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FUZZY PREDICTION STRATEGIES FOR GENE-ENVIRONMENT NETWORKS
– FUZZY REGRESSION ANALYSIS FOR TWO-MODAL REGULATORY

SYSTEMS
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Abstract. Target-environment networks provide a conceptual framework for the analysis and pre-
diction of complex regulatory systems such as genetic networks, eco-finance networks or sensor-target
assignments. These evolving networks consist of two major groups of entities that are interacting by
unknown relationships. The structure and dynamics of the hidden regulatory system have to be revealed
from uncertain measurement data. In this paper, the concept of fuzzy target-environment networks is
introduced and various fuzzy possibilistic regression models are presented. The relation between the
targets and/or environmental entities of the regulatory network is given in terms of a fuzzy model. The
vagueness of the regulatory system results from the (unknown) fuzzy coefficients. For an identification
of the fuzzy coefficients’ shape, methods from fuzzy regression are adapted and made applicable to the
bi-level situation of target-environment networks and uncertain data. Various shapes of fuzzy coeffi-
cients are considered and the control of outliers is discussed. A first numerical example is presented for
purposes of illustration. The paper ends with a conclusion and an outlook to future studies.
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1. Introduction

Interconnected networks with multiple connected groups of entities arise in many applications ranging from
the prediction of genetic regulatory patterns in computational biology and the modelling and simulation of eco-
finance networks to the formation of multisensor-multitarget networks in NBC-tracking scenarios [19]. In this

Keywords. Fuzzy evolving networks, fuzzy target-environment networks, uncertainty, fuzzy theory, fuzzy regression analysis,
possibilistic regression, forecasting.

1 Institute for Applied Computer Science, Universität der Bundeswehr München, 85577 Neubiberg, Germany.
erik.kropat@unibw.de
2 Institute of Applied Mathematics, Middle East Technical University, 06531 Ankara, Turkey. ayseozmen19@gmail.com;
gweber@metu.edu.tr
3 Institute for Theoretical Computer Science, Mathematics and Operations Research, Universität der Bundeswehr München,
85577 Neubiberg, Germany. silja.meyer-nieberg@unibw.de
4 Faculty of Arts and Sciences, Department of Mathematics and Computer Science, Çankaya University, 06810 Ankara, Turkey.
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paper, we are focusing on the important group of so-called target-environment networks under uncertainty [16].
These two-modal regulatory systems are composed of two distinct groups of data which define different but
strongly related levels of the model. The first group comprises the entities or targets under observation, which
clearly are the most important variables of the regulatory system. The second group consists of a certain number
of additional environmental factors that can have a strong impact on the targets regulatory patterns. These
factors can act as controls and/or disturbances. The hidden interactions between the entities of the system have
to be revealed from measurement data. Here, data uncertainty plays an important role with regard to modelling
and prediction of the future states of the two-modal regulatory system.

An important example of two-modal regulatory systems are the so-called gene-environment networks, which
were introduced in the genetic context by Weber et al. [4,7,28,32,35,40,41]. Here, the expression values of genes or
proteins are the target variables under consideration. Additional environmental factors like toxins, transcription
factors or other components of the metabolic pathways may take a strong influence on the targets. Since
microarray experiments as well as environmental observations usually result in uncertain data, this approach
has been further extended in order to deal with errors and data uncertainty. The papers [29,33,34,36–39] focus
on gene-environment networks where noise and uncertainty are represented in terms error intervals. For an
estimation of the unknown system parameters, a regression analysis based on interval-arithmetics is applied
leading to generalized Chebychev approximation problems and regression problems to be solved by methods of
generalized semi-infinite optimization [30,31]. Recently, gene-environment networks under ellipsoidal uncertainty
have been introduced in [14–17]. In this approach, functionally related groups of variables are identified with
data mining methods and the uncertain states of targets and environmental clusters are represented in terms of
ellipsoids. An affine-linear model based on ellipsoidal calculus is applied to predict the future ellipsoidal states
of the system and the estimation of system parameters is based on a set-theoretic regression analysis.

In the last decade, the concept of target-environment networks has been continuously developed and now
provides a conceptual framework for many regulatory systems in computational biology and life sciences. In
addition, target-environment networks have also been applied to financial sciences, where so-called eco-finance
networks are introduced in [13, 39].

The quality of the regression models depends heavily on the quality of the available data sets. For example,
modern high-throughput technologies can be used to measure the expression profiles of a large number of genes
simultaneously, but at a limited number of reading points. Regression analysis can be applied to identify the
functional relationship between independent and dependent variables, where both variables are given as real
numbers [8]. Nevertheless, for classical regression analysis, measurements have to be taken at a high number of
reading points in order to obtain valid statistical relations between the dependent and independent variables,
which can be considered as too expensive in the genetic context. In addition, in classical regression analysis
the linearity assumption has to be fulfilled, so that gene-environment networks are clearly out of the scope of
classical regression.

In situations where these assumptions are not fulfilled, where imprecise data with not normally distributed
errors have to be considered or where a vagueness in the relationship between input and output variables exists,
fuzzy-regression analysis offers a more general viewpoint and provides means for tackling problems failing to
satisfy these assumptions. Unlike classical regression, deviations between observed values and estimated values
are assumed to be due to system fuzziness or fuzziness of regression coefficients [2].

In this paper, we introduce the new concept of fuzzy target-environment networks and discuss the related
fuzzy regression models. The vagueness of the relation between the targets and/or environmental factors of such
a regulatory network results from the (unknown) fuzzy coefficients of the underlying fuzzy model and it is no
longer determined by precise crisp coefficients. For an identification of the shape of the fuzzy coefficients, methods
from fuzzy regression have to be adapted and made applicable to the bi-level situation of target-environment
systems and data.

Fuzzy regression as a variation of classical regression has been studied by many authors and we refer to [10] for
a recent literature review on fuzzy regression approaches and applications. In general, there are two types of fuzzy
regression methods – possibilistic regression, which is based on Tanaka’s linear programming approach [25] and
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fuzzy least-squares regression [6]. In this paper, we focus on possibilistic regression and adapt various extensions
of the fuzzy regression problem introduced by Tanaka et al. [25]. This model was based on crisp input vectors as
well as fuzzy output vectors and used fuzzy coefficients, which were represented by symmetric triangular fuzzy
numbers. The underlying idea was to minimize the fuzziness of the model by minimizing the spread of the fuzzy
output or the total support of the fuzzy coefficients subject to all the given data. This basic model has been
further extended in several directions in order to deal with potential limitations of possibilistic regression. For
example, in possibilistic regression based on symmetric triangular fuzzy numbers, only the extremal data points
determine the structure of the model. All others data points have no impact on the structure what results in a
high sensitivity to outliers [20, 21].

This problem can be resolved by using asymmetric triangular or trapezoidal fuzzy numbers [3,9]. Since Tanaka
et al. have introduced the concept of fuzzy regression, several fuzzy regression approaches have been proposed,
often referring to a particular nature of input-output data. Some authors focus on crisp input-crisp output
data [23], others use mixed crisp input-fuzzy output data [25] or fuzzy input-fuzzy output data [22]. Although
possibilistic regression has been successfully applied in many areas of engineering sciences and Operations
Research, methods involving fuzzy concepts have been rarely applied to genetics [1].

