > 0 ⇔ γ(N + 1) − 2ZW > 0,
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which can be combined into

Z <
γ(N + 1)

2
· min

(
N + 1

Y
,

1
W

)
· (2.8)

In the cooperative scenario, we first recall that

Y = (S + 1) (1 − β) + βI + (β − θ) IS > 0,

and consequently, we have

xc and qc
i > 0 ⇔ γ(N + 1)2 − 2Y 2 > 0,

qc
s > 0 ⇔ γ(N + 1) − 2WY > 0.

The above two conditions can then be compacted as follows:

Y <
γ (N + 1)

2
min

(
(N + 1)

Y
,

1
W

)
· (2.9)

As

min
(

(N + 1)
Y

,
1
W

)
=

1
W

,

then (2.8)–(2.9) become

max (Z, Y ) <
γ (N + 1)

2W
· (2.10)

Note that the sign of the difference

Y − Z � T = (I − 1) (S (β − θ) + 2β − 1) ,

depends on the parameter values. In the absence of surfers, the condition for having T ≥ 0 reduces to β ≥ 1/2.

2.4. Comparison

In D&J [4], it was shown that if the spillover parameter β is large enough, then firms invest more in R&D
when they cooperate than when they set noncooperatively their R&D expenditures. More specifically, they
obtain that if β ≥ 1/2, then xc ≥ xn. The following proposition states a similar result in our scenario, where
surfers are present in the industry.

Proposition 2.5. If the intra innovators knowledge spillover is sufficiently high, i.e., β ≥ βS = 1+θS
S+2 , then

each innovator invests more in R&D when firms cooperate than when they do not. Moreover, if the knowledge
spillover to surfers is sufficiently low, i.e., θ ≤ 1/2, then the interval under which xc > xn is larger when surfers
are present than when they are absent, that is,

θ ≤ 1/2 ⇒ [1/2, 1] ⊆ [
βS , 1

] ·
Proof. The difference in R&D investments is given by:

xc − xn =
2(a − A)Tγ(N + 1)2

[γ(N + 1)2 − 2(Z + T )Y ] [γ(N + 1)2 − 2ZY ]
.

As the denominator is positive by the assumption of interior solution and a > A, we conclude that

sign (xc − xn) = signT,
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which is equivalent to the statement

xc − xn ≥ 0 ⇔ T ≥ 0 ⇔ β ≥ 1 + θS

S + 2
= βS .

Finally, we have

βS − 1
2

=
(2θ − 1)S

2 (S + 2)
,

which is less or equal to zero for θ ≤ 1/2. �

Note that for S = 0, we recover D&J [4] result. The main message from the above proposition is that the
presence of surfers in the market does not change qualitatively the result in D&J [4], that is, the ordering of
investment levels is the same, but induces a quantitative change in the threshold.

In order to assess the impact of surfers on investments in R&D under cooperation and noncooperation,
respectively, we compare our results to those in D&J [4].

Proposition 2.6. Independently on the mode of play (noncooperative or cooperative) for setting R&D invest-
ments, a sufficient condition for having a higher investment by an innovator when surfers are present is β < 1/2.

Proof. See Appendix. �

The result shows that for low spillover, innovators tend to invest more when there are surfers than when
there are not. One explanation of this result is as follows: first, recall that the unit production cost decreases
with the total knowledge produced in the industry. In the D&J model, as well in all others that followed, there
are N firms participating in this effort; here there are I innovators, with I < N . Consequently, for any given
desired level of knowledge, each innovator has to do more in our setting to reach it. Second, this increase will
make sense only if the firm can still appropriate a large share of the benefit of R&D, which occurs when the
spillover is low.

3. Social Welfare analysis

In this section we do two things. First, we determine the socially efficient R&D investments and outputs when
surfers are present, and second, we compare welfare under the two cases, that is, with and without surfers.

Proposition 3.1. The socially efficient R&D investment x∗ and total output Q∗ in the presence of surfers are
given by

x∗ =
N(a − A) (Sθ + 1 + β(I − 1))
N2γ − I (Sθ + 1 + β(I − 1))2

, (3.1)

Q∗ = a − A + (Sθ + 1 + β (I − 1))
Ix∗

N
· (3.2)

Proof. See the Appendix. �

Note that for N = I = 2 and S = 0, we recover the same expression for efficient output in D&J [4].

