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Abstract. This paper investigates a particular integrated lotsizing and scheduling problem in a multi-
level multi-product, multi-machine and flexible routes environment that is called flexible job shop prob-
lem (FJSP). The considered problem involves making simultaneous decision in sequencing operations,
sizing lots and assigning machines to operations in order to optimize a multi-objective function includ-
ing minimizing sum of the system costs, total machines workload and makespan, while a given demand
is fulfilled without backlogging. Due to the complexity of the problem, a hybrid meta-heuristic based
on a combination of Genetic algorithm and particle swarm optimization algorithm is developed to solve
it. Additionally, the Taguchi method is employed to calibrate the influential parameters of the meta-
heuristic and boost its capabilities. Finally, the performance of the proposed algorithm is compared with
some well-known multi-objective algorithms such as NSGAII, SPEA2 and VEGA. Regarding to the
computational results, the hybrid algorithm surpasses the other algorithms in the closeness of solutions
to pareto optimal front and diversity criteria.
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1. Introduction

Nowadays, due to intense competition among manufacturing companies in global market, efficient production
planning systems are required for delivering products in time as well as minimizing total costs of production.
Lot-sizing and scheduling are two major issues in medium-term and short-term production planning which are
closely interrelated. In most cases, planers consider these issues hierarchically in which the lot-sizing problem
is solved at first and then the result is applied for the scheduling problem, which would not lead to high
quality solutions. Therefore, in order to obtain globally optimal solutions, integrated models of lot-sizing and
scheduling must be regarded to contemplate the interrelationship between different levels of planning and make
simultaneous decisions.

Since 1985 that Karmarkar and Schrage [18] introduced this point of view, a large number of researches have
been carried out to formulate and solve integrated lot-sizing and scheduling problems (ILSP). The vast majority
of these efforts have been focused on single machine configuration [11,20,34]. Only a few authors have considered
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other general and elaborate configurations including parallel machines [4, 15], flow shop [25, 26], flexible flow
shop [2, 22], and job shop.

In this paper the integrated lot-sizing and scheduling in a multi-level and multimachine environment problem
that is called flexible job shop problem (ILSP-FJSP) is investigated. So far, a handful research has been con-
ducted on integrated lot-sizing and scheduling in multi-level and multimachine environment such as job shop
problem (ILSP-JSP), but to the best of the authors’ knowledge, there is no attempt on ILSP-FJSP in the liter-
ature. Fandel and Stammen–Hegene [9] presented a mathematical model for ILSP-JSP in capacitated, dynamic
and deterministic cases with minimizing the sum of the sequence-dependent setup costs, the storage costs, the
production costs and the costs of maintaining the machines’ setup conditions. Ozturk and Orneck [23] developed
a MIP model for the problem with allowable backordering and production capacity constraint along with linked
lots. Karimi–Nasab et al. [17] formulated a special kind of ILSP-JSP where the working speed of machines can
be changed and produced items should be assembled together to make final products. Moreover, they developed
a memetic algorithm to solve it. An iterative procedure was developed by Gómez Urrutia et al. [10] in a way that
a lagrangian heuristic solves the lot-sizing problem with detailed capacity constraints for fixed sequence, then a
tabu search algorithm provides a new sequence, which can help to obtain a better production plan. This proce-
dure is repeated during a certain number of iterations. Deleplanque et al. [7] studied the multi-item, multi-plant
lot-sizing problem with transfer costs and capacity constraints. They developed a decomposition framework
based Lagrangean relaxation, into a master facility location problem and a slave minimal cost multi-commodity
flow problem.

According to the literature two groups of performance measurement can be distinguished in the integrated
lot-sizing scheduling problems. First group related to production system costs, like pure lot-sizing problems’
objective function, including minimizing the total cost of production, holding, backorder, setup and overtime,
which almost all authors considered it. Second group related to time performance measurements, like pure
scheduling problems’ objective functions, such as minimizing makespan [27], average weighted tardiness, number
of tardy jobs, total setup time, total flow time and total idle time of machines [24]. In order to approach more
realistic, comprehensive and applicable model, as well as achieving overall optimum solution, these two kinds
of measurement must be simultaneously taken into account. As a result, in this paper for the first time, a
multi-objective function is examined which is consist of (1) minimizing Sum of the holding, setup, production,
and overtime costs, (2) total machines workload and (3) total completion time (makespan).

The integrated lot-sizing and scheduling problem is strongly NP-hard [16], to tackle its complexity several
solution methods have been developed. Some of these methods are based on mathematical modeling such as
Rolling-horizon and Fix-and-Relax heuristic [1, 4, 27], fix and optimize heuristic [31, 33], which decompose the
model into a set of smaller MIP models, each of which having a small number of binary variables, and the decision
variables are then iteratively determined. According to the complexity of the problem the use of meta-heuristic
methods for problem solving enjoys a special status. These methods involve genetic algorithm (GA) [2, 14, 32],
tabu search (TS) [2,29], simulated annealing (SA) [25,27], which successfully have been applied to ILSP. In this
paper, a novel meta-heuristic approach is proposed for solving the problem which combines the GA with the
particle swarm optimization algorithm (PSO). The PSO algorithm aggregate more closely around each optimum
and is potentially more powerful in solving NP-hard problems. The PSO as a powerful optimization algorithm
is widely applied in scheduling problems [3,19,36] and lot-sizing problems [8,12] separately; the implementation
of this algorithm in ILSP is rare.

2. Problem definition

As mentioned above, this paper focuses on the simultaneous multi objective optimization of lotsize and
scheduling of operations in the flexible job shop problem with taking into account sequence-dependent setup
times. The FJSP is an extension of the job shop problem (JSP) by assuming that for each given operation,
there is at least one machine to perform it. As it is shown in Figure 1, job 1 is consist of 4 operations that 1st
operation is allowed to be processed by machines 1 or 2, the 2nd and 4th operations can only be processed by
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Figure 1. Schematic of the flexible job shop problem.

machine 3 and 5 respectively. Plus, for processing the 3rd operation, machines 2 and 4 are permitted. According
to the above description it is clear that the FJSP is consists of two sub-problems; first, a routing sub-problem
for assigning each operation to a machine from a set of capable machines; second, a scheduling sub-problem for
sequencing the assigned operations on machines in order to obtain a feasible schedule. Therefore, the FJSP is
one of the most difficult classes of scheduling problems.