In this study, we consider fuzzy possibilistic regression for target-environment networks affected by errors
and uncertainty. We present various fuzzy regression algorithms for target-environment data based on different
representations of the fuzzy coefficients of the underlying fuzzy model. The algorithms are applied to crisp
input-crisp output data. In addition, by assigning individual membership grades to input-output samples, the
influence of outliers can be softened and controlled.

The paper is organized as follows: In Section 1, the concept of fuzzy target-environment networks and the
corresponding fuzzy regression model with fuzzy coefficients are introduced. In Section 2, we adapt Tanaka’s
possibilistic regression model for crisp target-environment data and introduce various fuzzy regression algo-
rithms. To overcome the limitations of this approach, we consider different shapes of fuzzy coefficients in terms
of symmetric and asymmetric triangular fuzzy sets as well as symmetric and asymmetric trapezoidal fuzzy
numbers. In addition, we consider models where membership grades are assigned to input-output data in order
to deal with outliers. Section 4 presents an illustrative example of fuzzy prediction for a gene-environment
regulatory network. We conclude with an outlook on potential directions of research.

2. Fuzzy target-environment networks and fuzzy regression

In this section, the concept of fuzzy target-environment networks is introduced. A linear fuzzy model de-
termines the synergistic connections between the targets and the additional environmental entities. Various
algorithms for an estimation of the unknown fuzzy coefficients of the fuzzy model are discussed in Section 3.

2.1. The fuzzy model

Target-environment networks and their inherent dynamics are often modeled by time-discrete systems

X(k+1) = F
(
X(k), E(k)

)
,

E(k+1) = G
(
X(k), E(k)

)
,

for k ≥ 0, where the time-dependent n-vector X(k) = (X(k)
1 , . . . , X

(k)
n )T denotes the expression values of the

n targets and the m-vector E = (E(k)
1 , . . . , E

(k)
m )T represents the values of the m environmental items. Both

linear and nonlinear models are available, where F : R
n+m → R

n and G : R
n+m → R

m describe the linear or
nonlinear dynamics of the system.

In this paper, we focus on the linear dynamics of single targets and environmental items. The time-discrete
dynamics of each target, Xj (j = 1, . . . , n), is represented by a (n + m)-input and single-output linear fuzzy
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Figure 1. The fuzzy target-environment network. The nodes are the targets and environmental
factors. The branches are weighted by the fuzzy coefficients of the fuzzy models Fj and Gi.

system

X
(k+1)
j := Fj

(
X(k), E(k)

)
= Zj0 +

n∑
r=1

AjrX
(k)
r +

m∑
s=1

BjsE
(k)
s (k ∈ N0).

Similarly, the states of the environmental items, Ei (i = 1, . . . , m), are given by

E
(k+1)
i := Gi

(
X(k), E(k)

)
= Z ′

i0 +
n∑

r=1

A′
irX

(k)
r +

m∑
s=1

B′
isE

(k)
s (k ∈ N0).

The unknown fuzzy coefficients Zj0, Ajr , Bjs, Z
′
i0, A

′
ir, B

′
is of the fuzzy models Fj and Gi have to be determined

from crisp data vectors

X
(κ)

=
(
X

(κ)

1 , . . . , X
(κ)

n

)T

and E
(κ)

=
(
E

(κ)

1 , . . . , E
(κ)

m

)T

,

with κ = 0, 1, . . . , T + 1, obtained from measurements taken at reading points t0 < t1 < . . . < tT+1. For the
initial states of the linear fuzzy system we assume X

(0)
r = X

(0)

r and E
(0)
s = E

(0)

s (r = 1, . . . , n; s = 1, . . . , m).

2.2. Fuzzy target-environment networks

The uncertain relations between the targets and environmental factors of the fuzzy model can be represented
in terms of a highly interconnected regulatory network (cf . Fig. 1). The nodes of this fuzzy target-environment
network are given by the targets and environmental items. The branches between targets and/or environmental
factors are weighted by the corresponding fuzzy coefficients that define the coupling rules of the fuzzy model.
In order to include the intercepts Zj0 and Z ′

i0 in our network, we introduce an additional node 0. We note
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that also weights can be assigned to the nodes of the fuzzy network. This can be, e.g., the outputs (or some
measure of the outputs) of the fuzzy model. Although the weights of the branches are static, the evolution of the
states of the targets and environmental items turns the system into a time-dependent fuzzy evolving network.
Hereby, fuzzy-discrete mathematics and its network algorithms in both versions, statically and dynamically,
becomes applicable on subjects such as connectedness, components, clusters, cycles, shortest paths or further
subnetworks [12, 18]. Beside these discrete-combinatorial aspects, combinatorial relations between graphs and
(nonlinear) optimization problems as well as topological properties of regulatory networks can be analyzed.

2.3. Fuzzy regression

The basic idea of fuzzy regression is to minimize the fuzziness of the fuzzy models Fj and Gi. In case of
non-fuzzy data they have to include all the given input-output data in their level sets5, i.e.,

X
(κ+1)

j ∈
[
Fj

(
X

(κ)
, E

(κ)
)]

α
, E

(κ+1)

i ∈
[
Gi

(
X

(κ)
, E

(κ)
)]

α′
(κ = 0, 1, . . . , T ).

The inclusion relations for target and environmental data sets depend on the level sets of the fuzzy models
Fj and Gi with parameters α, α′ ∈ (0, 1], which have to be given by the practitioner according to the desired
spread of the fuzzy models. They are usually unequal what refers to the individual behaviour of the two distinct
groups of data.

In the following sections, we introduce various fuzzy regression models for fuzzy target-environment networks.
These models are based on crisp measurement data as well as many different kinds of fuzzy coefficients.

3. Fuzzy regression analysis for target-environment data

In this section, we focus on fuzzy regression models for non-fuzzy target-environment data. The fuzzy coeffi-
cients of the linear fuzzy models F and G have to be determined from non-fuzzy input data vectors

X
(κ)

=
(
X

(κ)

1 , . . . , X
(κ)

n

)T

∈ R
n and E

(κ)
=
(
E

(κ)

1 , . . . , E
(κ)

m

)T

∈ R
m,

with κ = 0, 1, . . . , T + 1.

3.1. Fuzzy regression based on symmetric triangular fuzzy coefficients

In the first fuzzy regression model, the coefficients of the fuzzy model are given by symmetric triangular
fuzzy numbers. As we are interested in the dynamics of single targets and environmental factors, our regression
analysis will be based on crisp data sets((

X
(κ)

, E
(κ)
)T

; X
(κ+1)

j

)
,

((
X

(κ)
, E

(κ)
)T

; E
(κ+1)

i

)
(κ = 0, 1, . . . , T ).

