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OPTIMAL DISCRETIZATION AND SELECTION OF FEATURES
BY ASSOCIATION RATES OF JOINT DISTRIBUTIONS

Daniele Santoni1, Emanuel Weitschek1,2 and Giovanni Felici1

Abstract. In this paper we propose a new method to measure the contribution of discretized fea-
tures for supervised learning and discuss its applications to biological data analysis. We restrict the
description and the experiments to the most representative case of discretization in two intervals and
of samples belonging to two classes. In order to test the validity of the method, we measured the
abundance of different explanatory models that can be derived from a given set of binary features.
We compare the performances of our algorithm with those of popular feature selection methods, over
three different publicly available gene expression data sets. The results of the comparison are in favour
of the proposed method.
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1. Introduction

In data analysis and data mining one typically wants to find simple models that explain a large amount
of observed data, with the purpose of acquiring new knowledge or to understand why certain samples possess
certain characteristics. This objective is particularly relevant and challenging when dealing with biological data
sets. The realization of effective computational methods that accomplish it is one of the tasks of bioinformatics.

In the analysis of biological data, we often are faced with the following situation: a set of samples of an
organism divided into two or more classes, (e.g., tissue from normal and diseased patients), with the related
gene expression levels or gene copy number variation, measured on those tissues by a specific technology, is
given. In such cases, the selection of small gene lists related to the conditions expressed in the samples could be
of great value to orient successive experiments conducted by doctors and biologists.

A very general and commonly used paradigm is that of supervised learning, where a model, based on a
subset of the features and expressed in a formal and computable language, captures the relevant characteristics
of the samples. In this framework, there are several statistical, mathematical, and algorithmic problems. Here,
we focus on the discretization, i.e., the transformation of features represented by a continuous measures into
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features represented by a finite number of discrete classes, and the selection of relevant subsets of such features
from which good models can be constructed.

The topic of discretization and feature selection has drawn the attention of many researchers; several surveys
are available to which the non-expert reader may refer for a more detailed insight into the problem (e.g., [6, 8,
17, 22, 23]).

Focusing on more specific contributions, experiments classification via microarray data is the object of the
work described in [20], with the aim of distinguishing between tumoral and non tumoral cells.

Microarray technology is often used to classify samples based on gene expression. For this reason, many
classification methods and tools for microarray experiments analysis are available; among the classification
methods, Support Vector Machines (SVM) are often used, due to the continuous nature of the features. In [19]
a comparative study of common microarray experiments classification algorithms is performed on seven different
cancer types. The authors also show that feature selection and discretization techniques significantly improve
the classification rates.

Also in [5] the important role of feature selection emerges: here data on tumor tissues are analyzed with
both supervised and non supervised classification techniques, and a feature selection method, based on the
discriminating power of the genes, is reported to provide a significant increase in correct classification rates.
Microarray classification experiments with SVM are reported in [12, 14, 18], while a simple method, based
on nearest neighbour approach, is investigated with success in [30]. In [22] an extensive comparison among
microarray classification methods is performed (related to SVMs, nearest neighbour approaches, decision trees,
error correcting output codes); here, no method emerges over the others. Also in this study the authors favor
the use of feature selection methods to be applied before the classification algorithm.

In the present work a novel and promising approach that integrates discretization and feature selection is
presented, with the objective of providing a significant contribution to the step of initial filtering of the features
to be used in classification algorithms.

One of the main motivations for this work is that the use of discretized features (namely, binarized features)
is well aligned with the concept of genes being over or under-expressed. Moreover, it allows the construction of
compact logic models that could more easily represent the information contained in data.

The main idea behind the proposed algorithm is that samples belonging to different classes can be separated
by a given feature – completely or partially – if the joint distribution of their expression values, related to
that feature, significantly deviates from randomness. Conversely, a joint distribution similar to a distribution of
the random sampling of the feature values suggests that the two classes are likely to be not separated by that
feature.

