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AN EFFICIENT CUTTING PLANE ALGORITHM FOR THE MINIMUM
WEIGHTED ELEMENTARY DIRECTED CYCLE PROBLEM IN PLANAR
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Abstract. In this paper, we study the efficiency (both theoretically and computationally) of a class of
valid inequalities for the minimum weighted elementary directed cycle problem (MWEDCP) in planar
digraphs with negative weight elementary directed cycles. These valid inequalities are called cycle valid
inequalities and are parametrized by an integer called inequality’s order. From a theoretical point of
view, we prove that separating cycle valid inequalities of order 1 in planar digraph can be done in
polynomial time. From a computational point of view, we present a cutting plane algorithm featuring
the efficiency of a lifted form of the cycle valid inequalities of order 1. In addition to these lifted valid
inequalities, our algorithm is also based on a mixed integer linear formulation of the MWEDCP. The
computational results are carried out on randomly generated planar digraph instances of the MWEDCP.
For all 29 instances considered, we obtain in average 26.47% gap improvement. Moreover, for some of
our instances the strengthening process directly displays the optimal integer elementary directed cycle.
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1. Introduction

Let D = (V, A) be a connected planar digraph with V as vertex set, A as arc set and an arc weight function
w : A → R. A directed cycle is a sequence (v0, a1, . . . , ak, vk), where k is an integer (assumed to be ≥1),
v0, v1, . . . vk are vertices such that v0 = vk, for every index i belonging to {1, . . . k}, ai is an arc connecting the
vertices vi−1 and vi and, finally, all arcs ai have the same orientation. An elementary directed cycle is a directed
cycle (v0, a1, . . . , ak, vk) in which each vertex vi, for every index belonging to {0 . . . k}, appears once. We denote
by P the polytope of all elementary directed cycles in D. That is, the convex hull of the set of incidence vectors
of elementary directed cycles of the digraph D.

The minimum weighted elementary directed cycle problem consists in finding of an elementary directed cycle γ∗

such that:

l(γ∗) = min {l(γ) : γ ∈ C} (1.1)
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where C is the set of all elementary directed cycles in D and l(γ) =
∑

a∈A(γ) w(a) where A(γ) denotes the arc
set of the elementary directed cycle γ.

This problem is known to be NP-hard, since it includes the asymmetric traveling salesman problem as a
special case. As a related work, Balas and Oosten (see [1]) present a linear description of the elementary directed
cycle polytope. They also introduce some facets of the polytope P . In [2], the authors consider the dominant of
the polytope P and derive others facets of P . The polytope P is also studied in undirected graphs case (see [5]).
The integer linear formulation considered in [1,2] is a non compact formulation, since it contains an exponential
number of constraints as the so-called multiple cycle exclusion constraints and linear ordering constraints. Other
cycle polytopes with cardinality restrictions defined on graphs and digraphs are already well studied. For an
exhaustive list of those publications, one can refer to [7]. Notice that all these researches investigate, in common,
a partial description of the polytope P in general undirected and directed graphs. But they do not treat the
resolution question.

From an algorithmic point of view, although the problem is very fundamental, the state of the art for it dates
back to a seminal paper by Itai and Rodeh (see [12]) from the 70s, that deals only with the unweighted variant
of the problem. Itai and Rodeh present an O(nw)-time algorithm for an n-node unweighted undirected graph
and an O(nw log n)-time algorithm for an n-node unweighted directed graph. In the same paper, Itai and Rodeh
pose the question whether similar results exist for weighted graphs. Yuster and Zwick [18] present an algorithm
to find the shortest even cycle in unweighted undirected graphs in O(n2). After, Lingas and Lundell [14] address
efficient approximation algorithms for the shortest cycles in unweighted and weighted undirected graphs. In the
same way, Roditty and Williams (see [17]) present a O(Mnw)-time algorithms for directed graphs with integral
edge weights in [−M, M ] (and no negative weight cycles) and for undirected graphs with integral edge weights
in [1, M ], where w (less than 2.376) is the exponent of square matrix multiplication (see [4]). On the other hand,
Letchford and Pearson [13] give a simple O(n3/2 log n) algorithm for finding a minimum weight odd cycle in
positive weighted undirected planar graphs.