In this paper the planning horizon consists of a finite number of periods and every period includes a specific
number of time units. Machine capacities in each period are limited, and they are different from period to period.
The machine capacity can be increased through overtime, and the overtime cost must be paid accordingly. The
normal machine capacity and the permitted overtime capacity of each machine in every period are predetermined
The other assumptions are made following:

1. All machines are continuously available from time zero.
2. A machine can only execute one operation at a time.
3. Every operation can be setup only once in each period.
4. Setup time is sequence-dependent.
5. Demand rates, production rates, setup times, setup costs, and inventory holding costs are deterministic and

constant over the planning horizon.
6. External demands occur only for end operation of jobs.
7. Processing time rates are different for different products and different machines.
8. Shortages are not allowed.
9. In-process inventory is allowed: products may wait for their next machine to be free.
10. Production may be continued indefinitely without interruption.

In order to solve the problem with above conditions, it is necessary to set the problem variables in such a way
that the objective functions of the problem become minimized. The objective functions of problem are:

f1 : Sum of the holding, setup, production, and overtime costs.
f2 : Total machines workload.
f3 : Total completion time (makespan).

3. Proposed algorithm for solving the problem

In the solution space of ILSP-FJSP there are two types of the discrete and continuous variables. The discrete
variables are consists of three sub-problems. (1) Determining the setup period(s) for each operation, (2) deter-
mining the assignment of operations to an appropriate machine, (3) determining the sequence of operations in
each period. Also, determining the Lot quantity is continuous part of solution space. We developed a practical
genetic algorithm for discrete space. With comparing PSO with other metaheuristic algorithms, it is shown the
PSO is superior to them in terms of both efficiency and success rate for continues space. So for continuous space
a special case of PSO algorithm is applied.

Furthermore, we have presented an effective bottleneck shifting procedure. This heuristic approach helps direct
the search process to feasible points of the problem through the use of a neighbor search.
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Figure 2. Schematic of the hybrid GA and PSO procedure.

Figure 2 shows the schematic of the hybrid GA and PSO procedure (HGAPSO).
In the following subsections, each step of the proposed approach is fully described.

3.1. Coding of chromosomes

To demonstrate the chromosomes of the genetic algorithm, a matrix with two rows and MNT columns is
used in which M is the number of machines, N is the number of production positions for each machine in
every period, and T is the number of periods throughout the planning horizon. In this matrix, the elements
of the first row include three components (j, h, q) which indicate the quantities of item that are produced
through operation Oj,h are equal to q units. The arrangement of the matrix’s first row components delineates
the processing sequence of operations. Since each machine in every period has N production positions, the first
MN arrays of first row indicate the sequences corresponding to the first period, and the tth MN arrays of first
row indicate the sequences of MN positions corresponding to the tth period. In this problem, parameter N is
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Figure 3. Manner of coding of chromosomes.

Figure 4. Manner of decoding of chromosomes.

determined in a way that all the operations get a production chance in a period. Also the second row of the
matrix represents the assignments made to the first row elements. Figure 3 shows a chromosome for two jobs,
each consisting of two operations which are supposed to be processed on two machines in a planning horizon
that spans three periods.

3.2. Decoding of chromosomes

In the decoding of chromosomes, two factors should be considered: the start time for the processing of an
operation, and the processing duration of that operation. The processing start time of an operation depends on
when the machines related to that operation become available and when the needed inventory is provided to
start processing the operation. Since both of the mentioned factors are necessary for the start of the operation,
the start time for the operation is equal to the maximum of these two factors. Plus, the processing duration
of operation Oj,h will be equal to am

j,h · q, if we assume that operation Oj,h has been assigned to machine m.
Figure 4 shows the manner of decoding of the chromosome.

In Figure 4, since the value of a1
1,1 is assumed equal to 2, it is observed that in the first period, operation O1,1

is processed for 60 time units. Furthermore, it can be seen that the values of a2
1,1, a1

2,1 and a2
2,1 are assumed

equal to 2.5, 2.0 and 1.5, respectively. In this figure, the dark sections indicate the sequence-dependent setup
times. Moreover, in the third period of the planning horizon it is observed that the start time of operation O2,2,
despite the availability of machine 2 at time 220 is postponed to time 255, due to the insufficient quantity of
inventory produced in operation O2,1 (the coefficient of utilization of product from operation O2,1 in the product
of operation O2,2 is assumed 1.0).

3.3. Generating the initial population of the algorithm

The genetic algorithm is one of the algorithms which are based on an initial population. To generate the
initial population for the considered problem, it is necessary to determine the decision variables in such a way
that, while facilitating the obtaining of the optimal (or nearly optimal) solution. In addition to cover the vast
areas of the solution space, the suitable initial population helps search procedure to explore parts of the solution
space in which high quality solutions are expected to be found. In view of the problem’s decision variables, the
generation of the initial population is based on the following four steps.
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Figure 5. Four different types distributions for selection of production periods.

3.3.1. Determining the production periods for each item

In this step, the production periods of each item are determined on the basis of the following distribution:

P1(x) =
ex

/(100 + ex)∑
0<y<10

ey
/(100 + ey)

, (3.1)

P2(x) =
e(10−x)

/
(100 + e(10−x))∑

0<y<10
e(10−y)

/
(100 + e(10−y))

, (3.2)

P3(x) = k

/ ∑
0<y<10

k k is a constant. (3.3)

According to the above distributions, selection of production periods is done based on four different types that
are shown in Figure 5. In type (a) which is based on P1(x), the latter periods have a greater chance for selection.
Unlike type (a), in type (b) which is based on P2(x), the initial periods have a greater chance for selection. In
type (c) that is based on P3(x), each period has an equal chance for selection and in type (d), the production
periods for the first half of operations of each job are selected based on P1(x) and production periods for the
second half of operations are selected based on P2(x).

In each distributions a particular periodtis selected if 10(t−1)
T < x � 10t

T ·
For the sake of preventing shortage, the selection of the first production period for each item is a function of

the first period in which there is a demand for that item. In other words, the first production period of an item
must definitely be less than or equal to the first period in which that item encounters a demand.
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3.3.2. Determining the sequence of operations which are assigned to a period

To determine the sequences of operations which are assigned to a specific period, the following two methods
are used:

• Random sequence: in this approach, one of the assigned operations is randomly selected and entered into
the first unplanned sequence priority of that period.

• Most Setup Remaining (MSR): in this method, first the number of setups for every operation is specified.
Then, each operation whose remaining setups (unplanned) are more than the others is selected and entered
into the first unplanned sequence of that period. If there are more than one operation with the most remaining
setups, one of them will be selected randomly.

• Most Work Remaining (MWR): in this method for each step the job that has the maximum remaining work
(sum of processing time of remaining operations) is elected and its first unplanned operation is entered into
the first unplanned sequence.

In the above methods, to avoid shortage, the first-time processing of an operation must never be planned after
the first-time processing of its subsequent operation.