We restrict our description and analysis to the simplest case of samples divided into only two classes, referred
in the following as class A and class B, and of discretization in two intervals (binarization). Our method can
also be applied when both assumptions are removed, even if it leads to slightly more complicated setting.
Nevertheless, these assumptions are quite common in bioinformatics applications, where 2 class problems and
discretization in 2 intervals (over/under expressed, low/high, etc.) are frequent.

The paper is organized as follows. Section 2 describes the ideas behind the computation of the Z-scores
and the algorithm to compute them (Sect. 2.1). Features are then binarized using class entropy minimization
(Sect. 2.2), and sorted in decreasing order of importance according to the methods described in Section 2.3. The
biological data sets used for the experiments are briefly described in Section 2.6. The proposed methods based
on the integration of Z-scores are then compared with some established feature selection methods, described
in Section 2.4; the results of the compared methods over the considered data sets are evaluated according to a
particular measure that is independent of the classification algorithm adopted (see Sect. 2.5); the results of the
experiments are synthesized in Section 3. As pointed out in Section 4, the results reveal the consistency and the
validity of our approach.
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2. Material and methods

Following the strategy applied in [26], we designed an algorithm to evaluate the association rate of any two
sets of real values. The main idea behind the algorithm is that, given two sets of real values, if their joint
distribution is similar to a random distribution, they are likely to be not associated. On the contrary, a joint
distribution that significantly deviates from randomness suggests they are associated.

2.1. Main algorithm – Distance and Z-score

The original algorithm described in [26] was designed to evaluate the association rate of any two letters over
a finite alphabet with respect to a given word. In this work we used the same strategy but instead of having
occurrences positions of the two letters we have real values divided into two classes. The following description
holds for a given feature, but will be later applied to all available features.

Let A and B be two arrays A = a1, a2, . . . , an where ai ∈ R for i = 1, 2, . . . , n and B = b1, b2, . . . , bm where
bi ∈ R for i = 1, 2, . . . , m with dimension n and m, respectively.

We define a distance function D(A, B) as follows:

D(A, B) : R
n × R

m ⇒ R

where

D(A, B) =
n∑

i=1

Min{di = |ai − bj |, j = 1, .., m}. (2.1)

In other words, for each element ai ∈ A we look for the closest element bj ∈ B, and we compute the distance di

(the absolute value of the difference) between ai and bj; then we sum all di obtaining D(A, B); this provides a
preliminary association rate between the considered sets.

The function D(A, B) is not symmetrical (i.e. D(A, B) �= D(B, A)). In addition, the measure D(A, B) is not
a valuable parameter to compare different sets in terms of association because it strongly depends on the size of
the two arrays and on the peculiarity of their distributions. In order to remove this bias, we compare the value
of D(A, B) with the distance between A and a set of |B| random real values (indicated with Rand(B)).

We run this procedure for a given number of iterations (1000 being a reasonably large number), and we
verify that this number is large enough to guarantee a satisfactory approximation. To compare D(A, B) with
the distribution of D(A, Rand(B)), we compute the Z-score Z(A, B) as follows:

Z(A, B) : R
n × R

m ⇒ R

Z(A, B) =
D(A, B) − D(A, Rand(B))

σD(A,Rand(B))
(2.2)

where D(A, Rand(B)) and σD(A,Rand(B)) are the average and the standard deviation of all the computed
D(A, Rand(B)).

It is worth recalling that the Z-score function is not symmetrical and the two values Z(A, B) and Z(B, A)
can assume very different values. A negative Z(A, B) means that all the elements of A are closer to at least an
element of B than expected by chance. On the other hand a positive Z(A, B) means that the occurrences of a
are typically farther from the occurrences of b than expected by chance. When both Z(A, B) and Z(B, A) are
largely positive we can conclude that the two considered arrays are separated classes of objects. On the contrary
when both Z(A, B) and Z(B, A) are largely negative we can conclude that the two arrays are indistinguishable
from one another.