In this paper, we propose an efficient cutting plane algorithm based, in part, on the linear relaxation of a
compact mixed integer linear formulation of the MWEDCP in planar digraphs. Such an algorithm possibly
gives the optimal integer solution. The linear formulation of the MWEDCP considered is due to Maculan
et al. (see [15]). Even in presence of negative weight cycles, at optimality, such a formulation provides the
optimal integer elementary directed cycle with an additional vertex s /∈ V and arc (s, i), i ∈ V . Generally,
the structure of any optimal fractional solution of the linear relaxation of the considered MWEDCP linear
formulation is such that by deleting the vertex s from the supporting sub-digraph, one disconnects it. But, each
connected component of this supporting sub-digraph is actually strongly connected. From the dual digraph of
every connected component of the supporting sub-digraph, we show that to any u-v elementary directed path
corresponds to what we call a cycle valid inequality of order 1 (see [8]). Recall that, in strongly connected
digraphs, the separation problem of cycle valid inequalities of order β is NP-hard (even in the case β = 1
(see [8]). We will see that in the case of planar digraphs, valid inequalities that correspond to u-v elementary
directed paths in the dual digraph (of the supporting digraph of the optimal fractional solution) can be separated
in polynomial time.

As the cycle valid inequalities of order 1 are generated w.r.t. the connected components of the sub-digraph
supporting the optimal fractional solution, we therefore resort to a lifting technique to derive valid inequalities
for the polytope P . The lifting technique used is close in spirit to the one presented in [11] for the shortest
path problem and applied to derive the so-called simple-lifted-valid-inequalities. However, in this work (contrary
to the simple-lifted-valid-inequalities) we do not consider all the arcs of the complementary sub-digraph of the
supporting digraph of the optimal fractional solution. After, we present computational results featuring the
efficiency of these lifted valid inequalities. Within a cutting plane algorithm, we show that such lifted valid
inequalities are capable to strengthen the linear relaxation of the evoked formulation.

The paper is organized as follows. In Section 2, we present a compact linear formulation of the minimum
weighted elementary directed cycle problem and we show that the connected components of the subgraph, that
supports the optimal fractional solution of its linear relaxation without the additional vertex s /∈ V and all the
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arcs (s, i), i ∈ V , are strongly connected. In Section 3, we present a class of valid inequalities for the polytope P
and we give a polynomial time algorithm that separates these valid inequalities in case of strongly connected
planar digraphs and for β = 1. We also address an efficient lifting technique of the cycle valid inequalities of
order 1 based on the incident arcs of some given vertices. In Section 4, we discuss the computational results.

2. A compact linear formulation for MWEDCP

The compact linear formulation of the minimum weighted elementary directed cycle problem given below is
introduced in [15].

Given a planar connected digraph D = (V, A), we build an auxiliary digraph (denoted by Ds) obtained
from D by adding an additional vertex s that does not belong to V and zero weighted arcs (s, k) for every
vertex k belonging to V and: (i) for every vertex i belonging to V ∪ {s}, we associate a binary variable xi such
that xi equals 1 if and only if the minimum weighted elementary directed cycle visits the vertex i; (ii) for every
arc (i, j) belonging to A∪{(s, k) : k ∈ V }, we associate a binary variable yij such that yij equals 1 if and only if
the minimum weighted elementary directed cycle passes through the arc (i, j); (iii) we define variables fk

ij ≥ 0
as the flow passing through the arc (i, j), from the source vertex s to the terminal vertex k.

The mixed integer linear formulation then we obtain is as follow:

Min
∑

(i,j)∈A

wijyij

s.t.
∑

j∈Γ+(s)

fk
sj = xk, k ∈ V (2.1)

∑

j∈Γ+(i)

fk
ij −

∑

j∈Γ−(i)

fk
ji = 0, k ∈ V, i ∈ V \ {k} (2.2)

∑

j∈Γ+(k)

fk
kj −

∑

j∈Γ−(k)

fk
jk = −xk, k ∈ V (2.3)

fk
ij ≤ yij , (i, j) ∈ A, k ∈ V (2.4)
∑

j∈Γ+(k)

ykj = xk, k ∈ V (2.5)

∑

j∈Γ−(k)

yjk = xk, k ∈ V (2.6)

∑

j∈Γ+(s)

ysj = 1, (2.7)