3.3.3. Determining the lot size values for each operation

It is important to determine the lot size values in a way that we don’t run into shortage. The procedure
to determine the lot size value of an operation is a forward procedure, and it starts from the first period and
continues to the last. First, the total demands of an operation (rj,h) between two consecutive setups s1 and s2

is calculated according to the following relations:

rj,h =
s2−1∑
s=s1

ρj,hXs
j,h+1. (3.4)

Plus, for the last operation of each job (Oj,hj ):

rj,hj =
t2−1∑
t=t1

dj,t s1 ∈ t1 and s2 ∈ t2. (3.5)

In relation (3.5) dj,t is the external demand of job j in period t. Because of the dependency of the demand plan
of an operation to the production plan of its subsequent operation, it is necessary to always start the lotsizing
from the last operation of a job. After calculating parameter rj,h, the lower limit of production in sequence s1

is determined through the following relation:

lj,h = max(rj,h − Δj,h, 0) Δj,h � 0, (3.6)

where parameter Δj,h is the difference between total production and total consumption of the item which is
produced in operation Oj,h prior to sequence s1.

Finally, the production quantity of operation Oj,h item in sequence s1 is equal to:

Xs1
j,h = lj,h + R

(
Dj,h − Δj,h +

s1−1∑
s=1

ρj,hXs
j,h+1 − lj,h

)
. (3.7)

In relation (3.7), R is a random number between 0 and 1, and Dj,h is the otal demand for the item of
operation Oj,h during the planning horizon.
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3.3.4. Assigning machines to operations

To assign a machine to an operation, the following three methods can be used:

• Random method : in this method, one of the allowed machines is randomly assigned to each operation.
• Earliest Time of machines Availability method (ETA): in this approach, from the set of permitted machines

for each operation, a machine which is available earlier than the other machines will be selected. Initially, a
machine is selected randomly for the operation in the first sequence of each period. Then in each sequence
following this assignment, the availability time of machines for the next operation is updated and ultimately,
that operation is assigned to a machine which is available earlier than the other machines.

• Shortest Setup Time method (SST): in this method, from the set of permitted machines for an operation, a
machine that has the shortest sequence-dependent setup time with respect to its last processed operation is
selected.

3.4. Decision attributes and the TOPSIS method

The solution sets of the present population are ranked on the basis of the following three decision attributes:

1- Dominating Power (R1):
This decision attributes that shows closeness of solutions to the optimal Pareto frontier is equal to:

R1 (x) = 1 + nq(x), (3.8)

where, nq(x) is the number of solution members of the current population which were defeated by the solution x.

2- Diversity (R2):
Sum of Euclidean distances between a solution and Kth closest neighbors in the objective functions space

is one of the common approaches for assessing diversity criteria in multi-objective problems. This attribute is
calculated as follows.

R2(x) =
∑

x,y∈P

dz (x, y) , (3.9)

where dz(x, y) is the normalized Euclidean distance between solution x and y which is calculated as follows:

dz(x, y) =

√√√√ k∑
j=1

(
fj(x) − fj(y)
fmax

j − fmin
j

)
· (3.10)

The fmax
j and fmin

j are maximum and minimum values of fj that obtained by algorithm until each step of
solving process.

3- Dissimilarity (R3):
Since the existence of diversity and variation among the problem’s objectives does not guarantee the pres-

ence of diversity among the decision variables, the dissimilarity attribute is presented to provide the diversity
conditions in the decision variables space of the problem which is calculated according to the following steps.

Step 1. Similarity in production periods:
First, number of similar production periods for each item in two different chromosomes x and y (q) is obtained
and production periods similarity index (UT x,y) is calculated as follow:

UTx,y =
q

nT
(3.11)

with comparing the two given chromosomes x and y in Figure 6, it can be seen that the seven genes in the two
chromosomes have similar production periods. So, the UT x,y is equal to 7/12 (n = 4 and T = 3).
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 3 doireP 2 doireP 1 doireP 

x: 
1-1-30 2-1-30 1-2-20  2-1-20 1-1-20 2-2-30 1-2-20 1-2-10 2-1-20 2-2-40  

1 2 1  1 2 2 1 2 1 2  

 

y: 
2-1-20 2-2-15 1-1-50  2-1-20 2-2-25   2-1-30 1-2-50 2-2-30  

1 2 2  2 1   1 2 1  

Figure 6. Similar genes in production periods between two chromosomes x and y.

 3 doireP 2 doireP 1 doireP 

x: 
1-1-30 2-1-30 1-2-20  2-1-20 1-1-20 2-2-30 1-2-20 1-2-10 2-1-20 2-2-40  

1 2 1  1 2 2 1 2 1 2  

 

y: 
2-1-20 2-2-15 1-1-50  2-1-20 2-2-25   2-1-30 1-2-50 2-2-30  

1 2 2  2 1   1 2 1  

Figure 7. Similar genes in operations sequence between two chromosomes x and y.

 3 doireP 2 doireP  1 doireP

x: 
1-1-30 2-1-30 1-2-20  2-1-20 1-1-20 2-2-30 1-2-20 1-2-10 2-1-20 2-2-40  

1 2 1  1 2 2 1 2 1 2  

 

y: 
2-1-20 2-2-15 1-1-50  2-1-20 2-2-25   2-1-30 1-2-50 2-2-30  

1 2 2  2 1   1 2 1  

Figure 8. Similar genes in assignment between two chromosomes x and y.

Step 2. Similarity in sequence of operations:
If the value of q is greater than 0, then the sum of the number of same sequence for each operation (s) is
obtained and USx,y is calculated as follow:

USx,y =
s

q
· (3.12)

In Figure 7, two operations O2,1 in period 2 and O2,2 in period 3 have same sequence in given chromosomes
x and y. So, the USx,y is equal to 2/7.

Step 3. Similarity in machine assignment :
If the value of q is greater than 0, then the number of total same assignment for each operations in each period
(a) is obtained and UAx,y is calculated as follow:

UAx,y =
a

q
· (3.13)

In Figure 8, operations O1,2 and O2,1 in period 3 of chromosomes x and y have same assignment. So, the
UAx,y is equal to 2/7.
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Step 4. Similarity in lot variable:
If q > 0, then the similarity index in lot variable (UQx,y) between two chromosomes x and y is calculated as
blow:

UQx,y =
∑

i=1,...,q

max
{

γshare − |qi,x − qi,y |
γshare

, 0
}

(3.14)

|qi,x − qi,y| defines the difference in the lot variable quantities for an operation in same period between two
chromosomes x and y while qi,x and qi,y are greater than 0. The γshare is a basic amount which the difference
between qi,x and qi,y is preferred to be greater than it.