Z-score measures the deviation from randomness in terms of standard deviations so it can be considered an
absolute measure that allows to compare values associated to any couple of sets.
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We also note that the time complexity of the algorithm for the computation of the Z-scores for a given
variable is bounded by n ∗ log(n), where n is the number of samples; this is due to the need of sorting the two
classes arrays. The computation of D(A, B) is linear once the two arrays are sorted, and the time complexity for
the computation of Z-score is also linear with respect to the number of samples, being the number of iterations
constant.

2.2. Discretization via class entropy minimization

There are many techniques that can be used to discretize a continuous variable into a discrete one with 2
or more intervals. Here we have the purpose of using the discretized variable to distinguish among samples of
different classes, a case in which the ideal discretization would be such that each interval contains only elements
of a single class. In the data mining terminology, such intervals may be defined pure w.r.t. the class of the
samples. The purity of a discretization can be measured in several ways, and we adopt here the Class Entropy
(CE), a widely used measure adopted by many data mining algorithms just for the purpose of discretization
(see e.g. Decision Trees, [11]). In general, if Nc is the number of classes, N is the number of intervals, fij , i =
1, . . . , Nc, j = 1, . . . , N is the proportion of samples of class i in interval j, and nj , j = 1, . . . , N is the number
of samples falling in interval j, Class Entropy is defined as

CE = −
N∑

j=1

nj ×
Nc∑
i=1

fij × log(fij). (2.3)

It is easy to see that the CE of a discretized feature is equal to 0 when the discretization is perfect, while
grows more and more as samples of different classes merge into the intervals of discretization. It is therefore
advisable to adopt a discretization where CE reaches its minimum. This can be done quickly when only two
intervals are required (binarization): first we order the samples in increasing order of value of the feature; second,
each midpoint between two consecutive samples of different classes is considered a potential cutpoint; third,
we evaluate the CE associated to the binary variables associated to that cutpoint. Finally, the cutpoint with
lower CE is selected as the best cutpoint and a binary feature is created; then we place in the first interval the
samples with feature value below the cutpoint, and in the second interval those with feature value above the
cutpoint.

This procedure requires simple computations and a number of iterations linearly bounded by the number of
samples considered.

2.3. Selection of features via Z(A, B) and Z(B, A)

We propose to select the promising features according to the values of their Z(A, B) and Z(B, A) values.
Such choice is based on the intuition that, although features with very high values of both Z(A, B) and Z(B, A)
are supposed to provide close to perfect separation between the A and B subset of samples, they do not tell the
whole story of the information contained in the data. E.g., if no such very good symmetric separating feature
exists, we can still trust two features to do a good separating job together, if one is large and positive on Z(A, B)
and the other one on Z(B, A). We in fact know, straightforwardly from their definition (see Sect. 2.2), that
when, for a given feature, Z(A, B) is largely positive and Z(B, A) is not, it necessarily holds that a large portion
of samples in A is distinct from the samples in B by that feature, but also that a large portion of the samples in
B is mixed up with samples (possibly, few) of A. Such consideration leads to the conclusion that, while features
with Z(A, B) and Z(B, A) both large and positive are in general to be preferred, also those with a positive
value of only one of the two can serve well for separation, especially when the first type does not abound in the
data.
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According to this principle we propose to select those features with the highest value of a combination of the
two values. In the experiments we consider three basic simple combinations, and namely:

(1) WSUM : Z(A, B)+Z(B, A); the sum of the two indicators is used to rank the features in descending order;

(2) WMAX : max(Z(A, B), Z(B, A)); the maximum of the value of two indicators is used to rank the features
in descending order;

(3) WPROD =
{

max(Z(A, B), Z(B, A)) if min(Z(A, B), Z(B, A)) ≤ 0;
max(Z(A, B), Z(B, A)) otherwise;

the product of the value of two indicators is used to rank the features in descending order – only
when both values are positive, else the maximum value is used.