The symmetric triangular fuzzy coefficients can be represented in terms of their center (C) and width (W)
(cf . Fig. 2):

Zj0 =
(
ZC

j0, Z
W
j0

)T
, Ajr =

(
AC

jr , A
W
jr

)T
, Bjs =

(
BC

js, B
W
js

)T
,

Z ′
i0 =

(
Z ′C

i0 , Z ′W
i0

)T
, A′

ir =
(
A′C

ir , A′W
ir

)T
, B′

is =
(
B′C

is , B′W
is

)T
.

5 The r-level (or r-cut) of a fuzzy set µ : R → [0, 1] is defined for 0 < r ≤ 1 as the set [µ]r := {x ∈ R |µ(x) ≥ r}.
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W
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Applying interval arithmetic [11], the fuzzy model Fj can be rewritten as

Fj

(
X(k), E(k)

)
= Zj0 +

n∑
r=1

AjrX
(k)
r +

m∑
s=1

BjsE
(k)
s

=
(
ZC

j0, Z
W
j0

)T
+

n∑
r=1

(
AC

jr , A
W
jr

)T
X(k)

r +
m∑

s=1

(
BC

js, B
W
js

)T
E(k)

s

=

(
ZC

j0 +
n∑

r=1

AC
jr · X(k)

r +
m∑

s=1

BC
js · E(k)

s , ZW
j0 +

n∑
r=1

AW
jr ·

∣∣∣X(k)
r

∣∣∣+ m∑
s=1

BW
js ·

∣∣∣E(k)
s

∣∣∣
)T

.

Thus, Fj

(
X(k), E(k)

)
is a symmetric triangular fuzzy number

Fj

(
X(k), E(k)

)
=
(
FC

j

(
X(k), E(k)

)
,FW

j

(
X(k), E(k)

))T

with

FC
j

(
X(k), E(k)

)
= ZC

j0 +
n∑

r=1

AC
jr · X(k)

r +
m∑

s=1

BC
js · E(k)

s ,

FW
(
X(k), E(k)

)
= ZW

j0 +
n∑

r=1

AW
jr ·

∣∣∣X(k)
r

∣∣∣+ m∑
s=1

BW
js ·

∣∣∣E(k)
s

∣∣∣ .
Similarly, the fuzzy model G can be represented as the symmetric triangular fuzzy number

Gi

(
X(k), E(k)

)
=
(
GC

i

(
X(k), E(k)

)
,GW

i

(
X(k), E(k)

))T

,

where

GC
i

(
X(k), E(k)

)
= Z ′C

i0 +
n∑

r=1

A′C
ir · X(k)

r +
m∑

s=1

B′C
is · E(k)

s ,

GW
i

(
X(k), E(k)

)
= Z ′W

i0 +
n∑

r=1

A′W
ir ·

∣∣∣X(k)
r

∣∣∣+ m∑
s=1

B′W
is ·

∣∣∣E(k)
s

∣∣∣ .
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Figure 3. The α-cut of the fuzzy model Fj .

According to the basic idea of fuzzy regression, we have to determine fuzzy models Fj and Gi which include

all the given input-output sets
((

X
(κ)

, E
(κ)
)T

; X
(κ+1)

j

)
and

((
X

(κ)
, E

(κ)
)T

; E
(κ+1)

i

)
in their level sets. The

α-cut of Fj

(
X(k), E(k)

)
with α ∈ (0, 1] as depicted in Figure 3 is given by the interval[
Fj

(
X(k), E(k)

)]
α

=
[
FL

jα

(
X(k), E(k)

)
, FR

jα

(
X(k), E(k)

)]
,

where

FL
jα

(
X(k), E(k)

)
= FC

j

(
X(k), E(k)

)
− (1 − α) · FW

j

(
X(k), E(k)

)
,

FR
jα

(
X(k), E(k)

)
= FC

j

(
X(k), E(k)

)
+ (1 − α) · FW

j

(
X(k), E(k)

)
.

Similarly, the α′-cut of Gi

(
X(k), E(k)

)
with α′ ∈ (0, 1] takes the form[

Gi

(
X(k), E(k)

)]
α′

=
[
GL

iα′

(
X(k), E(k)

)
, GR

iα′

(
X(k), E(k)

)]
,

where

GL
iα′

(
X(k), E(k)

)
= GC

i

(
X(k), E(k)

)
− (1 − α′) · GW

i

(
X(k), E(k)

)
,

GR
iα′

(
X(k), E(k)

)
= GC

i

(
X(k), E(k)

)
+ (1 − α′) · GW

i

(
X(k), E(k)

)
.

Therefore, the states X
(κ+1)

j and E
(κ+1)

i have to fulfill the constraints

FL
jα

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FR
jα

(
X

(κ)
, E

(κ)
)

,

GL
iα′

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GR
iα′

(
X

(κ)
, E

(κ)
)

,

for all κ ∈ {0, 1, . . . , T}. As mentioned before, the inclusion relations for target and environmental data sets
depend on level sets with (unequal) parameters α, α′ ∈ (0, 1]. We introduce also some additional conditions on
the size of the coefficients of the fuzzy models. The constraints

ZW
j0 , AW

jr , BW
js , Z ′W

i0 , A′W
ir , B′W

is ≥ 0
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ensure that the spread of a fuzzy coefficient is non-negative.
Now, we introduce two linear regression models for determining the symmetric triangular fuzzy coefficients

of the linear fuzzy model Fj and Gi. The first model is based on the idea used in [25]. The parameters are
determined by solving a linear programming problem with an objective function of minimizing the total spread
of the fuzzy coefficients:

Fuzzy-regression for target-environment data (FR 1)

Minimize
n∑

j=1

(
ZW

j0 +
n∑

r=1

AW
jr +

m∑
s=1

BW
js

)
+

m∑
i=1

(
Z ′W

i0 +
n∑

r=1

A′W
ir +

m∑
s=1

B′W
is

)
,

subject to FL
jα

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FR
jα

(
X

(κ)
, E

(κ)
)
,

GL
iα′

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GR
iα′

(
X

(κ)
, E

(κ)
)

(j = 1, . . . , n; i = 1, . . . , m; κ = 0, 1, . . . , T ),

ZW
j0 , Z ′W

i0 ≥ 0,

AW
jr , A′W

ir ≥ 0 (r = 1, . . . , n),

BW
js , B′W

is ≥ 0 (s = 1, . . . , m)

(j = 1, . . . , n; i = 1, . . . , m).