∑

k∈V

xk ≥ 2, (2.8)

fk
ij ≥ 0, k ∈ V, (i, j) ∈ A ∪ {(s, j) : j ∈ V } (2.9)

xi, yij ∈ {0, 1}, i ∈ V ∪ {s}, (i, j) ∈ A ∪ {(s, j) : j ∈ V } (2.10)

where, for every vertex i, Γ+(i) and Γ−(i) denote the sets of outgoing arcs from the vertex i and ingoing arcs to
the vertex i, respectively. Constraints (2.1)–(2.3) and (2.5)–(2.6) are flow conservation and degree constraints,
respectively. The constraints (2.4) establish the link between the flow passing through an arc and the arc.
Constraints (2.8) say that every elementary directed cycle may include at most 2 vertices. At optimality, the
above model produces an optimal elementary directed cycle with an additional arc of type (s, j), j ∈ V . So, to
find the optimal solution of the MWEDCP, we have to delete the additional arc (s, j).
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Consider an optimal fractional solution (x̂, ŷ, f̂) of the MWEDCP, let Ds[ŷ] be its supporting directed sub-
digraph. That is, the arc set of Ds[ŷ] contains only arcs (i, j) such that ŷij > 0. On the other hand, let D[ŷ],
with V̂ as Â as arc set, be the directed subgraph obtained from the digraph Ds[ŷ] by deleting the vertex s and
all the arcs of type (s, k) such that ŷsk > 0. Notice that the digraph D[ŷ] is not necessarily connected. But, as
shown in the next lemma, each of its connected component is strongly connected.

Lemma 2.1. Each component of the directed sub-digraph D[ŷ] is strongly connected.

Proof. Let C be a connected component of D[ŷ]. Let u and v be two vertices from C. Since the optimal fractional
solution (x̂, ŷ, f̂) satisfies the flow constraints (2.5) and (2.6) then there exists a directed path from u to v and
a directed path from v to u. This completes the proof. �

In the next section, we recall what we call cycle valid inequality of order β and discuss its separation problem
in planar digraphs and for β = 1.

3. Separating cycle valid inequalities of order β = 1 in planar digraphs

3.1. Concept of digraph duality and cycle valid inequalities of order β

In this part, we define the concept of duality of a given planar digraph and we recall what we call cycle valid
inequalities introduced in [8].

3.1.1. Concept of planar digraph duality
Let D be a connected planar digraph. Since the digraph D can be drawn on the plane, a face of D is defined

as the area surrounded by an elementary cycle. An Unbounded face is the area surrounding the entire digraph D.
Assume that the digraph D has r faces denoted gk, where k belongs to {0, . . . , r}, where g0 is its unbounded
face. The dual digraph D∗ associated with D is defined as follows: (i) for every face gk, k = 0, . . . , r in D, we
associate a vertex vk, k = 0, . . . , r in D∗; (ii) for every arc a = (u, v) adjacent to both faces gk and gj , k �= j,
we associate an arc (vk, vj) in D∗. The orientation of the arc (vk, vj) is chosen such that it crosses the original
arc a = (u, v) from left to right, here left means the left side when we traverse the arc a from its tail u to its
head v.

As an example, in Figure 1: the vertex v1 in the dual digraph D∗ corresponds to the elementary directed cycle
(1, 2, 3, 6, 5, 4, 1) in D; the vertex v2 corresponds to the elementary directed cycle (6, 5, 7, 8, 6) in D; the vertex v3

corresponds to the elementary directed cycle (7, 8, 10, 9, 7) in D and v0 represents the unbounded face of D.
One can observe that all elementary directed cycles in D are represented by directed stars (or distars) in the

1 2 3

4 5 6

7 8

9 10

v1 v2 v3

v0

Figure 1. A digraph D (left) and its dual D∗ (right).
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dual digraph D∗. We mean by a distar a set of arcs oriented in the same direction and incident to the same
vertex. In Figure 1, with respect to the vertex v2, the arc set {(v2, v1), (v2, v3), (v2, v0)} constitutes a distar.

3.1.2. Cycle valid inequalities of order β

Let us consider an arc set F from the planar digraph D such that:

|F ∩ A(γ)| ≤ β, ∀γ ∈ C, (3.1)

where A(γ) denotes the set of arcs of the elementary directed cycle γ. Such an arc set F induces valid inequalities
for the polytope P .