According to Figure 6, the Similarity in lot variable index (UQx,y) for seven genes in the two chromosomes
that have same production period is equal to 1.5 when γshare is assumed to be 10.

UQx,y = 0 + 0 + 1 + 0.5 + 0 + 0 + 0 = 1.5.

Finally, each chromosome is compared with Kth closest neighbors in the objective functions space. Then the
values of UT x = ΣyUT x,y and USx = ΣyUSx,y and UAx = ΣyUAx,y and UQx = ΣyUQx,y are obtained where
y is a member of Kth closest neighbors set for chromosome x. After normalizing the UT x, USx, UAx and UQx

the dissimilarity criteria R3(x) is calculated as follows:

R3(x) = UT x + USx + UAx + UQx. (3.15)

Moreover, in each step, the current population solutions are ranked by using the TOPSIS method and the basis
of above attributes. TOPSIS (technique for order preference by similarity to an ideal solution) method was
presented by Hwang and Yoon [20]. The basic principle is that the chosen alternative should have the shortest
distance from the ideal solution and the farthest distance from the negative-ideal solution. TOPSIS method
ranks the preference order by calculating the relative closeness to the ideal solution.

The weight of the above attribute is dynamically modified throughout the implementation of the algorithm.
Such that the weight of R1, R2 and R3 in the beginning of the algorithm is equal to (0.5,0.3,0.2) and at the
end of the algorithm is equal to (0.8,0.15,0.05). After applying the TOPSIS method, the solutions are organized
in accordance with their ranks. Let, there are ϑ solutions, the solution with the highest value gets the rank
number ϑ, and the one with the lowest value gets the rank number 1.

3.5. Selection for reproduction

After calculating the rank for each member solution of the current population, a tournament is used to select
solutions from the population in order to produce the next generation. In this tournament, two solutions are
randomly selected and a decision is made in the following manner:

• When comparing two feasible solutions, the one with greater rank value is selected.
• When comparing a feasible solution with an infeasible one, the feasible solution is always preferred and

selected.
• When comparing two infeasible solutions, one of them is randomly selected.

3.6. Pareto archive and the evolution strategy

At each step, the dominating solutions of the current population are entered into the pareto archive. If the
maximum capacity of the archive (U) is full and the solutions of the current population do not dominate any
of the pareto archive solutions, then, after estimating the distance of each solution to maximum kth closest
neighbors (for U + b solutions that the b is the total number of candidate solutions for adding to archive), the
b solutions which have the closest distance are removed from the archive. Assuming all objective functions are
minimization, a feasible solution x dominate solution y, if and only if, fi(x) � fi(y) for all objective functions
(fi is ith objective function) and fj(x) < fj(y) for at least one objective function fj. Here, elitism is expressed as
a percent. For instance, elitism 10% means that in each step maximum 10% of next population will be selected
from the current solutions in pareto archive.
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 Period 1 Period 2 Period 3 

Parent1: 
1-1-30 2-1-30 1-2-20  2-1-20 1-1-20 2-2-30 1-2-20 1-2-10 2-1-20 2-2-40  

1 2 1  1 2 2 1 2 1 2  

 
 
 

Offspring 1: 
1-1-30 2-1-20 1-2-20 2-2-15 2-1-20 1-1-20 2-2-25 1-2-20 1-2-10 2-1-30 2-2-30  

2 2 2 2 1 1 2 1 2 1 1  

 
 
 

Parent2: 
2-1-20 2-2-15 1-1-30  2-1-20 1-1-20 2-2-25  2-1-30 1-2-50 2-2-30  

1 2 2  2 1 2  1 2 1  

  
Sequence of operations 

 
Assignment of operations 

Figure 9. Manner of implementing the crossover operator.

3.7. Crossover operator

During the past decades, several crossover operators have been proposed for permutation representation, such
as partial-mapped crossover, order crossover, cycle crossover, and so on. The employed crossover operator in
this paper is an extension of the order crossover operator. This crossover operator, in addition to being simple,
always produces a feasible solution if the chromosomes of the parent are feasible. In this operator, first, k jobs
(1 � k � J) are randomly selected. Then for the generation of the first offspring, the positions of selected jobs
are exactly copied into the first offspring. The sequences of the rest of the jobs are copied from the second
parent into the first offspring, according to their sequence priorities.

The assignments of jobs are obtained as follows:
For operation Oj,h (j is one of the selected jobs) let n be the number of setups for Oj,h in parent 1 and m be

the number of setup in parent 2. If n � m then the assignment of m first setups are inherited from the second
parent and assignment of (n − m) remaining setups are inherited from the (n − m) last setups of first parent.
Also, if n < m then the assignment of operation Oj,h areinherited from the n first setups of second parent. This
procedure is repeated for the remaining jobs in the reverse way and with the difference that n is belongs to
parent 2 and m is belongs to parent 1.

Generating the second offspring is carried in the reverse way. Figure 9 shows an example of crossover op-
erator acting on two assumed chromosomes. In this figure, job 1 has been selected for crossover operator
implementation.

3.8. Mutation operator

The implementation of the mutation operator of the problem is based on re-planning k jobs (1 � k � J),
which are chosen randomly. In this operator, the selected jobs are re-planned according to the explanations
presented in “generating the initial population”.

3.9. Determining the lot size values based on the particle swarm optimization algorithm

It is obvious that the execution of the crossover operator as described in Sections 3–7, confines the search in
the lot-sizing decision variable space to the values determined in the initial population; thus, no search will be
conducted in a vast range of these values. For this reason, we have employed an approach that combines the
particle swarm optimization algorithm with the genetic algorithm in order to carry out a more extensive search
in the lot-sizing decision variable space. In this approach, after implementing the crossover operator, the lot size
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Generation 1 

Generation 2 

Generation 3 

Generation 4 

Generation 5 

Cross over point 

δ

Figure 10. Manner of past generations identification of a chromosome with parameter λ = 3.

values of k jobs selected for the crossover procedure are determined in the offspring chromosome δ, as follows.
In chromosome δ, we want to specify the lot size value of operation Oj,h, in period t and on machine m (xm,t

j,h ).

Step 1. Determining the best visited position for the particle (pbest):
This component acts as a memory to preserve the position in which the particle has had a better status, and
it is effective in the return of particle to its best previous position (like the inclination of people to return to a
position or location that has satisfied them more in the past). In the proposed algorithm, the pbest parameter
is determined with regards to the lot size values of past generations of a chromosome. The number of referrals
to previous generations to obtain the pbest value is limited and specified by the predetermined parameter λ.
Figure 10 shows the manner of past generations identification of offspring chromosome δ with λ = 3 and a
population of 4 chromosomes.

After identifying the set of parents of chromosome δ for λ previous generations (E), the following pseudocode
determines the pbest.

