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PETRI NETS FORMALISM FACILITATES ANALYSIS OF COMPLEX
BIOMOLECULAR STRUCTURAL DATA
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Abstract. Molecular dynamics (MD) simulation is a popular method of protein and nucleic acids
research. Current MD output trajectories are huge files and therefore they are hard to analyze. Petri
nets (PNs) is a mathematical modeling language that allows for concise, graphical representation of
complex data. We have developed a few algorithms for PNs generation from such large MD trajectories.
One of them, called the One Place One Conformation (OPOC) algorithm, is presented in a greater
detail. In the OPOC algorithm one biomolecular conformation corresponds to one PN place and a
transition occurring in PN graph is related to a change between biomolecules conformations. As case
studies three simulations are analyzed: an enforced steered MD (SMD) dissociation of a transthyretin
protein tetramer into dimers, the SMD dissociation of an antibody-antigen complex and a classical MD
simulation of transthyretin. We show that PNs reproduce events hidden in MD trajectories and enable
observations of the conformational space features hard-to-see by the other clustering methods. Thus, a
fundamental process of biomolecular data classification may be optimized using the PN approach.
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1. Introduction

Molecular dynamics (MD) simulation is a well-established method [17] used to generate trajectories of atomic
complexes, such as proteins and/or nucleic acids, in their conformational spaces. In the MD approach numerical
algorithms are used to solve sets of classical, differential equations of motion. Positions of every atom from the
system are calculated in consecutive time points during a typical MD simulation. A collection of coordinates of
all atoms determined in one time-step is called a frame. Usually a Cartesian reference frame is used. The most
important outcome of the MD run is an ordered sequence of frames called a trajectory. The computer-generated
trajectory is encoded in GB-size files. Information useful for biologists, chemists or physicists must be somehow
extracted from such massive data. The process involves classification based on predefined criteria. In this study
we will focus our discussion on proteins. However, the algorithms described can be used for nucleic acids and
other biopolymers as well. The analysis of the MD trajectory allows for estimates of proteins stability, mechanical
properties, motions and eventually its biological function. The MD approach is used in fundamental research as
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well as in drug design, biotechnology or in medicine [4,5,15]. Obviously, applications of the MD simulations are
very important in the computational biology [7]. There are numerous variants of the MD simulations, recently
steered MD method (SMD) [8], in which some atoms are fixed and others are pulled by a virtual force, is
becoming more and more popular.

The MD simulation is performed using special software [3, 14, 19]; however, in analysis of the final MD
trajectory a human interaction is a must. Some standard methods such as calculations of RMSD [6], contact
maps [9], clustering [26] facilitate this analysis, but it is always a difficult task. The protein trajectory may
be displayed by graphical software [11] and can be watched like a movie, but at temperature of 300 K all
the atoms are in constant motion. Therefore it is very difficult to separate interesting conformational changes
or functionally important motions from random atomic movements. Post-MD operational methods, such as
essential dynamics [1], help to grasp physically important parts of a molecule dynamics and facilitate verification
of scientific hypotheses. We expect that systematic methods aimed at reduced representation of a given MD
trajectory (or a set of trajectories) are in high demand, since they might help to extract at least some features
of the system studied in a form suitable for effective analysis, clear discussion and comparison with other data.

In order to facilitate the MD trajectory analysis process we have used Petri nets (PNs) [16,18,21]. So far we
have developed four algorithms of PN generation from MD trajectories. The mapping from structural data to
objects on PN graphs is different in each case. For example, in the One Place One Aminoacid (OPOA) algorithm
one PN place corresponds to one amino acid of the protein modeled. In the One Place One Conformation
(OPOC) scheme, which will be described here in detail, a place is linked to the whole protein conformation.
The preliminary version of the OPOC algorithm has been already presented in our earlier paper [12], however,
since that publication the alignment part of the OPOC algorithm has been improved. In our previous paper [12]
only some general features of the OPOC algorithm were described, they are fully presented in this work.

We believe that the application of PNs powerful graph technique to the popular field of computer modeling
of biopolymers, as suggested here, will bring new ideas for data mining in such complex sets as numerical MD
trajectories.

2. The mathematical formulation

The idea of Petri net was coined by Carl Adam Petri in 1939 [18]. PNs are a mathematical modeling language
designed for the description of distributed systems. A network has a form of a directed bipartite graph.