While WSUM and WMAX are derived straightforwardly from the Z-scores, WPROD requires a little more
manipulation to take into account the uncommon case of negative Z-scores. When this situation arises we use
WMAX, in order to avoid that the negative value of one of the scores compromises the possibly positive and
large value of the other. Once the features have been ranked according to one of the criteria listed above, the
top K features are selected, binarized (as from Sect. 2.2) and tested with the method that will be described in
Section 2.5. Varying the value of K in a reasonable range, we can thus analyze the quality of the information
provided by features selected by each criterion. The same framework is then adopted for other established
methods that are used to rank the features (as described in Sect. 2.4: Fold Change (FC), Information Gain
(IG), Gain Ratio (GR), Relief (RLF)).

2.4. Methods used for comparison

As already pointed out, the focus of this paper is on fast and effective methods for discretization and feature
selection, to be used for supervised learning in applications where the data sets are characterized by large
dimensions, in particular as far as the number of features is concerned. The proposed method is thus a filter
method and to ascertain its validity we compare it with the most commonly used methods of the same type,
keeping in mind that when smaller data sets or large computation times are available a wrapper approach may
lead to better final performance (for a more detailed discussion of the differences between the two classes of
feature selection methods the interested reader may refer to [6]).

We thus consider 4 different methods:

(1) Fold Change is one of the most established methods to ascertain the presence of over- and under-expressed
genes in bioinformatic applications. It is obtained as the ratio of a measure of the expression for one
class of patients over the other(s). It can be then transformed with several techniques and its statistical
significance can be evaluated. For an interesting discussion of this measure and of its drawbacks, see [13].
In the experiments conducted in this paper, we use the log2 of the ratio of the expression computed on
the average of the two classes. Over and under-expressed weights are considered equally significant for the
purpose of feature selection. In the following, it is referred to as FC.

(2) Relief. This method evaluates the value of an attribute by repeatedly sampling an instance and considering
the value of the given attribute for the nearest instance of the same and different class, and is designed
to operate on both discrete and continuous class data [21]. Features are evaluated through few heuristics
that assess the feature relevance using a distance measure. A feature is given larger weight if it can clearly
distinguish two instances of different classes w.r.t. two instances of the same class. In the following, it is
referred to as RLF.

(3) Information Gain. In the context of supervised learning, the term is sometimes used synonymously with
mutual information. A feature is considered as a random variable, and the Information Gain is based on the
ratio between the prior distribution of that variable given the predicted class and its posterior distribution
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conditioned to the class observed throughout the data. This concept is used to define a preferred sequence
of attributes and narrow down the feature set. Details are provided in [28]. In the following, it is referred
to as IG.

(4) Gain Ratio. Evaluates the worth of an attribute by measuring the gain ratio with respect to the class. It
can be considered as a modification of IG designed to deal more effectively with features that take a large
number of discrete values. In the following, it is referred to as GR.

For RLF, IG, and GR the implementation available in the open source data mining software WEKA 3.7 (see [29])
has been used, via the ReliefAttributeEval, InfoGainAttributeEval and GainRatioAttributeEval meth-
ods, paired with the Ranker subset evaluator. FC has been implemented directly in the software used for the
computation of the Z(A, B) and Z(B, A) values.

2.5. Evaluation of subsets of binary features

Consider a data set made of samples of 2 classes (A and B) described by a finite number m of binary features.
In this setting, a good subset of features should enable to always separate elements of one class from elements
of the other based on the binary values of the features in the subset. In other words, such subset of binary
features must obey the following property: for each couple of samples, where one belongs to class A and the
other belongs to class B, there must exist at least one binary feature whose value differs in the two samples.
It can easily be derived that a subset of features with this property contains at least one subset of the binary
features that can be combined into a Disjunctive Normal Form in propositional logic rule (DNF) that holds true
for elements of A and false for elements of B, thus providing a perfect separation of the two sets. The property
above is at the basis of the so called minimum test collection problem used for feature selection (see [15]) and
of other feature selection methods, used for example in [4, 7, 10].