Other objective functions for fuzzy regression are given in the literature. For example, the total spread of the
fuzzy outputs can be used to define an alternative objective function (cf . [9,24,25,27]). In our model, such kind
of objective functions are given by

T∑
κ=0

⎧⎨
⎩

n∑
j=0

FW
j

(
X

(κ)
, E

(κ)
)

+
m∑

i=0

GW
i

(
X

(κ)
, E

(κ)
)⎫⎬
⎭ ,

and we obtain the following regression problem:

Fuzzy-regression for target-environment data (FR 2)

Minimize
T∑

κ=0

⎧⎨
⎩

n∑
j=1

(
ZW

j0 +
n∑

r=1

AW
jr ·

∣∣∣X(κ)

r

∣∣∣+ m∑
s=1

BW
js ·

∣∣∣E(κ)

s

∣∣∣ )

+
m∑

i=1

(
Z ′W

i0 +
n∑

r=1

A′W
ir ·

∣∣∣X(κ)

r

∣∣∣ + m∑
s=1

B′W
is ·

∣∣∣E(κ)

s

∣∣∣ )
}

subject to FL
jα

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FR
jα

(
X

(κ)
, E

(κ)
)
,

GL
iα′

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GR
iα′

(
X

(κ)
, E

(κ)
)

(j = 1, . . . , n; i = 1, . . . , m; κ = 0, 1, . . . , T ),

ZW
j0 , Z ′W

i0 ≥ 0,

AW
jr , A′W

ir ≥ 0, (r = 1, . . . , n),

BW
js , B′W

is ≥ 0, (s = 1, . . . , m)

(j = 1, . . . , n; i = 1, . . . , m).
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3.2. Fuzzy regression based on symmetric triangular fuzzy coefficients
with membership grades

Data sets obtained by experiments (e.g., microarray data) and environmental measurements are always
affected by noise and uncertainty. In a preprocessing step, a statistical analysis of the measurement values can
be performed in order to guarantee the quality of the observed data. In particular, outliers have to be detected
and deleted from the sample. However, it is not always possible to split this sample unambiguously. For this
reason membership grades αjκ, α′

iκ ∈ (0, 1] are assigned to the data sets
((

X
(κ)

, E
(κ)
)T

; X
(κ+1)

j

)
and

((
X

(κ)
, E

(κ)
)T

; E
(κ+1)

i

)
(κ = 0, 1, . . . , T ).

When we include the membership grades in the objective function and the inclusion relations of the linear
fuzzy regression model (FR2), we obtain the following method:

Fuzzy-regression for target-environment data (FR 3)

Minimize
T∑

κ=0

⎧⎨
⎩

n∑
j=1

αjκ ·
(

ZW
j0 +

n∑
r=1

AW
jr ·

∣∣∣X(κ)

r

∣∣∣+ m∑
s=1

BW
js ·

∣∣∣E(κ)

s

∣∣∣ )

+
m∑

i=1

α′
iκ ·
(

Z ′W
i0 +

n∑
r=1

A′W
ir ·

∣∣∣X(κ)

r

∣∣∣ + m∑
s=1

B′W
is ·

∣∣∣E(κ)

s

∣∣∣ )
}

subject to FL
j αjκ

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FR
j αjκ

(
X

(κ)
, E

(κ)
)
,

GL
i α′

iκ

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GR
i α′

iκ

(
X

(κ)
, E

(κ)
)

(j = 1, . . . , n; i = 1, . . . , m; κ = 0, 1, . . . , T ),

ZW
j0 , Z ′W

i0 ≥ 0,
AW

jr , A′W
ir ≥ 0 (r = 1, . . . , n),

BW
js , B′W

is ≥ 0 (s = 1, . . . , m)
(j = 1, . . . , n; i = 1, . . . , m).

3.3. Fuzzy regression based on asymmetric triangular fuzzy coefficients

Limitations of fuzzy regression models based on symmetric triangular fuzzy coefficients were pointed out
in [9]. One major drawback is that obviously different data sets may lead to the same linear fuzzy model. This is
due to the fact that extremal data points mainly determine the spread of the models Fj and Gi. As linear fuzzy
regression models with symmetric triangular fuzzy coefficients are not flexible enough to represent the difference
between data sets, Ishibuchi and Nii proposed asymmetric triangular or trapezoidal fuzzy coefficients [9]. In this
section, we adapt this approach for a regression analysis of target-environment data based on asymmetric
triangular fuzzy numbers. An algorithm for trapezoidal fuzzy coefficients is presented in Section 3.4.

We now assume that the coefficients of the fuzzy regression model are asymmetric triangular fuzzy coefficients
(cf . Fig. 4). Therefore, they can be represented in terms of their lower limit (L), center (C) and upper limit
(U) as follows:

Zj0 = (ZL
j0, Z

C
j0, Z

U
j0)

T , Ajr = (AL
jr , A

C
jr , A

U
jr)

T , Bjs = (BL
js, B

C
js, B

U
js)

T ,

Z ′
i0 = (Z ′L

i0 , Z ′C
i0 , Z ′U

i0 )T , A′
ir = (A′L

ir , A′C
ir , A′U

ir )T , B′
is = (B′L

is , B′C
is , B′U

is )T ,

where r = 1, . . . , n and s = 1, . . . , m.
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Figure 4. The asymmetric triangular fuzzy coefficient Ajr = (AL
jr , A

C
jr , A

U
jr)
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Figure 5. The α-cut of the asymmetric triangular fuzzy model Fj .

When all the fuzzy coefficients are asymmetric triangular, the fuzzy models Fj and Gi are also asymmetric
triangular fuzzy numbers (cf . Fig. 5). Therefore, Fj is given by

Fj

(
X(k), E(k)

)
=
(
FL

j

(
X(k), E(k)

)
, FC

j

(
X(k), E(k)

)
, FU

j

(
X(k), E(k)

))T

,

where

FL
j

(
X(k), E(k)

)
= ZL

j0 +
n∑

r=1

δL(X(k)
r )X(k)

r +
m∑

s=1

ρL(E(k)
s )E(k)

s ,

FC
j

(
X(k), E(k)

)
= ZC

j0 +
n∑

r=1

AC
jrX

(k)
r +

m∑
s=1

BC
jsE

(k)
s ,

FU
j

(
X(k), E(k)

)
= ZU

j0 +
n∑

r=1

δU (X(k)
r )X(k)

r +
m∑

s=1

ρU (E(k)
s )E(k)

s
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with

δL(X(k)
r ) =

⎧⎨
⎩

AL
jr, if X

(k)
r ≥ 0

AU
jr, if X

(k)
r < 0

, ρL(E(k)
s ) =

⎧⎨
⎩

BL
js, if E

(k)
s ≥ 0

BU
js, if E

(k)
s < 0

,

and

δU (X(k)
r ) =

⎧⎨
⎩

AU
jr, if X

(k)
r ≥ 0

AL
jr, if X

(k)
r < 0

, ρU (E(k)
s ) =

⎧⎨
⎩

BU
js, if E

(k)
s ≥ 0

BL
js, if E

(k)
s < 0

.