Proposition 3.2. Optimal socially efficient R&D investment and output are always lower when there are
surfers in the market than when there are not.

Proof. See the Appendix. �
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Proposition 3.3. If

γ ∈
[

I (Sθ + 1 + β (I − 1))2

N2
,

N (1 + β (N − 1))2

N2

]
, (3.3)

then the presence of surfers in the industry is welfare improving.

Proof. See the Appendix. �

We make two observations on the above interval. First, the higher the number of innovators in the industry,
the narrower the interval in (3.3). Indeed, the derivative of the lower bound with respect to I is clearly positive.
Second, when innovators form an RJV (β = 1), the expression of the interval given above simplifies to

γ ∈
[

I (Sθ + I)2

N2
, N

]
.

Clearly, the larger the spillover of knowledge to surfers, the narrower the interval where their presence is welfare
improving.

From the proof of Proposition 3.1, we have that the consumer surplus is given by CS = 1
2Q2. As the total

output is always higher in the absence of surfers, any loss in total welfare is then due to a decrease in producer’s
surplus. The innovators profits at the social optimum are given by

Π∗ = p∗Q∗ − ckQ∗ − γI
x∗2

2
, (3.4)

where ck is the unit industry production cost is given by

ck = A −
(

(Sθ + 1 + β(I − 1))I
N

)
x∗.

Denote by K = (Sθ+1+β(I−1))I
N , then ck = A − Kx∗. The socially optimal output and price are given by

Q∗ = a − A + Kx∗ ⇔ Kx∗ = Q∗ − (a − A),
p∗ = a − Q∗.

Substituting in (3.4), we get

Π = ((a − Q∗) − (A − Kx∗))Q∗ − γI
x∗2

2
= −γI

x∗2

2
,

which clearly shows that the social profit is negative.
The policy implication is that a benevolent regulator would need to compensate innovators for their losses

if he wants to implement the socially optimal solution; otherwise, innovating firms would be better off not
investing in R&D.

4. Conclusion

We generalize D&J model introducing free riders in the industry. Computing cooperative and noncooperative
equilibria, we confirm earlier results that for sufficiently high spillovers, cooperation dominates competition.
Comparing R&D investment levels with and without surfers, we establish that under competition in R&D, both
for low spillover β and for high spillovers β (intra innovators) and θ (to surfers), innovators invest more when
there are surfes than when there are not. Important spillovers encourage innovators to invest more even in the
presence of surfers. Our result contrasts with Ben Abdelaziz et al. who established that innovators invest less
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when surfers exist. This shows the positive role of surfers in enhancing investment activity in an industry. Also,
we obtained that in a region of the parameter values, the presence of surfers is welfare improving.

This study can be extended in at least two directions. First, the assumption that surfers can freely absorb
partially the knowledge created by others could be soften by imposing a certain cost on surfers. Second, the
assumption that the type of each firm is exogenously given should be relaxed. One can then add a stage to the
game in which the firm chooses to be active or not in R&D.

Appendix

A.1. Proof of Proposition 2.1

From Kamien et al. [12], the profit functions can be written as

πk =
{

q2
k (x̄) − γ

2x2
k, k ∈ I,

q2
k (x̄) , k ∈ S.

Assuming an interior solution, differentiating the profit function of an innovator with respect to quantity and
equating to zero yields

qi (x̄) =
a − NFi (x̄) +

∑
j∈N ,j �=i Fj (x̄)

N + 1
, k ∈ N.

Fk (x̄) =

{
A −

(
xk + β

∑
j∈I,j �=k xj

)
, k ∈ I

A − θ
∑

j∈I xj , k ∈ S.

Assuming symmetry, that is, xi = x, ∀i ∈ I,the above expression simplifies to

qi (x̄) = q (x̄) =
a − A + Y x

N + 1
,

where
Y = (S + 1)(1 − β) + I((β − θ)S + β) > 0.