Here we adopt the same framework to evaluate the quality of a feature set, with the objective of estimating
how many different models that have the very general form of a DNF rule can be extracted from a given subset
of features, under the assumption that the number of models contained in a feature set represents a good
measure of the information there contained to separate the A and B samples [9]. In addition, if two subsets
of features F1 and F2 have the same dimension, it is to be preferred the one that is guaranteed to contain
more models. Extending this conclusion to feature selection methods, we can compare two methods of the same
dimension by using the estimate of how many DNF models – at least – they contain.

Thus, consider the following.
Let F be a subset of the features, with |F | = h, and let xijk be equal to 1 if feature k ∈ F has different values

in sample i ∈ A and sample j ∈ B, and 0 otherwise. Then, define αij =
∑

k∈F xijk, and

αmin = min
i∈A,j∈B

(αij). (2.4)

it is now easy to see that αmin is the desired lower bound on the number of DNF models contained in F . Given
two feature selection methods, say m1 and m2, and the subsets of features of dimension h from them derived,
we indicate with αh

min(m1) and αh
min(m2) the associated values of αmin on subsets of features of dimension h.

We can conclude that method m1 dominates m2 if

αh
min(m1) ≥ αh

min(m2), ∀h ∈ H (2.5)

where H is an interesting set of values for h, typically 1 ≤ h 	 m (we recall that m is the total number of
features).

2.6. Biological data sets

In this Section, we briefly present the analyzed data sets and explain in detail how they have been obtained
from microarrays, which are semiconductor devices able to extract gene expression levels with a unique parallel
experiment [27]. Three different microarray data sets are used in this study.
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• The first one is a large gene expression data set from the anti-NGF (nerve growth factor) AD11 transgenic
mouse model [4], related to Alzheimer’s disease in mouse brain. As explained in [4], the gene expression
profiling was obtained with a standard two-color protocol by Agilent Technologies [2] by using the Agilent
scanner G2564B, equipped with two lasers (532 nm and 635 nm). The images were analyzed by Agilent
Feature Extraction software and normalized by the Lowess algorithm [25]. The data set is composed of a
total of 142 samples and 20 027 features (genes) divided into two classes: 72 classified as cases and 70 as
controls [4]. In the report of the experiments this data set will be referred to as ALZ.

• The second data set, described in [16], is related to Leukemia and was obtained by using Affymetrix
microarrays [1] from acute leukemia patients. RNA was hybridized to high-density oligonucleotide microar-
rays and the quantitative expression level for human genes was extracted. The data were subjected to
a priori quality control standards regarding the amount of labeled RNA and the quality of the scanned
microarray image. A normalization of the expression levels for each gene and sample was performed such
that the mean is 0 and the standard deviation is 1. The data set contains a total of 72 samples and 7 129
features (genes) divided into two classes: 47 classified as Acute Lymphoblastic Leukemia (ALL) and 25
as acute myeloid leukemia (AML) [16]. In the report of the experiments this data set will be referred to as LEU.

• The third data set is composed of gene expression profiles obtained from Central Nervous System Embryonal
Tumour patients [24]. In this study, RNA was extracted from frozen specimens and was analyzed with
oligonucleotide microarrays containing probes for 6 817 genes. Arrays were scanned on Affymetrix scanners
and the expression value for each gene was calculated using GENECHIP software [2]. Minor differences
in microarray intensity were corrected using a linear scaling method [3] and the data were normalized by
standardizing each column (sample) to have zero mean and unit variance. The data set is composed of a
total of 60 samples divided into two classes: 39 Medulloblastoma Survivors and 21 Treatment Failures [24].
In the report of the experiments this data set will be referred to as EMB.