Definition 2.1. A Petri net graph is a 4-tuple (P, T, F, W ), where:

• P is a finite set of places.
• T is a finite set of transitions (or actions), such that P ∩ T = ∅.
• F is a set of directed arcs, satisfying: F ∩ (P × P ) = F ∩ (T × T ) = ∅ (a place may be connected with the

transition or the transition with the place; two places or two transitions cannot be connected).
• W : F → {1, 2, 3, . . .} is a weight function assigned to arcs. As a default the weight of one is assigned to an

arc.

In the PN plot places are represented as circles, transitions as squares, arcs as arrows. Arcs are annotated by
weights. The default weight is 1 and it is usually omitted in the plot. An example of a Petri net plot is presented
in Figure 1.

We do not have any actions in PN created according to Definition 2.1 − it is only a steady framework. In
order to have actions we need to insert tokens into the PN. A distribution of tokens over the places is called
marking.

Definition 2.2. A marking M of a net N is a mapping M : P → {0, 1, 2, 3, . . .}.
Definition 2.3. Petri net is a set (P, T, F, W, M0) where M0 is an initial marking, P, T, F, W like in
Definition 2.1.
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Figure 1. A Petri net plot.

Definition 2.4. For each element t ∈ T we can define a set of input places •t = {p ∈ P ; (p, t) ∈ P} − the set
of places from which arcs run to the transition t and a set of output places t• = {p ∈ P ; (t, p) ∈ P} − the set
of places to which arcs run from the transition t.

Definition 2.5. A transition t may fire (such transition is called enabled) in a marking M if the number of
tokens in every input place p of the transition t is equal or greater than the weight W (p) assigned to an arc
between the place p and the transition t in the marking M .

The transition t consumes tokens from the input places and puts them into the output places − the number of
tokens transferred is determined by the weights of arcs. The number of tokens is not constant, some transitions
may put more or less tokens into their output places than they consume. In the OPOC algorithm every transition
has only one input and one output place and every arc has the weight value of 1. One place can be at the same
time an input and output place for one, two or more transitions.

Firing of transitions is a concurrent process. Transitions having common input places may compete for the
tokens, and firing one transition may cause another transition to be inactive. The decision which transition
should be fired is usually taken randomly.

3. The Petri net approach to MD data

In the OPOC algorithm the main idea is to link one conformation of the molecule with one place in the
PN. There are numerous definitions of molecular conformations. Here a conformation will be a set of positions
(coordinates) of Cα atoms in R

3 space. So, in the OPOC algorithm one place corresponds to positions of all
Cα atoms of the protein, and we assume that transitions represent changes between conformations induced by
equations of motions adopted to run the simulation. A token marks the current conformation of the system
studied. Because the analyzed molecule is at a given moment in one definite conformation, only one token is
present in our PN.

Below we describe algorithms (in pseudo-code) leading to PN representations based on MD trajectories
generated earlier. This “operational” analysis is just a simple post-processing of the existing MD files, but one
can also “plug-in” these algorithms into his/her MD code.

The general idea of the OPOC algorithm is rather simple, however few critical issues have to be considered
during the PN generation step, e.g., one has to know whether the currently classified conformation has been
already obtained in the previous steps or if there exists a transition between the current (time ti) and the
previous conformation (time ti+1).
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Algorithm 3.1. One place one conformation algorithm (OPOC)

Input: Files in Protein Data Bank (PDB) format containing the MD trajectories, a parameter threshold, given
by the user, which sets a resolution necessary to distinguish two conformations.
Output: Petri net described by lists of places, transitions and arcs. Additionally files with description of places
and transitions names are generated.

Steps:
1: for (every PDB file) do
2: frame← readFrame()
3: if (!places.find (frame, threshold)) then
4: place← createP lace(frame)
5: places.add(place)
6: transition← createT ransition(places.get(previousFrame), place)
7: transition.add(transition)
8: createArcs(places.get(previousFrame), transition, place)
9: else

10: place← places.get(frame)
11: if (!transition.contains(places.get(previousFrame), place) then
12: transition← createT ransition(places.get(previousFrame), place)
13: transitions.add(transition)
14: createArcs(places.get(previousFrame), transition, place)
15: end if
16: end if
17: end for