Similarly,
Gi

(
X(k), E(k)

)
=
(
GL

i

(
X(k), E(k)

)
, GC

i

(
X(k), E(k)

)
, GU

i

(
X(k), E(k)

))
,

where

GL
i

(
X(k), E(k)

)
= Z ′L

i0 +
n∑

r=1

δ′L(X(k)
r )X(k)

r +
m∑

s=1

ρ′L(E(k)
s )E(k)

s ,

GC
i

(
X(k), E(k)

)
= Z ′C

i0 +
n∑

r=1

A′C
ir X(k)

r +
m∑

s=1

B′C
is E(k)

s ,

GU
i

(
X(k), E(k)

)
= Z ′U

i0 +
n∑

r=1

δ′U (X(k)
r )X(k)

r +
m∑

s=1

ρ′U (E(k)
s )E(k)

s ,

with

δ′L(X(k)
r ) =

⎧⎨
⎩

A′L
ir , if X

(k)
r ≥ 0

A′U
ir , if X

(k)
r < 0

, ρ′L(E(k)
s ) =

⎧⎨
⎩

B′L
is , if E

(k)
s ≥ 0

B′U
is , if E

(k)
s < 0

,

and

δ′U (X(k)
r ) =

⎧⎨
⎩

A′U
ir , if X

(k)
r ≥ 0

A′L
ir , if X

(k)
r < 0

, ρ′U (E(k)
s ) =

⎧⎨
⎩

B′U
is , if E

(k)
s ≥ 0

B′L
is , if E

(k)
s < 0

.

The α-cut of

Fj

(
X(k), E(k)

)
=
(
FL

j

(
X(k), E(k)

)
, FC

j

(
X(k), E(k)

)
, FU

j

(
X(k), E(k)

))T

is the interval [
Fj

(
X(k), E(k)

)]
α

=
[
FL

jα

(
X(k), E(k)

)
, FU

jα

(
X(k), E(k)

)]
,

where

FL
jα

(
X(k), E(k)

)
= α · FC

j

(
X(k), E(k)

)
+ (1 − α) · FL

j

(
X(k), E(k)

)
,

FU
jα

(
X(k), E(k)

)
= α · FC

j

(
X(k), E(k)

)
+ (1 − α) · FU

j

(
X(k), E(k)

)
.

Similarly, the α′-cut of

Gi

(
X(k), E(k)

)
=
(
GL

i

(
X(k), E(k)

)
, GC

i

(
X(k), E(k)

)
, GU

i

(
X(k), E(k)

))T

is the interval [
Gi

(
X(k), E(k)

)]
α′

=
[
GL

iα′

(
X(k), E(k)

)
, GU

iα′

(
X(k), E(k)

)]
,
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where

GL
iα′

(
X(k), E(k)

)
= α′ · GC

i

(
X(k), E(k)

)
+ (1 − α′) · GL

i

(
X(k), E(k)

)
,

GU
iα′

(
X(k), E(k)

)
= α′ · GC

i

(
X(k), E(k)

)
+ (1 − α′) · GU

i

(
X(k), E(k)

)
.

In order to determine the centers as well as the upper and lower limits of the asymmetric triangular fuzzy
coefficients, we adapt the following hybrid method of least-squares regression and fuzzy regression [9]:

Fuzzy-regression for target-environment data (FR 4)

(1) Apply least squares regression in order to determine
the centers FC

j

(
X

(κ)
, E

(κ)
)

and GC
i

(
X

(κ)
, E

(κ)
)
.

(2) Determine the lower limits FL
j

(
X

(κ)
, E

(κ)
)
, GL

i

(
X

(κ)
, E

(κ)
)

and the upper limits FU
j

(
X

(κ)
, E

(κ)
)
,

GU
i

(
X

(κ)
, E

(κ)
)

by solving the following linear
programming problem:

Minimize
T∑

κ=0

{ n∑
j=1

[
FU

j

(
X

(κ)
, E

(κ)
)
−FL

j

(
X

(κ)
, E

(κ)
)]

+
m∑

i=1

[
GU

i

(
X

(κ)
, E

(κ)
)
− GL

i

(
X

(κ)
, E

(κ)
)]}

subject to FL
jα

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FU
jα

(
X

(κ)
, E

(κ)
)

,

GL
iα′

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GU
iα′

(
X

(κ)
, E

(κ)
)

(j = 1, . . . , n; i = 1, . . . , m; κ = 0, 1, . . . , T ),

ZL
j0 ≤ ZC

j0 ≤ ZU
j0, Z ′L

i0 ≤ Z ′C
i0 ≤ Z ′U

i0 ,

AL
jr ≤ AC

jr ≤ AU
jr , A′L

ir ≤ A′C
ir ≤ A′U

ir ,
BL

js ≤ BC
js ≤ BU

js, B′L
is ≤ B′C

is ≤ B′U
is

(j, r = 1, . . . , n; i, s = 1, . . . , m; κ = 0, 1, . . . , T ).

In step (1), the centers of the fuzzy coefficients are determined while in step (2) the lower limits and upper
limits of the asymmetric triangular fuzzy coefficients are calculated. The objective function is defined as the
total spread of the fuzzy outputs from the linear fuzzy models Fj and Gi, i.e., the difference between the upper
limit and lower limit of Fj and Gi, respectively.

3.4. Fuzzy regression based on trapezoidal fuzzy coefficients

Fuzzy regression models with asymmetric trapezoidal fuzzy coefficients are proposed in [9] in order to reduce
unnecessary fuzziness of the output and to avoid linear programming problems with no feasible solution (cf .
Fig. 6). In this section, we will extend our model in this direction and we will use non-fuzzy data sets and
asymmetric trapezoidal fuzzy coefficients.

Given the two crisp data sets((
X

(κ)
, E

(κ)
)T

; X
(κ+1)

j

)
,

((
X

(κ)
, E

(κ)
)T

; E
(κ+1)

i

)
(κ = 0, 1, . . . , T ),
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Figure 6. The asymmetric triangular fuzzy coefficient Ajr = (AL
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M
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U
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we denote the coefficients as

Zj0 =
(
ZL

j0, Z
M
j0 , ZN

j0, Z
U
j0

)T
, Z ′

i0 =
(
Z ′L

i0 , Z ′M
i0 , Z ′N

i0 , Z ′U
i0

)T
,

Ajr =
(
AL

jr , A
M
jr , AN

jr , A
U
jr

)T
, A′

ir =
(
A′L

ir , A′M
ir , A′N

ir , A′U
ir

)T
,

Bjs =
(
BL

js, B
M
js , BN

js, B
U
js

)T
, B′

is =
(
B′L

is , B′M
is , B′N

is , B′U
is

)T
,

where r = 1, . . . , n and s = 1, . . . , m.