Theorem 3.1 (see [8]). Let β be a nonnegative integer. If F is an arc set satisfying the condition (3.1) then
∑

a∈F

ya ≤ β (3.2)

is a valid inequality for the polytope P.

The valid inequality (3.2), called cycle valid inequalities of order β, is introduced and studied in [8]. If the
digraph D is strongly connected, then the separation problem of cycle valid inequalities of order β is NP-hard
(even in the case β = 1, see [8]). Indeed, the separation problem of cycle valid inequalities of order 1 can be
reduced to the existence of τ -vertex-disjoint simple directed paths in the digraph D (see [6]), with τ ≥ 2 and
τ > β. However, if the digraph D is planar, we show that the separation of the cycle valid inequalities of order
1 can be done in polynomial time.

3.2. Separation algorithm

In the sequel, we prove that separating cycle valid inequalities of order 1 in planar digraphs can be done in
polynomial time.

Given an optimal fractional solution (x̂, ŷ, f̂) of the linear relaxation (2.1)–(2.10) of the MWEDCP and its
corresponding sub-digraph D[ŷ], the separation problem of the cycle valid inequalities of order β consists in
finding in the digraph D[ŷ] an arc subset F̂ ⊂ Â such that:

∑

a∈F̂

ŷa > β.

We recall that ŷa is the optimal (fractional) value of the arc a. As the sub-digraph D[ŷ] is possibly dis-
connected, let Ci[ŷ], i = 1, . . . , c be its different connected components and consider the dual components
C∗

i [ŷ], i = 1, . . . , c drawn from the different components Ci[ŷ], i = 1, . . . , c.

Proposition 3.2. For every vertex pair (u, v) of the dual component C∗
i [ŷ], i = 1, . . . , c, a u-v elementary

directed path in C∗
i [ŷ], i = 1, . . . , c, defines a cycle valid inequality of order 1 w.r.t the component Ci[ŷ], i =

1, . . . , c.

Proof. Let u and v be two vertices belonging to the dual component C∗
i [ŷ]. Let Pu,v be an elementary directed

path from u to v in C∗
i [ŷ]. Let F̂i be the arc set of the component Ci[ŷ] containing all arcs that are crossed by

an arc of A(Pu,v), the arc set of the u-v directed path Pu,v. Since every arc of Pu,v crosses an arc from Ci[ŷ]
that belongs to two distinct elementary directed cycles of Ci[ŷ], then we have

|F̂i ∩ A (γ) | ≤ 1, ∀ γ (3.3)

where γ is an elementary directed cycle of the component Ci[ŷ]. Therefore,
∑

a∈F̂i

ya ≤ 1, ∀ i,

is a valid inequality w.r.t the component Ci[ŷ], this completes the proof. �
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Remark 3.3. The above inequality is also valid for all elementary directed cycles in D[ŷ] =
⋃c

i=1 Ci[ŷ]. More-
over, as the arcs of each F̂i are in a different component, namely Ci[ŷ], we also have the following valid inequality∑

a∈(
⋃c

i=1 F̂i)

ya ≤ 1.

Theorem 3.4. The separation of cycle valid inequalities of order 1 induced by elementary directed paths of the
dual D∗[ŷ] of a planar sub-digraph D[ŷ] is solvable in polynomial time.

Proof. W.l.o.g. we assume that the sub-digraph D[ŷ] is connected. By Proposition 3.2, any u-v elementary
directed path in the dual digraph D∗[ŷ] can be associated with a cycle valid inequality of order 1 in D[ŷ]. Using
a depth first search (DFS) algorithm from a vertex u ∈ D∗[ŷ] in view to reach a vertex v ∈ D∗[ŷ], we generate in
polynomial time a u-v elementary directed path that induces a corresponding cycle valid inequality of order 1,
as the complexity time of a DFS algorithm is O(|V |+ |A|). To really solve the separation problem, we consider
only the u-v elementary directed paths of the dual digraph such that the sum of the values of the associated
variables of the arcs of the corresponding cycle valid inequality is up to 1. �

In Figure 1, in the dual digraph D∗, the elementary directed paths (v2, v0, v1) and (v2, v0, v3) correspond to
the cycle valid inequalities of order 1 y3,6 + y8,6 ≤ 1 and y8,6 + y8,10 ≤ 1 in D, respectively. One can easily verify
in D that the arcs (3, 6) and (8, 6) belong to distincts elementary directed cycles in D.