The algorithm reads data frame by frame (lines 1-2) from every input file. During reading the new frame
is checked if a structure coded in it was previously obtained (line 3). To compare the current conformation
(from the current frame) and all the previous conformations (from the previous frames), which have been
represented by already created places, an alignment algorithm is used. The alignment algorithm used in the
present implementation is described as Algorithm 3.2. If a conformation from the current frame had not been
previously obtained (lines 3-8) the new place is created (lines 4-5). Of course, if the place does not exist in the
PN also a transition connected to this place is missing in the PN and such transition must be created (lines
6-7). After that, the place which represents that previous frame is connected as the input place to a newly
created transition and the new place, which represents the conformation from the current frame is connected as
the output place (line 8). If the current conformation has been already obtained (lines 9-16) it must be checked
whether there is also a transition from that previous place/frame to the place which corresponds to the current
frame (lines 11). If it does not exist (lines 12−14), the new transition is created (lines 12-13) and appropriate
connections, like in the first part of the algorithm, are created (line 14).

The strong advantage of the PN approach is that during the PN graph generation additional values may be
associated with places (or transitions) and saved. For example, an index of the frame when a transition occurs
for the first time, the name of the input trajectory in which places or transitions occur, a counter showing how
many times a place or a transition was invoked during generation. Such annotations can be very useful and
enrich information coded in the Petri net.

The OPOC algorithm uses a predefined threshold to decide whether the two conformations should be classified
into the same cluster (a place) or into two clusters. The threshold is defined in terms of root-mean-square distance

(RMSD) between conformations v and w (in Å): RMSD(v, w) =
√

1
n

∑10
i=1 ‖vi − wi‖2, where the index i denotes

atoms and n is a number of atoms in a studied structure.
The size of the generated PN depends on the value of the threshold parameter. For the increasing threshold

an increasing number of places and transitions in a PN is observed, so the network will be more detailed. The
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higher number of places will result in longer execution time, this is related to the search performed in line 5
of the pseudo-code. For very small threshold values (for example of 0.5 Å) almost every frame will generate a
separate place (no clustering), for bigger values similar structures will be assigned to one place (clustering). In
our opinion the best value of the threshold for an effective analysis of MD trajectories is around 1−1.5 Å, this
is a value necessary to distinguish conformations. For bigger values the level of clustering is higher, the number
of places is smaller and the more general observations are possible.

To decide whether the two conformations should be classified into the same cluster (a place) or into two
clusters, a RMSD should be calculated. This RMSD depends on a transformation used to superimpose both
structures. Performing a good structural alignment is a difficult problem [23]. In the implementation of the
Algorithm 3.1 we have used our own superposition algorithm which is a compromise between execution time and
the precision of the results. In the Algorithm 3.1 two structures are compared. For every pair of the corresponding
amino acids two steps are performed − the first is a superposition of Cα atoms based of a translation only, the
second step is a rotation by a small angle to reduce the RMS distance between the structures.

Algorithm 3.2. Structural alignment with rotations

Input: Two structures A and B represented by lists of positions of Cα atoms - the number of Cα atoms must
be the same in A and B, it is assumed that both structures represents the same protein, but being in different
conformations. A threshold for the maximal rotation angle, the initial angle and the step of the rotation.
Output: RMSD calculated between structures.

Steps:
1: for (every CA atom) do
2: center(structureA, CA)
3: center(structureB, CA)
4: RMSD← calculateRMSD(structureA, structureB)
5: ang ← initialAngle
6: while ((calculateRMSD(structureA, structureB) < RMSD)AND(ang < threshold)) do
7: rotate(structureB, ang)
8: ang ← ang + step
9: end while

10: end for
The main part of the Algorithm 3.2 is a loop which iterates over every Cα atom (lines 1-10). Firstly, both

structures are translated in such way that corresponding Cα atoms from the current loop are moved to the center
of the coordinate system (lines 2-3). Then, the first RMSD between the transformed structures is calculated
(line 4). The structure B is rotated by a small angle ang (line 5) in the next step. The rotation is continued until
the accumulated rotation angle is larger than the desired threshold or the RMSD calculated after this rotation
is bigger than that already calculated (lines 6-9). It is important that rotate() function represents a rotation
over every coordinates’ system axis and their combinations.