1. Best objective = a positive large number
2. pbest = 0
3. For each i ∈ E
4. If ym,t

j,h = 1 and objective function (i) < Best
objective Then

Best objective = objective function (i)
pbest = xm,t

j,h

5. End if
6. End for
7. IF pbest = 0 Then
8. For each i ∈ E
9. If ∃ a machine m′ that ym′,t

j,h = 1 and
objective function (i) < Best objective Then

Best objective = objective function (i)
pbest = xm′,t

j,h

10. End if
11. End for
12. End if
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In the above pseudo-code, the value of ym,t
j,h is 1 if operation Oj,h is processed in period t and on machine m;

otherwise, it will be 0.

Step 2. Determining the global best (gbest) position explored by swarm:
This social component is a like a criterion that particles try to attain. This component causes each particle to
be drawn to the best position found by its neighbors. In the proposed algorithm, the gbest parameter equals
the lot size value of operation Oj,h in period tin the best solution found throughout the solving process.

Step 3. Determining the lot size value:
In this step, the following pseudo-code is implemented.

1. V
t(z+1)
j,h = V

t(z)
j,h + c1R1

(
pbest − x

m,t(z)
j,h

)
+ c2R2

(
gbest− x

m,t(z)
j,h

)
2. x

m,t(z+1)
j,h = x

m,t(z)
j,h + V

t(z+1)
j,h

3. If x
m,t(z+1)
j,h > uxm,t

i,j Then
x

m,t(z+1)
j,h = uxm,t

i,j

4. Else if x
m,t(z+1)
j,h < lxm,t

i,j Then
x

m,t(z+1)
j,h = lxm,t

i,j

5. End if

z Indicates the iteration number of algorithm.
xm,t

j,h Lot size value of operation Oj,h, in period t and on machine m.
uxm,t

i,j Denotes the upper production limit of operation Oj,h in period t and on machine m.
lxm,t

i,j Denotes the lower production limit of operation Oj,h in period t and on machine m.
V t

j,h Initial velocity parameter for producing the item of operation Oj,h in period t.
R1 and R2 Random number between 0 and 1.
c1 and c2 Acceleration constants for pbest and gbest respectively.

3.10. Bottleneck shifting procedure

Maes et al. [21] have proved that finding a feasible solution for the CLSP (Capacitated Lot-sizing problem)
with setup time is NP-hard, definitely, a large portion of the optimal solution search process will be used up
in the search of infeasible points of the solution space, and this will lower the quality of the algorithm’s final
solutions. For this reason, an effective bottleneck shifting procedure is presented. This approach is a modifying
approach in contrast to strategies that eliminate or define a penalty function for infeasible solutions or applying
a preventive tactic to avoid producing infeasible solutions. This approach involves the shifting of productions
part of a period t to period t−1 (if machine capacity in period t has been violated). To implement this procedure,
the following steps are taken:

Step 1. Identifying the last period in the planning horizon in which the machine or period capacity limitation
has been violated: if capacity limitation is complied within all the periods, the shifting procedure is stopped.
Also, if capacity limitation in period 1 has been violated, the shifting procedure is stopped without prosperity
in generation of a feasible solution.

Step 2. Calculation of the impermissibly used capacity in period t (Qt):
In this step, if the capacity limitation of machine m is violated in period t then:

Qt =
J∑

j=1

hj∑
h=1

∑
r∈t

(
am

j,h.Xm,r
j,h +

J∑
k=1

hk∑
l=1

δm
j,h,k,lZ

m,r
j,h,k,l

)
− Cm,t + Om,t. (3.16)

And if the capacity limitation of period t is violated then:

Qt = max ((fm.r − (t − 1)TC) |r ∈ t) − PC. (3.17)
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TC : Total capacity or length of each period in the planning horizon.

Step 3. Identifying the critical path of production scheduling:
In this step, if the capacity limitation of machine m is violated in period t, the critical path includes all the
operations which are processed on machine m plus the operations which cause the finish time of operations of
machine m in period t to not be less than (fm.r|r = Nt). But if the capacity limitation of period t is violated,
the critical path will consist of a set of operations which have no slack in the production scheduling of period t.

Step 4. Shifting the first operation of the critical path:
In this step, some production quantity of the first critical path operation (operation Oj,h) is shifted from period
t to period t − 1. It should be noted that the shifting must definitely be done from the first operation of the
critical path; otherwise, encountering with shortage in period t−1 is possible. For this shifting process, assuming
that operation Oj,h is processed on machine m and TP t

j,h is equal to the total time of processing and setup of
operation Oj,h in period t the following procedure is followed:

• If TP t
j,h � Qt, all of the production of operation Oj,h in period t (qsj,h = Xt

j,h
) is shifted to period t − 1,

and we return to step two.
• If TP t

j,h > Qt, part of the production of operation Oj,h in period t (qsj,h = min{ Qt

am
j,h

, Xt
j,h}) is shifted to

period t − 1.
• In order to schedule the quantities shifted to period t − 1, the following pseudo-code is implemented:

1. If ∃ a position r′ ∈ t − 1 and a machine m′ that
Xr′,m′

j,h > 0 Then
Xr′,m′

j,h = Xr′,m′
j,h + qsj,h

2. Else if machine m has at least an unplanned position in
period t − 1 Then

Find first unplanned position r′ ∈ t − 1 on the
machine m and Xr′,m

j,h = qsj,h

3. Else
Select randomly a machine m′ with unplanned
positions
Find first unplanned position r′ on the machine
m′ and Xr′,m′

j,h = qsj,h

4. End if

Step 5. Modifying the production sequence of items in period t − 1:
In some cases, as a result of shifting part of the production of operation Oj,h from period t to period t− 1, the
inventory balance inside period t − 1 may be lost for operation Oj,h; in other words, It−2

j,h−1 < ρj,h−1X
t−1
j,h . In

these situations, operation Oj,h−1 has certainly been scheduled in period t− 1 and in the following sequence of
operation Oj,h, and it is sufficient to exchange the sequences of the two operations with each other.

It
j,h Inventory level of operation Oj,h at the end of period t.

4. Computation results

In this section, the performance of the proposed algorithm is evaluated in comparison with the three evo-
lutionary genetic algorithms; VEGA by Schaffer et al. [30], NSGA II by Deb et al. [6] and SPEA2 by Zitzler
et al. [37], which have been customized for the ILSP-FJSP. These algorithms have been coded by the MATLAB
7.1 software and run on a PC with 2.66 GHz processor and 4 GB of RAM.