3. Results

In this section we evaluate the ability to rank the features in an interesting order expressed by 3 different
combination of the Z(A, B) and Z(B, A) values (namely: the WSUM, WMAX, and WPROD presented in
Sect. 2.3), with the ranking provided by 4 well established feature selection methods (namely: the FC, RLF, IG,
and GR, presented in Sect. 2.4). The comparison adopts the lower bound of formula αmin (see formula (2.4))
as a direct measure of the quality of the feature selection method. The comparison is conducted on 3 different
data sets, that for dimension, variety and context appear to be a good benchmark for evaluating the validity of
the proposed method in bioinformatics applications (data sets described in Sect. 2.6).

The first set of results that we show is the disposition of the features (i.e., genes) in the Z(A, B)-Z(B, A)
plane, for the 3 data sets considered, indicated with ALZ, EMB, LEU, in Figures 1, 2, and 3. In all the 3 cases
the features are densely located close to the origin of the plane, having a small value for both the coordinates
and resulting therefore non interesting for separation. More interestingly, several features exhibit very large
positive values for one of the two coordinates and a small value for the other (points close to the x or to the y
positive semi-axes). According to the definition of Z-score given in Section 2.1, these features are supposed to
do a good job in separating a large portion of one set from a smaller portion of the other, but are not sufficient
– alone – to separate precisely all the data. On the other hand, a combination of features that are lying close
to the two positive semi-axes and far from the origin would presumably provide a good global information for
separation. The planes also provide a clear information on the presence of few features that have a significant
(although, not extreme) balanced contribution of the two scores: those are the features that should provide, if
taken alone, the best separations. A quick glance at the 3 planes also provides an interesting view point on the
different structures of the 3 data sets, ALZ and EMB appearing more clearly separable by few genes (as we
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Figure 1. The 20034 features of the ALZ data set represented on the Z(A, B), Z(B, A) plane.

Figure 2. The 6 817 features of the EMB data set represented on the Z(A, B), Z(B, A) plane.

have genes that occupy the central portion of the plane) while LEU may require the combination of more genes
to obtain similarly good separating models.

It is important to note that the 3 measures adopted (WSUM, WMAX, WPROD) should, in different ways,
allow to consider this interpretation of the data, resulting in larger values when at least one of two scores is
large; as opposed to WSUM and WPROD, WMAX considers only the larger of the 2 scores, and therefore may
assign lower ranks to features that are significant in both scores, but not large enough to compete with other
features that have only one very large score.

The role of the combination of the Z-scores to identify good features sets is discussed with greater detail in
the next section, where the bound on the number of DNF models expressed by formula (2.4) is computed for
all methods in relation with the number of selected features.

3.1. Z-score as a predictor of differential expression

We turn now to consider the αmin value for the different methods. Charts depicted in Figures 4–6 compare
the values of this indicator associated with the top portions of the list of genes obtained from the non-decreasing
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Figure 3. The 7 129 features of the LEU data set represented on the Z(A, B), Z(B, A) plane.

Figure 4. Comparison of the methods for the ALZ data set. The chart reports the value of
the αmin indicator for the 7 methods considered, for 1 to 1000 selected features.

ranking of the 7 methods. E.g., consider the data set ALZ for the method WMAX. For each feature, we compute
the 2 Z-scores and the associated WMAX value; then, we rank the features from the largest to the smallest
WMAX value and consider all subsets of features composed of the first 1, 2, . . . , 1000 features of the list.

Clearly, we expect the value of αmin to increase, or remain the same, as the number of features increases; the
steepness of the growth of αmin as the length of the list increases can be directly related with the quality of
the selection method that generated that list. Then methods with higher values of αmin should be considered
preferable – having once again acknowledged the main assumption of this scheme – two class separation and
binary discretization.

Figures 4–6 show with clear evidence that the methods based on Z-score perform better than the others for
feature sets with dimension ranging from 1 to 1000 in the 3 data sets; the only exception is the behaviour of
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Figure 5. Comparison of the methods for the EMB data set.The chart reports the value of
the αmin indicator for the 7 methods considered, for 1 to 1000 selected features.