The fuzzy models Fj and Gi are asymmetric trapezoidal fuzzy numbers. Therefore, Fj is given by:

Fj

(
X(k), E(k)

)
=
(
FL

j

(
X(k), E(k)

)
, FM

j

(
X(k), E(k)

)
, FN

j

(
X(k), E(k)

)
, FU

j

(
X(k), E(k)

))T

,

where

FL
j

(
X(k), E(k)

)
= ZL

j0 +
n∑

r=1

δL(X(k)
r )X(k)

r +
m∑

s=1

ρL(E(k)
s )E(k)

s ,

FM
j

(
X(k), E(k)

)
= ZM

j0 +
n∑

r=1

δM (X(k)
r )X(k)

r +
m∑

s=1

ρM (E(k)
s )E(k)

s ,

FN
j

(
X(k), E(k)

)
= ZN

j0 +
n∑

r=1

δN (X(k)
r )X(k)

r +
m∑

s=1

ρN (E(k)
s )E(k)

s ,

FU
j

(
X(k), E(k)

)
= ZU

j0 +
n∑

r=1

δU (X(k)
r )X(k)

r +
m∑

s=1

ρU (E(k)
s )E(k)

s ,
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with

δL(X(k)
r ) =

⎧⎨
⎩

AL
jr , if X

(k)
r ≥ 0

AU
jr , if X

(k)
r < 0

, ρL(E(k)
s ) =

⎧⎨
⎩

BL
js, if E

(k)
s ≥ 0

BU
js, if E

(k)
s < 0

,

δM (X(k)
r ) =

⎧⎨
⎩

AM
jr , if X

(k)
r ≥ 0

AN
jr , if X

(k)
r < 0

, ρM (E(k)
s ) =

⎧⎨
⎩

BM
js , if E

(k)
s ≥ 0

BN
js, if E

(k)
s < 0

,

δN (X(k)
r ) =

⎧⎨
⎩

AN
jr , if X

(k)
r ≥ 0

AM
jr , if X

(k)
r < 0

, ρM (E(k)
s ) =

⎧⎨
⎩

BN
js, if E

(k)
s ≥ 0

BM
js , if E

(k)
s < 0

,

δU (X(k)
r ) =

⎧⎨
⎩

AU
jr , if X

(k)
r ≥ 0

AL
jr , if X

(k)
r < 0

, ρU (E(k)
s ) =

⎧⎨
⎩

BU
js, if E

(k)
s ≥ 0

BL
js, if E

(k)
s < 0

.

Similarly,

Gi

(
X(k), E(k)

)
=
(
GL

i

(
X(k), E(k)

)
, GM

i

(
X(k), E(k)

)
, GN

i

(
X(k), E(k)

)
, GU

i

(
X(k), E(k)

))T

,

where

GL
i

(
X(k), E(k)

)
= Z ′L

i0 +
n∑

r=1

δ′L(X(k)
r )X(k)

r +
m∑

s=1

ρ′L(E(k)
s )E(k)

s ,

GM
i

(
X(k), E(k)

)
= Z ′M

i0 +
n∑

r=1

δ′M (X(k)
r )X(k)

r +
m∑

s=1

ρ′M (E(k)
s )E(k)

s ,

GN
i

(
X(k), E(k)

)
= Z ′N

i0 +
n∑

r=1

δ′N (X(k)
r )X(k)

r +
m∑

s=1

ρ′N (E(k)
s )E(k)

s ,

GU
i

(
X(k), E(k)

)
= Z ′U

i0 +
n∑

r=1

δ′U (X(k)
r )X(k)

r +
m∑

s=1

ρ′U (E(k)
s )E(k)

s ,

with

δ′L(X(k)
r ) =

⎧⎨
⎩

A′L
ir , if X

(k)
r ≥ 0

A′U
ir , if X

(k)
r < 0

, ρ′L(E(k)
s ) =

⎧⎨
⎩

B′L
is , if E

(k)
s ≥ 0

B′U
is , if E

(k)
s < 0

,

δ′M (X(k)
r ) =

⎧⎨
⎩

A′M
ir , if X

(k)
r ≥ 0

A′N
ir , if X

(k)
r < 0

, ρ′M (E(k)
s ) =

⎧⎨
⎩

B′M
is , if E

(k)
s ≥ 0

B′N
is , if E

(k)
s < 0

,

δ′N (X(k)
r ) =

⎧⎨
⎩

A′N
ir , if X

(k)
r ≥ 0

A′M
ir , if X

(k)
r < 0

, ρ′N (E(k)
s ) =

⎧⎨
⎩

B′N
is , if E

(k)
s ≥ 0

B′M
is , if E

(k)
s < 0

,

δ′U (X(k)
r ) =

⎧⎨
⎩

A′U
ir , if X

(k)
r ≥ 0

A′L
ir , if X

(k)
r < 0

, ρ′U (E(k)
s ) =

⎧⎨
⎩

B′U
is , if E

(k)
s ≥ 0

B′L
is , if E

(k)
s < 0

.
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The α-cut of Fj

(
X(k), E(k)

)
is the interval[

Fj

(
X(k), E(k)

)]
α

=
[
FL

jα

(
X(k), E(k)

)
, FR

jα

(
X(k), E(k)

)]
,

where

FL
jα

(
X(k), E(k)

)
= α · FM

j

(
X(k), E(k)

)
+ (1 − α) · FL

j

(
X(k), E(k)

)
,

FR
jα

(
X(k), E(k)

)
= α · FN

j

(
X(k), E(k)

)
+ (1 − α) · FU

j

(
X(k), E(k)

)
,

and the α′-cut of Gi

(
X(k), E(k)

)
is the interval[

Gi

(
X(k), E(k)

)]
α′

=
[
GL

iα′

(
X(k), E(k)

)
, GR

iα′

(
X(k), E(k)

)]
,

where

GL
iα′

(
X(k), E(k)

)
= α′ · GM

i

(
X(k), E(k)

)
+ (1 − α′) · GL

i

(
X(k), E(k)

)
,

GR
iα′

(
X(k), E(k)

)
= α′ · GN

i

(
X(k), E(k)

)
+ (1 − α′) · GU

i

(
X(k), E(k)

)
.

Now, we can state the fuzzy regression model for non-fuzzy target-environment data with asymmetric trape-
zoidal fuzzy coefficients. In the objective function, we minimize the sum of total spread and inner spread of the
fuzzy models which is given by

n∑
j=1

[(FU
j −FL

j

)
+
(FN

j −FM
j

)]

and
m∑

i=1

[(GU
i − GL

i

)
+
(GN

i − GM
i

)]
,

respectively. Beside the inclusion relations, we impose additional constraints in order to preserve the trapezoidal
shape of the fuzzy coefficients:

Fuzzy-regression for target-environment data (FR 5)

Minimize
T∑

κ=0

{ n∑
j=1

[
FU

j

(
X

(κ)
, E

(κ)
)
−FL

j

(
X

(κ)
, E

(κ)
)

+FN
j

(
X

(κ)
, E

(κ)
)
−FM

j

(
X

(κ)
, E

(κ)
) ]

+
m∑

i=1

[
GU

i

(
X

(κ)
, E

(κ)
)
− GL

i

(
X

(κ)
, E

(κ)
)

+GN
i

(
X

(κ)
, E

(κ)
)
− GM

i

(
X

(κ)
, E

(κ)
) ]}

subject to FL
jα

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FR
jα

(
X

(κ)
, E

(κ)
)
,

GL
iα′

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GR
iα′

(
X

(κ)
, E

(κ)
)

(j = 1, . . . , n; i = 1, . . . , m; κ = 0, 1, . . . , T ),

ZL
j0 ≤ ZM

j0 ≤ ZN
j0 ≤ ZU

j0, Z ′L
i0 ≤ Z ′M

i0 ≤ Z ′N
i0 ≤ Z ′U

i0 ,

AL
jr ≤ AM

jr ≤ AN
jr ≤ AU

jr , A′L
ir ≤ A′M

ir ≤ A′N
ir ≤ A′U

ir ,

BL
js ≤ BM

js ≤ BN
js ≤ BU

js, B′L
is ≤ B′M

is ≤ B′N
is ≤ B′U

is

(j, r = 1, . . . , n; i, s = 1, . . . , m; κ = 0, 1, . . . , T ).
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3.5. Fuzzy regression based on trapezoidal fuzzy coefficients with membership grades

In this section, we assume that individual membership grades αjκ, α′
iκ ∈ (0, 1] are assigned to the data sets((

X
(κ)

, E
(κ)
)T

; X
(κ+1)

j

)
and

((
X

(κ)
, E

(κ)
)T

; E
(κ+1)

i

)
(κ = 0, 1, . . . , T ).