Generally, since the valid inequalities derived on a given sub-digraph, (as D[ŷ] the sub-digraph that supports
the optimal (fractional) solution (x̂, ŷ, f̂) of the linear relaxation of the model (2.1)–(2.10)), are not valid
considering the entire digraph D = (V, A), we may resort to a lifting technique to extend such valid inequalities
for the whole polytope P . This fact is illustrated in what follows

Let the following planar digraph D = (V, A) be an instance of the MWEDCP. Consider C =
{γ1, γ2, γ3, γ4, γ5, γ6, γ7} the set of all elementary directed cycles in D. We represent an elementary di-
rected cycle by an ordered sequence of its vertices. Thus, γ1 = (5, 10, 11, 6, 5), γ2 = (5, 10, 11, 12, 7, 6, 5),
γ3 = (5, 10, 11, 12, 13, 8, 7, 6, 5), γ4 = (8, 9, 14, 13, 8), γ5 = (1, 2, 3, 4, 9, 14, 18, 17, 16, 15, 11, 6, 1), γ6 =
(1, 2, 3, 4, 9, 14, 18, 17, 16, 15, 11, 12, 7, 6, 1) and γ7 = (1, 2, 3, 4, 9, 14, 18, 17, 16, 15, 11, 12, 13, 8, 7, 6, 1).

Consider the sub-digraph D[ŷ] of the above instance D of the MWEDCP represented on the left side of
Figure 3 and its corresponding dual sub-digraph D∗[ŷ] (on the right side). The vertices v1, v2, v3, v4 of D∗[ŷ] are
associated to the faces of D[y] delimited by the arc sets {(5, 10), (10,11), (11,6), (6, 5)}, {(7, 6), (11,6), (11,12),
(12, 7)}, {(12, 13), (13, 8), (8, 7), (12, 7)} and {(8, 9), (9,14), (14,13), (13, 8)}, respectively. With v0 associated to
the unbounded face. The elementary directed cycles of D[ŷ] are γ1 = (5, 10, 11, 6, 5), γ2 = (5, 10, 11, 12, 7, 6, 5),
γ3 = (5, 10, 11, 12, 13, 8, 7, 6, 5) and γ4 = (8, 9, 14, 13, 8). According to the proposition 3.2, from the v1 − v4

directed path p1 = (v1, v2, v3, v0, v4) of D∗[ŷ] represented by an ordered sequence of its vertices, we deduce that
the inequality

y11,6 + y12,7 + y12,13 + y9,14 ≤ 1 (3.4)

is valid over the sub-digraph D[ŷ]. Indeed, it is satisfied by the incidence vectors of all elementary directed
paths γ1, γ2, γ3 and γ4 of the sub-digraph D[ŷ]. However, it is violated by the incidence vectors of the elementary
directed cycles γ5, γ6 and γ7 of the entire digraph D. Inequality (3.4) is then not valid w.r.t the digraph D.

In the following lines, we address a lifting technique that can be polynomially implemented and enables to
transform the valid inequality (3.4) into the following inequality

y11,6 − y15,11 + y12,7 + y12,13 + y9,14 − y4,9 ≤ 1 (3.5)

that is satisfied by all incidence vectors of the elementary directed cycles of D. Moreover, the lifted valid
inequality (3.5) is violated by the fractional solution supported by the sub-digraph represented on the left side
of Figure 3. Thus, ŷ11,6 − ŷ15,11 + ŷ12,7 + ŷ12,13 + ŷ9,14 − ŷ4,9 = 0.5 − 0 + 0.25 + 0.25 + 0.75 − 0 = 1.75 > 1.
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1 2 3 4

65 7 8 9

10 11 12 13 14

15 16 17 18

Figure 2. An instance D of the MWDECP.

5 6 7 8 9

10 11 12 13 14

1

1 0.5

0.75
0.25

0.75

1

0.5

0.5

0.25

0.25

1

0.75

v1 v2 v3 v4

v0

Figure 3. A sub-digraph of D (left) and its dual (right).