The Algorithm 3.2 is approximate and it can be used only for overlaps of structures (frames) representing
the same protein and which are not too much different. In our OPOC algorithm two structures taken from the
consecutive frames of the same trajectory are compared so it is expected that they will be quite similar. The
general idea of Algorithm 3.2 is simpler than in well-known algorithms. We have performed tests (for the same
inputs and in the same conditions) for the Algorithm 3.2, the Combinatorial Extension Algorithm (CEA) [27]
and the FATCAT algorithm [29] implemented in BioJava suite [10]. The average difference in RMSD between
Algorithm 3.2 and CA was 0.126 and between the Algorithm 3.2 and FATCAT was 0.096. However the average
time of the execution of the Algorithm 3.2 was 306 ms, the CA algorithm was 1052 ms and FATCAT was
5398 ms. The structural alignment is usually performed (at least) many thousands of times for just one MD
trajectory, thus its short execution time is desirable. Therefore, we claim that the RMSD error at 0.1 Å level
is quite acceptable for us, especially if crude representations of bimolecular conformational spaces in PNs are
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sought. In our software the Algorithm 3.1 may be also run with a structural alignment limited to translations
only [12]. Although with such a setting it is much faster than Algorithm 3.2, the RMSD differences in structures
are substantially bigger. Therefore, the alignment limited to translations was not used in the present paper.

4. Case studies

All MD trajectories analyzed in this work have been calculated using the NAMD package [19] with the
CHARMM27 force field [2]. For visualization and generation of mutants the VMD code was applied [11]. Plots
of Petri nets have been created in the Snoopy program [22]. Other calculations and PNs generations have been
performed by our own software, available upon request from the authors.

The advantage of the OPOC algorithm is that it can be used to one trajectory and/or to many trajectories
of the same protein as well. From a quite large pool of trajectories generated in our lab three examples are
presented to illustrate the algorithm and its utility. It is important to show that a PN generated by OPOC
contains (represents) major features and events from the trajectory used to create this particular network. Only
then conclusions drawn from PNs will be reliable, especially when those conclusions refer to features which are
difficult to pick up by a human inspection of the trajectory.

The first example is the PN of transthyretin (TTR, wild type): a protein tetramer stretched by SMD computer
simulations into two dimers (ab+cd, see Fig. 2). The TTR initial structure has been obtained from the PDB
record 1ICT [28]. The SMD pulling directions were determined by vectors connecting the centers of mass of the
dimers. All Cα atoms of TTRC-TTRD (see Fig. 2) segments were fixed and the Cα atoms of the TTRA-TTRB
dimer were pulled. The SMD forces were attached to all Cα atoms of the pulled chains. The analyzed trajectory
was 10 ns long. In a typical SMD simulation a structure of a protein is progressively deformed to examine its
mechanical properties and to observe possible H-bond breaks between fragments. During the simulation the
pulled and fixed segments separate from each other and the RMSD of the whole system rises in time. Knowing
that in the OPOC algorithm an amendment of new elements to the PN depends on a value of the RMS distance
between the consecutive structures (MD trajectory frames), one can predict how the generated PN should look
like. Due to systematic deformations of the protein new places are created when the RMSD factor between

Figure 2. Structure of TTR with marked segments (a, b, c, d).
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Figure 3. A Petri net generated for TTR SMD simulation with the threshold of 1.3 Å.

the current frame and places created previously is bigger than the assumed threshold. Thus, if SMD proceeds
as expected, the network should have a trivial form of a one long chain composed of consecutive places and
transitions. Indeed, such PNs have been obtained and their sizes were depend on the threshold only. In Figure 3
a PN generated for the threshold of 1.3 Å is presented. Nets for different thresholds were also generated and they
have the same form (data not presented). It is worth noting that in this example we treat the TTR tetramer as
a single structure.

One should note that if during the SMD stretching any unusual conformational transition happens indeed
(for example, if some stable intermediate states are formed) this regular graph pattern will be perturbed. Thus,
a simple inspection of such an easy to generate PN graph allows us to check in one glimpse “what is going on”
in the corresponding SMD trajectory.