Figure 6. Comparison of the methods for the LEU data set.The chart reports the value of the
αmin indicator for the 7 methods considered, for 1 to 1000 selected features.

GR in the ALZ experiments, where it exhibits a slightly better behaviour for features sets of small dimension.
Apart from this exception, WMAX and WSUM strongly dominate the others, with a marked advantage of the
first over the second.

A more detailed evaluation is then provided in Figures 7 and 8. Here we count how many times one method
provides the largest value of αmin for a given dimension of the feature set. In presence of ties, we assign the win
ex aequo and count a “win” for all the methods that reach the maximum value. Such analysis is cumulated over
the 3 data sets, thus providing a global indication on the overall performances of the lists based on Z-scores.
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Figure 7. Aggregate evaluation of the 7 methods. On the y-axis the number of times a given
method provided the best result, for for 1 to 1000 selected features.

Figure 8. Zoom-in aggregate evaluation of the 7 methods. On the y-axis the number of times
a given method provided the best result, for for the first 200 selected features.

Results for feature sets with dimension 1–1000 are depicted in Figure 7, where it is clearly shown that, in the
long run WMAX outperforms all the others and in particular its direct competitor WSUM. On the other hand,
if we zoom in the chart (feature sets with dimension 1–200, Fig. 8) – we again see that GR performs comparably
well in the initial ranges – due to its initial supremacy in ALZ data (see Fig. 4); in the initial ranges we can
and also see that WSUM is definitely comparable with WMAX. This behaviour of WSUM and WMAX has a
convincing interpretation: in the top part of the list WSUM picks the few good isolated features that occupy
the central portion of the plane; as these features are in scarce number, WMAX’s list starts to dominate for
larger feature sets (approx. >60) where the remaining interesting features are those that have high values on
only one of the 2 Z-scores.

4. Conclusions

In this work we addressed the problem of discretization and selection of features for supervised learning.
We focused on the most representative case of discretization in two intervals – also referred to as binarization –

and of samples belonging to two classes, although the method could be easily and naturally extended to the
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more general case of multiclass data. The problem was faced from a new perspective, using a particular distance
and its deviation from randomness as a criterion to select features; in this framework, a good feature is a feature
that shows a non-random behaviour.

The interestingness of this measure is that it is multidimensional: i.e., it is represented by a different value
for each class of the sample, associated to the degree by which the observed positions of the elements of that
class deviate from the distribution of their random positioning, keeping fixed the elements of the other classes.
In the simple case of 2-class classification, to which the results here presented are restricted, we obtain 2 values
for each features, named their Z-scores.

The use of these two measures together plays an important role in bringing to evidence the importance of
certain features that may else be overlooked by other methods.

We propose a way to measure the quality of feature sets based on the identification of a lower bound on
the number of different DNF models that can be expressed with the selected features. Such bound is used to
measure the quality of a set of features; the higher the value of the bound, the higher the quality of the set.
Using this measure, we have compared different strategies to combine the Z-scores of a feature, coming to the
conclusion that the WMAX (the maximum of the two scores) and WSUM (the sum of their values) work well,
although when the dimension of the selected set is large, WMAX dominates WSUM. Additionally, we compared
our feature selection method with other well established filter methods, and show that the lists of features
selected on the basis of the Z-scores perform better on the considered data sets.

The main result of this paper consists in the introduction of a new feature selection method, that is able
to score and rank features for supervised learning in a more effective way than others well established feature
rankers. The experimental results highlight the potential advantages of using this method in the analysis of
biological data sets, where few relevant continuous features must be extracted from large sets, and properly
discretized. Moreover, the proposed method adapts well to data sets coming from different biological contexts,
is able to highlight different structural characteristics of the samples, and performs robustly with respect to
data dimensions.

Such facts motivate additional research, testing, and developments of the method; in particular, future work
will be directed towards the cases with more than 2 classes and towards the effect that such multidimensional
Z-scores can have on the selection of good features.
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