Given an instance D = (V, A) of the MWEDCP and its corresponding sub-digraph D[ŷ]. Consider the arc
subset F̂ of A such that F̂ verifies the condition (3.3). For any arc a = (u, v) ∈ F̂ , we denote by F̂− the
set of all arcs in A \ Â such that these arcs have the node u as tail. Similarly, we denote by F̂+ the set of
all arcs in A \ Â such that these arcs have v as head. That is F̂− = {(x, u) ∈ (A \ Â) : (u, v) ∈ F̂} and
F̂+ = {(v, x) ∈ (A \ Â) : (u, v) ∈ F̂}.
Proposition 3.5. Let F̂ be an arc subset from Â verifying the condition (3.3) w.r.t. the sub-digraph D[ŷ]. Then
the following lifted inequality

∑

a∈F̂

ya −
∑

a∈F̂−

ya −
∑

a∈F̂+

ya ≤ 1 (3.6)

is valid for the polytope P.

We call the valid inequality (3.6) the F̂ -lifted cycle valid inequality of order 1. Such a valid inequality is
close in spirit to the so-called simple lifted valid inequalities introduced in [11] for the s-t elementary directed
path problem. However, here contrary to the simple lifted valid inequalities, we do not consider all the arcs of
Ac = A\Â, the arcs of the complementary digraph of D[ŷ]. We recall that Â is the arc set of the sub-digraph D[ŷ].

Proof. According to the condition (3.3), every elementary directed cycle in the sub-digraph D[ŷ] intersects with
at most one arc of the arc set F̂ . Consider an elementary directed cycle γ ∈ C, we can distinguish three cases:

1. if γ is an elementary directed cycle of the sub-digraph D[ŷ], it is obvious that the inequality (3.6) is valid for
the polytope P .

2. if γ is an elementary directed cycle such that A(γ)∩Â = ∅, the inequality (15) remains valid. Thus, as F̂ = ∅,
the sum of terms on the left hand side of the inequality are non-positive.
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3. if γ is an elementary directed cycle such that A(γ)∩ Â �= ∅ and A(γ)∩Ac �= ∅, it means that the elementary
directed cycle γ has some of its arcs in D[ŷ] and the others in the complementary subgraph of D[ŷ]. The
inequality (3.6) is satisfied by the incidence vector of such an elementary directed cycle γ as generally every
elementary directed cycle γ of C which passes through an arc a = (u, v) ∈ F̂ has already passed through an
arc ingoing to the head of the arc a and/or must pass through an arc outgoing from the tail of a.

This completes the proof. �

Algorithm 1: Strengthening of the linear relaxation P̂ .
Data: P̂ // The linear relaxation of (2.1)–(2.10)

Result: LB // Best lower bound
1 begin

2 Separate← True; NotIntegerSolution ← True

3 Q← P̂

4 while Separate and NotIntegerSolution do

5 (x̂, ŷ, f̂)← solveLP(Q)

6 if isInteger((x̂, ŷ)) then
7 NotIntegerSolution ← False

8 else
9 D ← SupportDigraph((x̂, ŷ))

10 L ← ConnectedComponents(D)

11 nbrNoSeparation = 0

12 for C ∈ L do
13 C∗ ← DualDigraph(C)

14 if stViolatedPath(C∗, π) then
15 addLiftedIneq(Q, π)
16 else
17 nbrNoSeparation = nbrNoSeparation + 1
18 end

19 end
20 if nbrNoSeparation = |L| then Separate← False

21 end

22 end

23 LB ← Weight((x̂, ŷ))

24 return LB

25 end

Notice that from a given cycle valid inequality of order 1 generated on the sub-digraph D[ŷ], the computational
time required to construct its corresponding F̂ -lifted cycle valid inequality of order 1 is O(|V |) in grid digraphs
and is O(|V |2) in complete digraphs.

The steps of our cutting plane procedure are summarized in Algorithm 1 where: the procedure solveLP
returns an optimal solution of the linear optimization problem over the polyhedron Q given as its argument;
the procedure isInteger returns true if its argument is a binary vector and false otherwise; the procedure
SupportDigraph generates the supporting digraph of the fractional solution given as its argument; the pro-
cedure ConnectedComponents returns the connected components of the graph given as its argument; the pro-
cedure DualDigraph builds and returns the dual digraph of the digraph given as its argument; the procedure
stViolatedPath returns true if there is a violated directed path in the dual sub-digraph given as its first
argument (the path is returned as its second argument) and false otherwise. We say that a directed path is
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Table 1. Meaning of the entries of Table 2.