The next example is a PN generated for the SMD trajectory of forced dissociation of chemokine MCP-1
from its antibody. Structures of both proteins are present in the PDB database with an id of 2BDN [20]. In
the paper [25] many SMD pulling directions were examined, for the current PN study a trajectory for just
one vector was chosen randomly (V3 in [25]). In the simulation all Cα atoms of the antibody were fixed and
the pulling force was added to all Cα atoms of the MCP-1. Similarly to the previous example, also here the
structure of the complex is progressively deformed and the RMSD factor rises in the course of the simulation.
The PN generated for the whole complex is expected to be similar to the one presented in Figure 3. However,
the input for the OPOC algorithm does not have to be a list of all Cα atoms from the structure but it may be
a selected subset as well. We have generated PN for Cα atoms from MCP-1 only, Cα atoms from the antibody
were omitted since they were fixed anyway. So, in this case the PN has been generated for the chemokine part
only. MCP-1 is a very small molecule so it is easy to analyze conformational changes during the simulation
by following the trajectory displayed on computer graphics and comparing structural events to the PN graph
generated “on the fly”.

In the first part of the simulation, MCP-1 is progressively deformed because of two opposite forces i.e.
the pulling force and attraction forces between the antigen and the antibody. Finally those bonds broke and
MCP-1 was separated from the antibody. The MCP-1 antigen was changing its shape even after the dissociation,
probably because the antigen was not any longer bound in the complex and it might adopt a new conformation−
more suitable for the unbound state. We have observed that the long loop at the end of the MCP-1 molecule
came closer to the main body of the protein. In the final part of the simulation the chemokine is more stable
and no substantial changes in the conformation have been observed. The initial conformation of the complex
and three representative structures from the different part of the same simulation are presented in Figure 4a.
For this SMD simulation the analysis with the OPOC algorithm was used with the threshold set at 1.1 Å.
The value of the threshold in this case was smaller than before in order to obtain more details in the PN and
generate a bigger network because the MCP-1 simulation was only 2 ns long. The corresponding PN is presented
in Figure 4b. One can see that the major part of the network, except of the last places and transitions, has a
form similar to that shown in the SMD TTR case (Fig. 3). It is a straight sequence of changing conformations,
represented by a sequence of places and transitions. This strongly corresponds to observations made from the
visual analysis of the trajectory. However some interruptions in this sequence occur, namely few times the
protein goes back to a previous conformation or adopts new ones, and this affects the sequence in the graph.
That features present in the PN graph indicate that the MCP-1 molecule has some opportunity to relax and
to sample new regions of the conformational space. It may happen because, in contrast to the previous TTR
example, the structure of MCP-1 is not deformed in steady way during the simulation. The last part of the
network (places 40−43, transitions 48−55) represents a quite stable form of the chemokine, this event happens
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Figure 4. (a) Four frames from SMD simulation of MCP-1 (blue) dissociation from the anti-
body (black, red). 1 − the starting frame, 2 − the structure when bonds between the antibody
and the antigen are broken, 3 − conformation changes during dragging, 4 − conformation ob-
tained at the end of the simulation. (b) A Petri net generated by the OPOC algorithm for the
same SMD trajectory. The high resolution figure is available at http://www-users.mat.umk.
pl/~leii/rairo/figure4.png (Color online).

at the end of the trajectory, when MCP-1 is not deformed by acting forces but only dragged though the space.
In this part of the PN one can see that MCP-1 changes freely its conformations back and forth.

Presented cases show that PNs generated by the OPOC algorithm strongly correspond to events happening
in the MD trajectories. The last example will show advantages of the OPOC algorithm in analysis of several
long simulations.

The third case studied is a PN created for simulations of TTR L55P mutant dynamics. The initial structure
of the TTR was based on the 1ICT PDB entry [28]. Two distinct classical MD simulations were used to generate
just one PN. Both trajectories were 100 ns long and were divided into two parts of 50 ns. The threshold of

http://www-users.mat.umk.pl/~leii/rairo/figure4.png
http://www-users.mat.umk.pl/~leii/rairo/figure4.png
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Figure 5. A schematic example of a complex Petri net shape generated by the OPOC algorithm
for two 100 ns long MD simulations of TTR mutant L55P (1.5 Å threshold). Places common in
both simulations are in blue, places obtained only in the 1st simulation are yellow, places present
only in the 2nd simulation are red. The arrow shows p0 starting place. The high resolution figure
is available at http://www-users.mat.umk.pl/~leii/rairo/figure5.tif (Color online).

1.5 Å was used in the OPOC algorithm. The bigger threshold was chosen in order to obtain a smaller network.
The resultant PN is presented in Figure 5. This network has 22 places and 105 transitions. One can notice
disproportion between those two numbers, for instance, the PN generated for the same number of simulations
of the wild type TTR had only 19 places and 57 transitions (PN not shown). Because transitions represent
changes between conformations, it is clear that the mutant L55P has been changing its conformation very often
(>100 times) and it was quite floppy. More details may be extracted by careful analysis of the network.