Inserting in the profit function, we get
πi = (qi (x̄))2 − γ

2
x2

i .

Assuming an interior solution, the first-order condition is given by:

2qi
∂qi

∂xi
− γxi = 0, (A.1)

with

∂qi

∂xi
= Z,

Z = N − βI − θS + β > 0.

Assuming symmetry, (A.1) becomes

2qi
∂qi

∂xi
− γxi =

2
(N + 1)2

[a − A + Y x]Z − γx = 0,

and consequently

xn =
2(a − A)Z

γ(N + 1)2 − 2ZY
·
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Substituting for xn in the expression of qi, we get

qn
i =

(a − A)
N + 1

γ(N + 1)2

γ(N + 1)2 − 2ZY
·

It can be easily established that a surfer’s equilibrium output is given by

qn
s = (a − A)

[
γ(N + 1) − 2ZW

γ(N + 1)2 − 2ZY

]
, s ∈ S,

where
W = I(β − θ) + 1 − β > 0.

A.2. Proof of Proposition 2.5

Assuming an interior solution, the second-stage output levels and profits are given, as in the noncooperative
R&D case, by:

qk (x̄) =
a − NFk (x̄) +

∑
j∈N ,j �=k Fj (x̄)

N + 1
, k ∈ N, (A.2)

πk (x̄) =
{

q2
k (x̄) − xk, k ∈ I

q2
k (x̄) , k ∈ S.

(A.3)

In the first stage, the innovators maximize their joint profit, that is,

max
x

Π = max
x

∑
i∈I

πi (x̄) = max
x

∑
i∈I

(
q2
i (x̄) − γ

2
x2

i

)
.

Assuming an interior solution, the first-order conditions are given by

∂Π

∂xi
= 2qi (x̄)

∂qi (x̄)
∂xi

+
∑

j∈I,j �=i

2qj (x̄)
∂qj (x̄)

∂xi
− γxi = 0, i ∈ I. (A.4)

The optimal output level can be written as:

qi (x̄) =
a − NFi (x̄) +

∑
j∈I,j �=i Fj (x̄) +

∑
s∈S Fs (x̄)

(N + 1)
·

Recalling that the unit production costs are given by:

Fk (x̄) =

⎧⎨
⎩

A −
(
xk + β

∑
j∈I,j �=k xj

)
, k ∈ I

A −
(
θ
∑

j∈I xj

)
, k ∈ S,

(A.5)

the condition in (A.4) becomes

2qi(x̄)
N + 1

⎡
⎣−N

∂Fi (x̄)
∂xi

+
∑

j∈I,j �=i,

∂Fj (x̄)
∂xi

+
∑
s∈S

∂Fs (x̄)
∂xi

⎤
⎦

+
∑

j∈I,j �=i

2qj (x̄)
N + 1

⎡
⎣−N

∂Fj (x̄)
∂xi

+
∑

j∈I,j �=i,

∂Fj (x̄)
∂xi

+
∑
s∈S

∂Fs (x̄)
∂xi

⎤
⎦ − γxi = 0, i ∈ I. (A.6)
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In symmetric case, the above equation reduces to:

2qi (x̄)
N + 1

Y − γx = 0, (A.7)

which is equivalent
2Y

(N + 1)2
(a − A + xY ) − γx = 0,

and consequently

xc =
2Y (a − A)

γ(N + 1)2 − 2Y 2
·

Inserting xc in (A.7), we obtain the following equilibrium output for an innovator:

qc
i = (a − A)

(
γ(N + 1)

γ(N + 1)2 − 2Y 2

)
, i ∈ I.

For a surfer, we get

qc
s = (a − A)

[
γ(N + 1) − 2Y W

γ(N + 1)2 − 2Y 2

]
, s ∈ S.

It suffices to substitute for the quantities and R&D investments in the profit functions to obtain the expres-
sions in the proposition.

A.3. Proof of Proposition 2.6

We first consider the case where the firms set noncooperatively their R&D investments. The equilibrium
R&D expenditures in D&J and in our case are given by

xn
D&J =

2(a − A)ZD

γ(N + 1)2 − 2ZDYD
,

xn =
2(a − A)Z

γ(N + 1)2 − 2ZY
,

where

ZD = N(1 − β) + β,

YD = (1 − β) + Nβ.