In general, two main objectives of multi-objective optimization algorithms are: (a) finding optimal pareto
solutions or solutions close to it; and (b) finding solutions with good diversity and variety. In other words, a
multi-objective optimization algorithm is considered as an efficient algorithm if it can satisfy both of the noted
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objectives [5] Therefore, two evaluation metrics which are considered for determining the performance of the
algorithms are as follows:

1- The set coverage metric (SC): for the evaluation the closeness to the pareto optimal solutions. For each
algorithm, it computes the number of final solutions which have not been dominated by the other algorithms
solutions, divided by the total number of solutions of that algorithm.

2- The spacing and spread metric (SS): metric for the evaluation of diversity in pareto solutions. Here, two
indexes presented by [5] are used to present a new effective metric. The first index estimates the relative
distance of consecutive solutions. This metric is computed by:

√√√√ 1
|Q|

|Q|∑
i=1

(
di − d̄

)2
, (4.1)

where, |Q| is equal to the number of final pareto solutions of the algorithm and d̄ =
∑ |Q|

i=1 di

|Q| and di =

mink∈Q,k �=i

∑M
m=1

∣∣f i
m − fk

m

∣∣. The above index measures the standard deviation of different quantities of di.
When solutions are uniformly next to one another, the values of spacing metric will be small; therefore,
the algorithm with smaller spacing will be a better algorithm. One of the shortcomings of this metric is its
inability in evaluating the extent of spread of the solutions along the pareto optimal front. The second metric
is a maximum spread evaluation metric for measuring the spread of solutions along the pareto optimal front.
This metric, is equal to: √√√√ M∑

m=1

(
|Q|

max
i=1

f i
m −

|Q|
min
i=1

f i
m

)2

. (4.2)

Thus, the higher the value of the above metric, the more spread have the set of obtained solutions. However,
this metric cannot correctly evaluate the spread of the intermediate solutions. Therefore, in order to simul-
taneously evaluate the uniformity and spread of the solutions, Rohaninejad et al. [28] proposed the metric
by combining the two above metrics.

√√√√ 1
|Q|

|Q|∑
i=1

(
di − d̄

)2/
√√√√ M∑

m=1

(
|Q|

max
i=1

f i
m − min|Q|

i=1f
i
m

)2

. (4.3)

The set of algorithm solutions with a smaller spacing and spread metric will be in a better situation compared
to the other algorithms.

4.1. Generating random instances for the problem

Since there is no benchmark for the problem of simultaneous optimization of lot size and scheduling of jobs
in a flexible job, it is necessary to generate random instances for the problem in order to investigate the quality
of the results obtained through the proposed hybrid meta-heuristic algorithm. Table 1 illustrates the way these
instances are produced.

Also, the demand quantities of every job are generated based on a normal distribution with the average
480.T.M

6.O and variance 20, and randomly assigned to the periods of the planning horizon (O denotes the total
number of operations and M is the number of machines).

Ultimately, 25 instances with the above conditions are generated in small size, medium size and large size
that each instance is labeled with (α:β:γ:δ), which respectively indicate the number of jobs, the total number
of operations, the number of machines and the number of periods in the planning horizon.
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Table 1. Manner of generating random instances.

Parameter Notation Generated by

Length of each period PC between [200–480] unit
Available Capacity of machine m in period t Cm,t uniform distribution between [0.65PC–PC]

Upper limit of machine m overtime in period t Om,t 480−Cm,t

Production costs pcm,t uniform distribution between [0.2–1]
Overtime costs ocm,t 1.5pcm,t

Setup costs scm
j,h uniform distribution between [50–200]

Holding costs hct
j,h uniform distribution between [0.5–2]

Fixed loss of time for production unit of items am
j,h uniform distribution between [0.5–7]

Sequence-dependent setup times δm
j,h,k,l uniform distribution between [10–60]

Production coefficient ρj,h 1

Table 2. Factors and their levels for HGAPSO algorithm.

Factor Levels Number of levels
Elitism rate (A) {0.15 ; 0.3} 2

Pc (B) {0.7 ; 0.8 ; 0.85 ; 0.9} 4
Pm (C) {0.05 ; 0.1 ; 0.15 ; 0.2} 4

Initial velocity (D) {20 ; 40 ;60 ; 80} 4
c1 (E) {0.5 ; 1 ; 1.5 ;2} 4
c2 (F) {0.5 ; 1 ; 1.5 ;2} 4

4.2. Parameters calibration

In this work, the Taguchi method is applied for calibration the parameters of the proposed hybrid algorithm.
This method has been presented by Taguchi in early 1960s, and it can be used in the designing of processes. In
the Taguchi method, the value of quality characteristics obtained from the experiments is converted to signal-
to-noise (S/N ratio) and used in some of the subsequent analyses. The designing procedure of Taguchi can be
described as follows [35]:

• The influences of the controllable factors are evaluated over the S/N ratio and the mean of response. In
fact the appropriate experimental design is performed over S/N ratio and the mean of the considered
characteristic.

• For each factor that has significant impact on the S/N ratio, the level that increases the S/N ratio is selected.
• Each factor that does not have any significant impact on S/N ratio, and has significant impact on the mean

of responses (y), is considered as an adjustment factor, and the level where its mean of y is closer to the
objective point, is selected.

• The factors with no significant impact either on S/N ratio or on mean of y, is regarded as economic factors,
and levels that decrease the cost of production are selected.

Taguchi categorizes objective functions into three groups: “the smaller-the better”, “the larger-the better”,
and the “nominal-is-best” [35]. In this paper, the S/N ratio for the “the larger-the better” characteristic is
calculated by:

S/N ratio = −10 log

(
1
n

n∑
i=1

1
y2

i

)
, (4.4)

where j, yi and n denote the trial number, response variable and the number of replications, respectively. After
examining the HGAPSO algorithm, it seems 6 factors can have significant effects on the algorithms, respectively.
These factors and their proper levels are illustrated in Table 2.

The Taguchi design of HGAPSO algorithm is L32(21, 45), respectively. The selected Taguchi design has
32 different combinations of parameter levels. For every trial, five random instances (two small size, two medium
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Figure 11. The mean S/N ratio plot for each level of the factors in HGAPSO algorithm.

Table 3. The parameters of the proposed algorithm.

Instance
Kth closest Archive Population Number of
neighbors size size iteration

Small size 4 15 20–25 50–100
Medium size 6 20 30–40 100–200
Large size 8 20 40 200–300

size and one large size instances) are considered and each of them is replicated five times in order to obtain
more reliable results. In this paper, the mean RPD is used as a response variable and calculated as follows:

mean (RPD)ij =
meank(objectiveijk) − mini

mini
, (4.5)

where the objective is equal to:

objective = 0.6SCnormalized + 0.4
(

10
SS

)
normalized

, (4.6)

where i, j and k indicate the instance index (i = 1, . . . , 5), trial number (j = 1, . . . , 32) and the replication
number (k = 1, . . . , 5), respectively. And mini is the minimum value obtained for instance i. The mean RPD
value is converted into the S/N ratio.