Column Description

Instances Name of the instance. The name follows the format x-y where x indi-
cates the number of vertices and y the instance number.

(|VS |, |AS|) Number of vertices and number of arcs in the supporting digraph of
the first optimal fractional solution.

#NDC Number of negative weight elementary directed cycles. The computa-
tional time limit is set to 24 hours. The symbol na indicates that the
value is not available.

#DC Number of elementary directed cycles. The computational time limit is
set to 24 hours. The symbol na indicates that the value is not available.

z̄ Weight of a optimal fractional solution of the linear relaxation (2.1)–
(2.10)

z∗ The weight of an optimal integer elementary directed cycle

z̄cvi Value of an optimal solution obtained after strengthening with all
F̂−lifted cycle valid inequalities of order 1.

#cvi Number of violated F̂−lifted cycle valid inequalities of order β = 1
generated

gap(%) The gap closed (in percent), that is gap = z̄cvi−z̄
z∗−z̄

× 100.

violated if its corresponding cycle valid inequalty is violated by the optimal fractional solution (x̂, ŷ); the proce-
dure addLiftedIneq appends to the description of the polyhedron Q the lifted form of the cycle valid inequality
of order 1 derived from the violated directed path π given as its second argument. Finally, the procedure Weight
gives the value of the optimal solution after the cutting plane phase.

4. Computational results

In this section, we present computational results showing the efficiency of the cutting plane algorithm devised
for the MWEDCP.

We deal with planar grid digraphs that contain negative weighted elementary directed cycles. We recall that
the realistic instances from some libraries like TSPLIB are not planar in general. and does not contain negative
weighted elementary cycles, as the weights of its arcs are positive.

Our instances are randomly generated directed grids D of different number of vertices: 50 (with 85 arcs),
100 (with 180 arcs) and 200 (with 370 arcs). As the neighboor set of every vertex in a grid D is known in
advance, we have just to choose randomly the orientation of every arc (i, j). For this, we generate uniformly
two numbers x and y, if x < y then the arc is oriented from i to j otherwise the arc is oriented from j to i. In
regard to the arc weights, with each arc (i, j), we associate a weight z1 − 10 such that 0 ≤ z1 ≤ 20. In this way,
the weights have a probability equals to 1

2 to be whether negative or not. So, all our generated instances contain
negative weight elementary directed cycles (see the values of the third column of Table 2 are all different to 0).
Therefore, our instances cannot be solved using the algorithms proposed by Roditty and Williams [17]. Notice
that among all randomly generated instances, we select only instances having a significant integrality gap (see
the fourth and fifth columns of Tab. 2). Our algorithm is implemented in C and all computations have been
carried out on a computer equipped with a 1.50 GHz Intel (R) core (TM) 2 CPU. All our instances are solved
using the open-source software glpk. The computational results are presented in Table 2 (the entries of Tab. 2
are given in Tab. 1). We can make the following comments. Consider the first line of Table 2 represented by the
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Table 2. Efficiency of F̂ -lifted cycle valid inequalities in strengthening of the linear relaxation
of the MWEDCP model (2.1)–(2.10).

Instances (|VS|, |AS|) #NDC #DC z̄ z∗ z̄cvi #cvi gap(%)