Compute the difference

xn − xn
D&J =

(a − A)
(
γ (N + 1)2 (S (β − θ)) − 2ZZD

(
Y D − Y

))
(γ(N + 1)2 − 2ZY ) (γ(N + 1)2 − 2Y DZD)

=
(a − A)

(γ(N + 1)2 − 2ZY ) (γ(N + 1)2 − 2Y DZD)

×
(
γ (N + 1)2 (S (β − θ)) + 2 (N − βI − θS + β) (N(1 − β) + β) (S (1 − 2β + I (β − θ)))

)
.

For interior solutions, we have

γ(N + 1)2 − 2ZY > 0 and γ(N + 1)2 − 2Y DZD > 0,

and therefore the denominator of xn − xn
D&J is positive. Consequently, we have

sign (xn − xn
D&J ) = signΓ,
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where

Γ = γ (N + 1)2 (S (β − θ)) + 2 (N − βI − θS + β) (N(1 − β) + β) (S (I (β − θ) + 1 − 2β)) .

Clearly, a sufficient (not necessary) condition to have Γ > 0 is to have S (I (β − θ) + 1 − 2β) > 0, which
holds true for β < 1/2.

(ii) Under cooperative R&D, we have

xc =
2 (a − A)Y

γ(N + 1)2 − 2Y 2
,

xc
D&J =

2 (a − A) (Nβ + 1 − β)
γ(N + 1)2 − 2 (Nβ + 1 − β)2

·

The difference is given by

xc − xc
D&J =

2 (a − A)
(
γ(N + 1)2 + 2Y (Nβ + 1 − β)

)
(Y − (Nβ + 1 − β))

(γ(N + 1)2 − 2Y 2)
(
γ(N + 1)2 − 2 (Nβ + 1 − β)2

) ·

It is then easy to check that

sign (xc − xc
D&J ) = sign (Y − (Nβ + 1 − β))

= sign (S (I (β − θ) + 1 − 2β)) ,

which leads to the same result as in (i).

A.4. Proof of Proposition 3.1

The consumer surplus CS is given by
CS = U(Q) − pQ,

that is, the difference between consumer’s utility U(Q) and expenses. In our (linear-demand) case, CS is given by

CS =
∫ a

p

(a − z)dz =
1
2

(a − p)2 =
1
2
Q2.

Producer’s surplus is given by the industry profit

π (Q) = pQ − CT (Q),

where CT (Q) is the total cost given by

CT (Q) = FC + V C (Q) ,

where FC represents the fixed costs, which are nil in this case, and V C designates the variable costs. The
average unit production cost of the industry is:

ck =
S · cS + I · Ci

N
, i ∈ I, s ∈ S,

with

ci = A − [1 + β(I − 1)]x,

cs = A − θIx.
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Total costs are given by the sum of total variable production cost and the R&D costs for the I innovators:

CT (Q) = ckQ + Iγ
x2

2
·

Consequently, the total surplus can be written

W (Q) = U(Q) − ckQ − Iγ
x2

2

=
1
2
Q2 + pQ − CT (Q) .

Using p = a − Q, we get

W (Q) = (a − A)Q − 1
2
Q2 +

IQ

N
(Sθ + (1 + β(I − 1)))x − Iγ

x2

2
·

Differentiating with respect to Q and equating to zero yields the optimal efficient output level

Q∗ = a − A + (Sθ + 1 + β (I − 1))
Ix∗

N
.

A.5. Proof of Proposition 3.2

To get the efficient R&D investment and total output in an industry having N firms all investing in R&D, it
suffices to set I = N and S = 0 in (3.1)–(3.2), that is,

x∗
D&J =

(a − A) (1 + β(N − 1))
Nγ − (1 + β(N − 1))2

, (A.8)

Q∗
D&J = a − A + (1 + β (N − 1)) x∗

D&J . (A.9)

Compute the difference

x∗ − x∗
D&J =

(a − A)(
N2γ − I (Sθ + 1 + β(I − 1))2

)(
Nγ − (1 + β(N − 1))2

) × Λ,

where

Λ = (Sθ + 1 + β(I − 1))
(
N2γ − N (1 + β(N − 1))2

)
− (1 + β(N − 1))

(
N2γ − I (Sθ + 1 + β(I − 1))2

)
.