The mean S/N ratio is calculated for each level of control factors in HGAPSO algorithm and is plotted versus
the control factors in Figure 11.

For the statistical significance test of factors on the S/N ratio, the analysis of variance (ANOVA) is used
which shows the factors of algorithm have significant impact on the S/N ratio in HGAPSO algorithm. Therefore,
these factors are considered as control factors and the levels with highest values of S/N ratio are selected as
the optimal value for each of them. The optimal level for A, B, C, D, E, and F in HGAPSO algorithm are 0.15,
0.8, 0.2, 60, 0.5, and 0.5 respectively. Other parameters have been presented in Table 3.
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Table 4. Fixed loss of time for production unit of items (am
j,h) – production cost for production

unit of time (pcm
j,h), setup cost (scm

j,h) and over time cost (ocm
j,h) in (4:10:3:5) test case.

(am
j,h − pcm

j,h − scm
j,h − ocm

j,h)

Machine 1 Machine 2 Machine 3
Operation 1 1.0 – 1.7 – 135 – 2.5 1.0 – 3.3 – 172 – 4.9 1.1 – 1.1 – 126 – 1.6

Job1 Operation 2 1.8 – 1.5 – 188 – 2.3 1.1 – 3.1 – 51 – 4.7 1.3 – 1.4 – 79 – 2.1
Operation 3 1.5 – 3.1 – 121 – 4.6 – 1.5 – 1.5 – 194 – 2.2

Job2
Operation 1 2.2 – 2.4 – 130 – 3.6 0.9 – 2.1 – 114 – 3.1 2.5 – 2.9 – 114 – 4.4
Operation 2 2.2 – 3.1 – 126 – 4.6 2.1 – 3.2 – 176 – 4.9 2.7 – 1.3 – 57 – 1.9

Job3
Operation 1 2.9 – 2.0 – 185 – 3.0 – 2.3 – 3.0 – 62 – 4.5
Operation 2 2.9 – 2.0 – 103 – 3.0 2.1 – 2.4 – 113 – 3.6 1.3 – 1.5 – 189 – 2.2
Operation 3 – 1.8 – 2.8 – 129 – 4.2 2.8 – 1.2 – 162 – 1.9

Job4
Operation 1 1.6 – 3.1 – 181 – 4.6 2.7 – 3.2 – 74 – 4.8 1.2 – 1.0 – 188 – 1.5
Operation 2 2.3 – 1.9 – 63 – 2.8 1.1 – 1.0 – 159 – 1.5 –

Table 5. Holding cost in (4:10:3:5) test case.

Period 1 Period 2 Period 3 Period 4 Period 5
Operation 1 1.1 1.3 1.9 1.3 1.3

Job1 Operation 2 2.0 1.2 0.5 1.2 1.8
Operation 3 1.4 0.8 1.8 0.9 1.6

Job2
Operation 1 1.7 1.8 1.4 0.5 0.6
Operation 2 1.0 1.4 1.0 1.1 1.7
Operation 1 1.4 0.7 0.7 1.5 1.1

Job3 Operation 2 1.2 1.0 1.3 0.8 1.9
Operation 3 1.8 0.5 1.4 1.9 0.5

Job4
Operation 1 1.2 1.7 1.0 1.2 1.6
Operation 2 1.7 1.1 1.9 1.1 0.9

4.3. Example

This section presents a numerical example (4:10:3:5) for better understanding of the problem. In (4:10:3:5)
the external demand of jobs (dj,t) and capacity of machines (Cm,t) are as follows:

d1,5 = 130; d2,4 = 100; d3,2 = 60; d3,3 = 30; d4,4 = 20;
C1,1 = 425; C1,2 = 406; C1,3 = 435; C1,4 = 425; C1,5 = 364
C2,1 = 407; C2,2 = 388; C2,3 = 480; C2,4 = 443; C2,5 = 347.

C3,1 = 370; C3,2 = 376; C3,3 = 380; C3,4 = 302; C3,5 = 463; d4,5 = 40.

Length of each period is equal to 480 time unit. Other information is shown in Tables 4 and 5.
Table 6 shows the patero solutions of the (4:10:3:5) test case which were obtained by solution methods.

4.4. Comparison and evaluation of the proposed solution methods

In this section the performance of VEGA, NSGA II, SPEA2 and HGAPSO for solving the considered problem
are evaluated and compared. The obtained results of solving the small, medium and large size instances are
listed in Tables 7 to 9, respectively.

By comparing the proposed algorithms, it is concluded that the HGAPSO algorithm has a more convincing
performance than other algorithms based on the criteria of closeness of the solutions to the pareto optimal front
and diversity.
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Table 6. Present of pareto solution obtained by solution methods.

HGAPSO VEGA NSGA II SPEA2
f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

4079.6 1815.0 2157.0 4079.6 1815.0 2157.0 4093.0 1807.6 1687.0 3852.0 1859.0 2139.0
4628.5 1698.0 1305.0 4242.6 1817.0 1899.0 4218.0 1768.3 1508.0 4773.0 1685.0 1321.0
4826.8 1816.0 1290.0 4566.1 1827.0 1439.0 4387.0 1702.0 1295.0 4312.0 1720.9 1681.0
4999.2 1852.0 1185.0 4185.6 1785.0 2157.0 4844.0 1802.0 1197.0 3989.0 1971.6 1814.0
4196.2 1762.0 1687.0 4860.7 1728.0 1550.0 4714.0 1651.0 1504.0 4286.4 1750.6 1592.0
4208.0 1737.0 1538.0 4384.5 1687.0 1578.0 4773.0 1685.0 1321.0 4218.0 1768.3 1508.0
4093.0 1807.6 1687.0 4093.0 1807.6 1687.0 4826.8 1856.0 1229.0 4185.6 1785.0 2157.0
4298.0 1671.0 1418.0 4156.0 1850.0 1614.0 4516.4 1837.0 1262.0 4741.2 1765.1 1560.1
5011.6 1786.0 1201.0 4485.1 1967.0 1512.7 4999.2 1852.0 1185.0
5280.0 1814.0 1123.0 3813.0 1879.0 1961.0 5011.6 1786.0 1201.0