50−1 (29,38) 21 41 −55.5 −38 −46.54 43 51.20

50−2 (8,10) 8 11 −27 −22 −22 8 100

50−3 (32,37) 33 44 −72.5 −41 −70 5 7.94

50−4 (17,21) 9 13 −61 −36 −59 5 8

50−5 (11,14) 10 17 −25.5 −16 −23.5 3 21.05

50−6 (26,33) 26 27 −69.66 −44 −59.5 27 39.59

50−7 (22,24) 70 90 −75.5 −68 −75.5 0 0

50−8 (16,20) 12 17 −44.5 −22 −36.5 5 35.56

50−9 (24,27) 14 27 −51.5 −40 −51.5 3 0

50−10 (32,38) 34 42 −66.75 −51 −60.5 27 39.68

100−1 (33,43) 24 44 −52.25 −26 −50.5 19 6.67

100−2 (30,34) 66 100 −63.66 −57 −61.5 9 32.43

100−3 (17,20) 16 24 −49 −44 −44 11 100

100−4 (26,29) 39 44 −56 −43 −50.25 8 44.23

100−5 (28,31) 212 309 −65 −50 −54.75 8 68.33

100−6 (35,40) 34 53 −56.5 −43 −54.5 6 14.81

100−7 (43,46) 408 902 −77 −61 −74.25 2 17.19

100−8 (25,31) 29 41 −57.25 −51 −56.75 10 8

100−9 (39,43) 57 70 −85.5 −70 −85 5 3.23

100−10 (21,24) 70 87 −65 −57 −65 0 0

200−1 (30,34) 67 84 −104.5 −68 −104.5 0 0

200−2 (15,18) 68 106 −53.5 −46 −51.16 3 31.20

200−3 (44,50) na na −137.5 −106 126.25 14 35.71

200−4 (30,34) na na −48.5 −39 −44 10 47.37

200−5 (39,47) 78 102 −73 −55 −71.62 2 7.67

200−6 (33,40) na na −46.5 −33 −45.66 15 6.22

200−7 (20,22) na na −58 −37 −58 0 0

200−8 (35,45) na na −72.5 −62 −70 46 23.81

200−9 (54,60) na na −113.5 −98 −110.75 9 17.74

instance named 50-1, such an instance has 50 vertices and 85 arcs. After, the resolution of the linear relaxation
of model (2.1)–(2.10) applied to 50-1, as shown by the second column of Table 2, the sub-digraph Ds[ŷ] that
supports the optimal (fractional) solution has 29 vertices, 38 arcs and contains 21 negative weighted directed
cycles (see column 3). Assuming that the sub-digraph D[ŷ], obtained from the sub-digraph Ds[ŷ] by deleting
the source vertex s and all arcs {(s, j) : ŷsj > 0}, is connected and according to Algorithm 1 described above,
we build its associated dual sub-digraph D∗[ŷ]. After, we generated all directed paths in the dual sub-digraph
corresponding to cycle valid inequalities of order 1. Among all generated cycle valid inequalities, as shown
on the 8th column we only keep 43 that are violated by the optimal (fractional) solution (x̂, ŷ, f̂). As these
valid inequalities are derived w.r.t the sub-digraph D[ŷ], we use the lifting technique described in the previous
section to transform the generated cycle valid inequalities into valid inequalities for the whole polytope P .
The lifted valid inequalities are called the F̂−lifted cycle valid inequalities of order 1. Therefore, in a cutting
plane process, we resort to the F̂−lifted cycle valid inequalities of order 1 to strengthen the linear relaxation
of the MWEDCP model (2)–(11). Considering all tested instances, strengthening with corresponding F̂−lifted
cycle valid inequalities of order 1 produces in average about 26.47% gap improvement showing the efficiency
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of these lifted inequalities. However, for some of our generated instances, we do not obtain any violated lifted
cycle valid inequality. Thus, for such instances (50-7, 100-10, 200-1 and 200-7), we have #cvi = 0 as shown
on the 8th column of Table 2. This explains in part the fact that these instances do not present any gap
improvement (see on its corresponding 9th column, gap = 0). Nevertheless, we observe that for the instances
50-2 and 100-3 the gap is totally closed (thus, gap = 100%).

5. Conclusion

We address an efficient cutting plane algorithm for the minimum weighted elementary directed cycle problem
(MWEDCP) in planar digraphs containing negative weight elementary directed cycles. The algorithm is based
on the linear relaxation of a mixed integer linear formulation of the MWEDCP and the use of a lifting technique
applied to a class of valid inequalities called cycle valid inequalities that are parametrized by an integer called the
order (the inequality right-hand side). We prove that separating cycle inequalities of order 1 in planar digraphs
can be done in polynomial time. In addition, as the inequalities are derived over the sub-digraph that supports
the optimal (fractional) solution, with respect to the entire digraph, we deal with a lifted form of cycle valid
inequalities of order 1 named the F̂ -lifted cycle valid inequalities of order 1. The lifting technique performed is
also efficient, as it is based on some of the incident arcs of every vertex in the considered sub-digraph.

The computational results carried out on randomly generated planar digraphs (grids) of size set between 50
and 200 feature that a strengthening with F̂ -lifted cycle valid inequalities of order 1 can significantly improve
the integrality gap. Indeed, in average, for all 29 instances, we obtain 26.47% gap improvement. Moreover, there
exists instances for which the strengthening process directly displays the optimal integer elementary directed
cycle.
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