As the denominator is positive, the sign of x∗ − x∗
D&J is the same as the sign of Λ. Let

A = (Sθ + 1 + β(I − 1))

B =
(
N2γ − N (1 + β(N − 1))2

)
C = (1 + β(N − 1))

D =
(
N2γ − I (Sθ + 1 + β(I − 1))2

)
.

Compute the differences

A − C = −S (β − θ) < 0,

B − D = S2I
(
θ2 − β2

)
+ 2SI

(
(θ − β)βI − θ (1 − β) − Sβ2

)
− S3β2 − Sβ2I2 + S (1 − β) (−2Sβ − 4βI + β − 1) < 0.
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Therefore
Λ = AB − CD,

is negative because

A, B, C, D > 0
A < C and B < D.

Hence the result.
For the quantities, we have

Q∗ − Q∗
D&J =

(
a − A + (Sθ + 1 + β (I − 1))

Ix∗

N

)
− (a − A + (1 + β (N − 1))x∗

D&J )

= (Sθ + 1 + β (I − 1))
Ix∗

N
− (1 + β (N − 1)) x∗

D&J .

As

(Sθ + 1 + β(I − 1)) − (1 + β(N − 1)) = −S (β − θ) < 0,

Ix∗

N
< x∗

D&J ,

we get Q∗ < Q∗
D&J .

A.6. Proof of Proposition 3.3

The difference in welfare is given by

W (Q∗
D&J) − W (Q∗) = (a − A) (Q∗

D&J − Q∗) − 1
2

(
(Q∗

D&J)2 − (Q∗)2
)

+ Q∗
D&J (Q∗

D&J − a + A) − Q∗ (Q∗ − a + A) − γ

2

(
N (x∗

D&J )2 − I (x∗)2
)

,

which can be rewritten as

W (Q∗
D&J) − W (Q∗) =

1
2

(
(Q∗

D&J)2 − (Q∗)2 − γ
(
N (x∗

D&J )2 − I (x∗)2
))

. (A.10)

Let
Φ = (Sθ + 1 + β (I − 1)) ; Δ = (1 + β (N − 1)) .

The socially efficient quantities and investments in the two scenarios can then be written as

x∗ =
N(a − A)Φ
N2γ − IΦ2

, x∗
D&J =

(a − A)Δ
Nγ − Δ2

, (A.11)

Q∗ = (a − A)Nγ

(
N

N2γ − IΦ2

)
(A.12)

Q∗
D&J = (a − A)Nγ

(
1

Nγ − Δ2

)
· (A.13)

Substituting in (A.10), we get

W (Q∗
D&J) − W (Q∗) =

(a − A)2 γN

2

(
NΔ2 − IΦ2

(Nγ − Δ2) (N2γ − IΦ2)

)
·
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Since Δ > Φ, we have NΔ2 − IΦ2 > 0. Therefore, the sign of W (Q∗
D&J ) − W (Q∗) is the same as the

denominator. Writing the latter in long, we have(
Nγ − Δ2

) (
N2γ − IΦ2

)
= N3γ2 − (

N2Δ2 + INΦ2
)
γ + IΦ2Δ2,

which is polynomial of degree 2 in γ. Its roots are given by

γ =

(
N2Δ2 + INΦ2

) ± √
(N2Δ2 + INΦ2)2 − 4N3IΦ2Δ2

2N3
,

that is

γ− =
IΦ2

N2
; γ+ =

NΔ2

N2
·

We conclude that

W (Q∗
D&J ) − W (Q∗) ≤ 0 for γ ∈

[
IΦ2

N2
,

NΔ2

N2

]
,

that is,

⇔ γ ∈
[

I (Sθ + 1 + β (I − 1))2

N2
,

N (1 + β (N − 1))2

N2

]
·
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