5273.0 1725.6 1440.0 4826.8 1856.0 1229.0
5332.0 1868.0 1155.0

Table 7. Details of computational results for small size instance.
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(2:4:2:2) 5.1 3.8 4.8 4.5 5 6 5 7 1.00 1.00 1.00 0.86 0.083 0.098 0.083 0.074
(2:4:2:3) 8.8 5.6 8.1 7.8 7 13 10 8 1.00 0.92 1.00 1.00 0.135 0.067 0.087 0.085
(2:6:2:2) 8.3 6.2 7.5 7.8 12 10 9 9 0.83 0.70 0.78 0.67 0.076 0.116 0.098 0.082
(2:6:2:3) 12.1 7.9 10.7 10.3 8 12 10 12 1.00 0.16 0.80 0.83 0.089 0.096 0.074 0.064
(3:6:2:4) 14.4 10.3 13.5 12.9 6 7 5 6 0.83 1.00 1.00 0.83 0.021 0.180 0.162 0.072
(3:8:2:2) 14.7 10.2 15.2 13.2 16 13 10 11 0.81 0.46 0.67 0.55 0.053 0.088 0.095 0.077
(3:8:2:3) 17.3 12.4 17.6 16.5 12 9 8 13 0.92 0.77 0.79 0.92 0.085 0.137 0.118 0.068
(4:10:2:2) 18.4 14.5 17.8 17.2 12 14 11 12 1.00 0.57 1.00 0.75 0.072 0.064 0.102 0.092
(3:8:3:4) 20.7 16.8 20.2 19.3 9 11 10 14 0.89 0.27 0.80 0.57 0.142 0.126 0.121 0.081
(4:8:3:5) 27.1 21.2 25.2 25.1 15 13 11 9 0.80 0.38 0.71 0.67 0.076 0.088 0.093 0.084

Figure 12 depicts the box plot based on the set coverage metric for each algorithm’s solutions. This figure
shows that the median of HGAPSO algorithm is equal to 0.89. In other word, 50% of the results are greater than
or equal to this value. In addition, 75% of this algorithm’s results are greater than or equal to 0.83 and 25% of
results are equal to 1. The median of VEGA, NSGA II and SPEA2 algorithms are equal to 0.27, 0.79 and 0.68
respectively. Therefore, according to this plot, HGAPSO algorithm shows a better performance in set coverage
metric rather than other algorithm.

Figure 13 illustrates the box plot based on the spacing and spread metric for each algorithm’s solutions.
According to this plot, the median of HGAPSO algorithm is equal to 0.073. In addition, 75% of this algorithm’s
results are less than or equal to 0.085 and 25% of results are less than or equal to 0.051. The median of VEGA,
NSGA II and SPEA2 algorithms are equal to 0.104, 0.116 and 0.081 respectively. This figure reveals that
HGAPSO algorithm excels other algorithm in spacing and spread metric. Outlier (*) is related to the results
that are beyond the upper or lower whisker.

Figure 14 shows the number of dominated solutions in the population of each period during the 150 iterations
of the HGAPSO for solving the instance with the population size of 40. The average numbers of dominated
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Table 8. Details of computational results for medium size instance.
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(4:10:3:5) 32.8 28.4 30.2 31.4 10 11 8 12 1.00 0.45 1.00 0.67 0.051 0.78 0.098 0.082
(4:12:4:5) 54.4 41.2 48.4 50.3 7 12 8 13 0.57 0.33 0.63 0.62 0.073 0.133 0.145 0.060
(4:15:4:5) 67.9 52.6 65.3 62.9 11 9 5 6 0.91 0.00 0.80 0.67 0.045 0.128 0.108 0.084
(5:16:5:6) 109 88.7 107 106 10 9 11 13 0.80 0.00 0.55 0.54 0.084 0.104 0.121 0.078
(5:18:5:6) 126 104 123 124 20 7 14 20 0.85 0.00 1.00 0.80 0.070 0.127 0.166 0.081
(5:20:5:6) 144 112 141 139 20 14 9 18 0.85 0.07 0.89 0.61 0.052 0.096 0.184 0.084
(6:22:5:6) 181 134 176 170 8 13 11 15 1.00 0.00 0.64 0.73 0.114 0.132 0.120 0.095
(6:24:5:6) 244 195 238 235 19 20 15 17 0.84 0.20 0.93 0.59 0.60 0.98 0.116 0.107
(8:30:6:6) 416 375 408 396 13 18 14 16 0.61 0.05 0.57 0.38 0.116 0.164 0.214 0.087
(9:35:6:8) 678 535 637 612 20 13 12 15 0.90 0.38 0.75 0.53 0.068 0.101 0.154 0.114

Table 9. Details of computational results for large size instance.
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(10:40:6:10) 994 741 854 821 20 16 12 18 0.90 0.43 0.67 0.67 0.086 0.132 0.128 0.105
(12:45:8:10) 1440 1114 1320 1276 14 19 15 20 0.86 0.00 0.60 0.45 0.49 0.062 0.091 0.064
(12:50:8:12) 248 1715 1885 1830 19 19 16 20 1.00 0.00 0.81 0.60 0.032 0.111 0.133 0.056
(14:60:8:12) 2951 2486 2621 2678 18 15 20 18 0.89 0.13 0.75 0.83 0.051 0.128 0.107 0.074
(14:70:8:12) 3600 3522 3600 3600 20 20 18 20 1.00 0.00 0.78 0.70 0.083 0.084 0.112 0.061

SPEA 2NSGA IIVEGAMOGA_PSO

1.0

0.8

0.6

0.4

0.2

0.0

D
at

a

0.89

0.27

0.79

0.67

Figure 12. Box plot of set coverage metric for each algorithm with 95% confidence interval.
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Figure 13. Box plot of spacing and spread metric for each algorithm with 95% confidence interval.
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Figure 14. The number of dominated solutions in the population during the 150 iterations.

solutions are 18.6 and 22.3 during the first and second 75 iterations, respectively. Thus, this figure demonstrates
the improvement of the results of the algorithm during the searching process.

5. Conclusion and future research directions

This paper dealt with multi-objective, simultaneous lot-sizing and scheduling problem in flexible job shop
configuration under the machine capacity constraints and with the objectives of sum of the system costs, total
machines workload and makespan. In order to solve this problem, a hybrid algorithm based on GA and PSO
algorithms and TOPSIS method (HGAPSO) has been developed. The performance of the proposed algorithms
was evaluated in comparison with three well-known evolutionary genetic algorithms including VEGA, NSGA II,
and SPEA2. The computational results demonstrated that HGAPSO has significant advantage, particularly in
the criteria of closeness to the pareto optimal front and diversity over other algorithms. Considering the problem
with other common objective functions associated with the lot-sizing and scheduling problems, and devising
more effective solution methods by means of other multi-attribute decision making approaches are suggested
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for future extension of this research. In addition, adapting the procedure of this algorithm for solving other
problems with both discrete and continues variables can be promising and advisable.
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