In this way, the quality of data obtained from a statistical analysis in a preprocessing step can also be
reflected in the fuzzy regression with trapezoidal fuzzy coefficients. As in the case of symmetric triangular
fuzzy coefficients in Section 3.2, the fuzzy regression model (FR5) with trapezoidal fuzzy coefficients can now
be further extended and improved with regard to individual membership grades:

Fuzzy-regression for target-environment data (FR 6)

Minimize
T∑

κ=0

{ n∑
j=1

αjκ ·
[
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j
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+
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)
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(κ)
, E

(κ)
)
− GM

i

(
X

(κ)
, E

(κ)
)]}

subject to FL
jαjκ

(
X

(κ)
, E

(κ)
)
≤ X

(κ+1)

j ≤ FR
jαjκ

(
X

(κ)
, E

(κ)
)
,

GL
iα′

iκ

(
X

(κ)
, E

(κ)
)
≤ E

(κ+1)

i ≤ GR
iα′

iκ

(
X

(κ)
, E

(κ)
)

(j = 1, . . . , n; i = 1, . . . , m; κ = 0, 1, . . . , T ),

ZL
j0 ≤ ZM

j0 ≤ ZN
j0 ≤ ZU

j0, Z ′L
i0 ≤ Z ′M

i0 ≤ Z ′N
i0 ≤ Z ′U

i0 ,

AL
jr ≤ AM

jr ≤ AN
jr ≤ AU

jr , A′L
ir ≤ A′M

ir ≤ A′N
ir ≤ A′U

ir ,

BL
js ≤ BM

js ≤ BN
js ≤ BU

js, B′L
is ≤ B′M

is ≤ B′N
is ≤ B′U

is

(j, r = 1, . . . , n; i, s = 1, . . . , m; κ = 0, 1, . . . , T ).

Finally, Table 1 summarizes the regression models together with the corresponding type of coefficients and
model outputs as well as the specific form of the objective function.

Table 1. Fuzzy regression algorithms for target-environment data.

Algorithm Coefficients/Fuzzy Output Objective Function (min.)
(FR1) symmetric triangular total spread of fuzzy coefficients

(FR2) symmetric triangular total spread of fuzzy model output

(FR3) symmetric triangular total spread of fuzzy model output
with membership grades

(FR4) asymmetric triangular total spread of fuzzy model output

(FR5) asymmetric trapezoidal sum of total spread and inner spread
of fuzzy model output

(FR6) asymmetric trapezoidal sum of total spread and inner spread
of fuzzy model output

with membership grades
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4. Numerical example

As a first illustrative example a subset of a whole-genome mouse microarray data set [5] from Agilent Tech-
nologies (Santa Clara, CA) is chosen for illustration purposes. The data set was obtained after a single oral
dose exposure to Tetrachlorodibenzo-p-dioxin (TCDD). Despite the large amount of genetic data available in
many databases, pure gene-environment data has not been available previously. Typically, only a few number of
expression values and environmental observations is available. A classical statistical regression requires a large
number of measurements for a valid prediction. As discussed above, fuzzy regression approaches require a com-
paratively small number of measurements and they offer an alternative way for prediction of gene-environment
regulatory systems. We intend to turn to an investigation of large data sets and a comparison of regression
approaches in future studies.

4.1. Experimental data

The whole-genome microarray data that is used in our numerical application belongs to the hepatic tissue
from immature, ovariectomized C57BL/6 mice, and the data set shows the changes in gene expression profiles
observed at the time points 2, 4, 8, 12, 18, 24, 72 and 168 hours after TCDD treatment (see [5] for further
details with references, and supplementary Table 4 for the complete data set).

TCDD (a kind of toxin) is an environmental factor that causes various kinds of species-specific effects (like
tumor promotion, modulation of endocrine systems, hepatotoxicity, etc.) which are a result of changes in gene
expression produced by a protein, the so called aryl hydrocarbon receptor (AhR). The AhR is a transcription
factor from a specific kind of family of proteins that work as environmental sensors to different stimuli (see [5]
and references therein).

In the experimental design of the mentioned data set in [5], the genome-wide effects of TCDD is analyzed
by detecting the changes (or regulations) in gene expressions caused by a specific transcription factor AhR in
different tissues of various species such as human, mouse, rat and mice.

Tables 2 and 3 list the information and expression values of totally 16 genes that we select as a subset of
the whole-genome C57BL/6 Mice TCDD temporal microarray data given in [5]. This subnetwork of 16 genes
contains 11 target genes and 5 genes who targeted them, therefore it is considered here as a target-environment
network of totally 16 genes that we studied for our real-world application and corresponding numerical results.

4.2. Fuzzy prediction

As an illustrative example of the general prediction approaches described above we focus on the target
gene Tom1l2 (ID 176687) and an environmental factor given by gene Myc (ID 145739). Figures 7–10 show
the predictions of the corresponding expression values for seven samplings. The numerical results illustrate
the qualitative behaviour of the fuzzy approaches discussed in the previous sections. As we can expect from
our theoretical considerations, the fuzzy regression approaches (FR1) and (FR2) that are based on symmetric
triangular fuzzy numbers result in less precise predictions (see Fig. 7). This is because the extremal values
govern the prediction.

Much better results can be achieved with the hybrid method of least squares regression and fuzzy regres-
sion (FR4). For the genetic data from Table 3 the prediction of the expression values shows nearly no deviation
and center, center-width and center+width are nearly identical (see Fig. 8, left image). In general, fuzzy regres-
sion based on trapezoidal coefficients is considered as more flexible. With the fuzzy regression method (FR5)
we obtain again much better predictions for the data set under consideration (see Fig. 8, right image).

We obtain a similar picture for the environmental factor gene Myc (ID 145739). Again, the fuzzy regression
strategies (FR1) and (FR2) show a low prediction quality (see Fig. 9).

The hybrid method method (FR4) that is based on asymmetric triangular fuzzy numbers, and the fuzzy
approach (FR5) lead again to superior prediction results (see Fig. 10).

The examples above illustrate the qualitative behaviour of the various fuzzy regression models for the target-
environment networks introduced in this paper. General fuzzy regression theory already indicates that fuzzy
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Table 2. A part of C57BL/6 Mice TCDD temporal microarray data (description of the genes
in the selected subnetwork, see supplementary Table 4 in [5]).

CloneID Probe Entrez GeneID Gene symbol Gene name

150701 A51P202162 216810 Tom1l2 target of myb1-like 2

154262 A51P272646 21968 Tom1 target of myb1 homolog

155547 A51P299866 71943 Tom1l1 target of myb1-like 1

155980 A51P308814 68276 Toe1 target of EGR1, member 1

167060 A52P105913 216810 Tom1l2 target of myb1-like 2

168777 A52P13389 68632 Myct1 myc target 1

169219 A52P1480 21968 Tom1 target of myb1 homolog

176687 A52P383753 216810 Tom1l2 target of myb1-like 2

179423 A52P469458 68276 Toe1 target of EGR1, member 1

183011 A52P583563 71943 Tom1l1 target of myb1-like 1

184424 A52P630646 68276 Toe1 target of EGR1, member 1
158892 A51P367866 13653 Egr1 early growth response 1

145739 A51P102096 17869 Myc myelocytomatosis oncogene

149613 A51P180761 17864 Mybl1 myeloblastosis oncogene-like 1

158047 A51P351144 17865 Mybl2 myeloblastosis oncogene-like 2

183171 A52P589622 17864 Mybl1 myeloblastosis oncogene-like 1

Figure 7. Expression values of gene Tom1l2 (ID 176687): Fuzzy regression results obtained
with (FR1) – left image – and (FR2) – right image. The red line depicts the central value and
the blue and green lines are center-width and center+width, respectively (Color online).

hybrid models and regression approaches based on asymmetric fuzzy numbers provide better results than linear
models based on symmetric parameters. This is also the case in the numerical example presented above. The
obtained results show that fuzzy approaches are applicable to gene-environment data. Compared to other pre-
diction approaches like neural networks, the parameters of the fuzzy regression models can be even determined
when only a few number of measurements is available. This is an advantage in the current situation where
gene-environment data is only available with a small number of samples. Typically, the number of genes and
environmental factors in gene-environment data is much higher than the number of samples. Whenever predic-
tions have to made on the basis of small data sets where imprecise data becomes involved, fuzzy regression can
support the prediction. This even more important, when each gene and environmental factor can be monitored
several times under varying conditions. Nevertheless, for a more detailed study and a comparison with other
approaches, larger gene-environment data sets are required.
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Figure 8. Expression values of gene Tom1l2 (ID 176687): Fuzzy regression results obtained
with (FR4), left image, and (FR5), right image. Center, center-width and center+width are
nearly identical.

Figure 9. Expression values of environmental factor Myc (145739): Fuzzy regression results
obtained with (FR1) – left image – and (FR2) – right image. The red line depicts the central
value and the blue and green lines are center-width and center+width, respectively.

Figure 10. Expression values of environmental factor Myc (145739): Fuzzy regression re-
sults obtained with (FR4), left image, and (FR5), right image. Center, center-width and cen-
ter+width are nearly identical.
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5. Conclusion

The objective of this paper is to introduce fuzzy target-environment networks and fuzzy evolving networks
as further approaches for the analysis of two-modal regulatory systems affected by errors and uncertainty.
The proposed method is based on a fuzzy model with fuzzy coefficients. Depending on the shape of these
uncertain parameters, various possibilistic regression models are obtained. In future works, methods from fuzzy
least-squares regression based on a minimization of the total square error of the output can be addressed [6]. In
addition, the regression models can be coupled with different types of fuzzy input vectors. Beside the crisp input
from measurements also fuzzy input data can be considered in the proposed algorithms which is of particular
importance with regard to applications in case of critical operations. For an analysis of nonlinear systems, fuzzy
neural networks approaches can be adapted to the bi-level situation of target-environment networks [9]. A further
direction of research could discuss the parameter identification of regulatory systems with interacting groups
of variables affected by fuzzy uncertainty. Such an approach could be based on the set-theoretic regression
analysis of [14–16], where functionally related groups of targets and environmental entities under ellipsoidal
uncertainty are considered. In general, fuzzy regression approaches are very flexible and can be adapted to a
variety of regulatory systems where data uncertainty and model restrictions are involved. This is usually the
case for interdependent networks in systems biology where the regulating effects are not known in detail and
one has to refer to approximating models for a representation of the interaction at the system level. In such
a situation, fuzzy regression strategies can be applied in order to evaluate the prediction quality of the model
and to compare its results with real-world observations and measurements. The fuzzy regression approaches
for target-environment networks discussed in this paper are not restricted to biological problems. They can
be applied to any interdependent system, in particular when data uncertainty becomes involved. In addition,
fuzzy models can to some extend model the inherent uncertainty of a system as they depend on uncertain fuzzy
parameters. This can support the modeling of any biological, economic or technical system where the regulatory
mechanisms are not completely understood and only a small number of uncertain measurements are available.
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[17] E. Kropat, G.-W. Weber, S.Z. Alparslan-Gök and A. Özmen, Inverse Problems in Complex Multi-modal Regulatory Net-
works Based on Uncertain Clustered Data. In Modeling, Optimization, Dynamics and Bioeconomy, edited by A. Pinto and
D. Zilberman. Springer (2014) 437–451.

[18] D.S. Malik and J.N. Mordeson, Fuzzy Discrete Structures. Physica-Verlag, Heidelberg (2000).

[19] S. Meyer–Nieberg and E. Kropat, Tracking Targets under Uncertainty: Natural Computing Approaches. In Proc. of the 47th
Hawaii International Conference on Systems Sciences, January 6-9, 2014. Waikoloa, Big Island, Hawaii (2014) 1162–1171.

[20] G. Peters, Fuzzy linear regression with fuzzy intervals. Fuzzy Sets Syst. 63 (1994) 45–55.

[21] D.T. Redden and W.H. Woodall, Properties of certain fuzzy linear regression methods. Fuzzy Sets Syst. 64 (1994) 361–375.

[22] M. Sakawa and H. Yano, Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst. 47 (1992)
173–181.

[23] D.A. Savic and W. Pedrycz, Evaluation of fuzzy linear regression models. Fuzzy Sets Syst. 39 (1991) 51–63.

[24] H. Tanaka and H. Ishibuchi, Possibilistic Regression Analysis Based on Linear Programming. In: Fuzzy Regression Analysis,
edited by J. Kacprzyk, M. Fedrizzi. Physica-Verlag, Heidelberg (1992) 47–60.

[25] H. Tanaka, K. Uejima and K. Asai, Linear regression analysis with fuzzy model. IEEE Systems Trans. Systems Man Cybernet.
12 (1982) 903–907.

[26] H. Tanaka, I. Hayashi and J. Watada, Possibilistic linear regression analysis for fuzzy data. Eur. J. Oper. Res. 40 (1989)
389–396.

[27] H. Tanaka, H. Ishibuchi and S.G. Hwang, Fuzzy model of the number of staff in local government by fuzzy regression analysis
with similarity relations. J. Jpn Indust. Management Assoc. 41 (1990) 99–104.
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