The place p0 (Fig. 5, indicated by an arrow) is an artificial starting place. For both simulations the first
conformation is the one represented by p1. Two additional transitions (t29, t91) for which p0 is an input place
are created because of our division of simulations into two files and they do not have any true meaning. Only four
conformations, represented by p1, p2, p4 and p7 (blue circles, Fig. 5), have been observed in both simulations and
they were mainly present at the beginning of simulations, after which the trajectories diverged. Such splitting
has been observed also in other proteins. Conformations represented by places up to p13 have been obtained
from the first MD simulation (yellow circles, Fig. 5). One can observe (Fig. 5) that in this part of the network a

http://www-users.mat.umk.pl/~leii/rairo/figure5.tif
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lot of transitions occur, some conformations can be transformed into any other, and also backwards transitions
into initial conformations have been possible. This suggests that the protein cannot find a stable minimum in
this MD simulation and it is still sampling the conformational space. Such observations would be very difficult
to make by watching the MD trajectory only. In the second trajectory from the starting, common conformations
protein can transform into conformations represented by places: p14, p16, p17 and further p15, p18 (red circles,
Fig. 5). Between those conformations many transitions exist. However, from the conformation p16 the system
can also transform into conformation p19 and even though there is an inverse transition, with the duration of
the simulation, L55P “stays” in a separate part of the PN created by places p19–p22 (grey area, Fig. 5). The
protein “oscillates” between those conformations which may suggest that they form some close-by local minima
in the limited conformation space. This observation − i.e. a discovery of a separate subspace − would be very
difficult to make by simply watching the trajectory. The created PN shows that both analyzed simulations were
quite different dynamical processes.

5. Discussion and conclusions

Our case studies have shown that PNs generated by the OPOC algorithm properly reflect events and features
present in MD trajectories, therefore the proposed approach can be used to analyze them. The OPOC algorithm
is a type of a clustering algorithm− for hundreds or thousands of conformational frames it assigns a much smaller
number of places located in a PN graph. Places in graphs correspond to clusters. The degree of PN clustering
depends on the assumed threshold parameter, values from 1 Å to 1.5 Å range give a reasonable resolution of
PN graphs. Clusters themselves can bring scientists useful information, therefore such type of MD data analysis
is not new. Clusters of structures may be generated by numerous clustering algorithms [26]. However, the novel
feature of the OPOC algorithm discussed here is a way of presentation of relationships between clusters. Clusters
are connected viatransitions, which are just as important as places. Thanks to transitions shown in PN graphs
one can see from which conformation a protein can transform into another one and how those transformations
proceed. Such type of study is also possible (in principle) using other algorithms, for example, in the Principal
Component Analysis (PCA, [13]), where for every cluster a list of assigned frames are generated. However, in
PCA to get relationships between clusters, additional tedious calculations are necessary. In the OPOC algorithm
proposed here such an analysis is a natural part of the algorithm.

Moreover, relationships between conformations and their changes represented by places and transitions are
generated as a PN graph. The PN graph describes a journey of the protein through the conformational space
and can be easily displayed. Only small practice is required to characterize the process of simulations by looking
at the PN graph. One can decide very quickly whether in the analyzed MD trajectory a protein finds any
more stable conformations or constantly probes new regions of the conformational space. Such inspections
of PN graphs help to decide what is the character of the studied dynamical process. Thus, the research on
biomolecules might be further optimized. PN graphs, together with additional information gathered during a
PN generation step give a holistic picture of the MD simulation. Such a complex analysis is very difficult and
cannot be performed on a computer graphics only.

Nice feature of the OPOC algorithm is the fact that PNs have their own mathematical theory. For example,
PNs are dynamic systems: transitions may be fired and tokens transferred. This process is called PN simula-
tion [24]. By simulating PNs generated by the OPOC algorithm a sequence of conformations obtained from
the real MD simulation can be quickly reproduced. However, one should note that because of a complicated
structure of real networks (see Fig. 5) the sequence of conformations produced by the PN simulation will be only
an approximation encompassing main features of the input MD simulations. This “PN regenerated” trajectory
may be used in Monte Carlo studies of proteins or in search for conformational changes not necessarily directly
observed in the MD.

PNs allow also for a general characterization of proteins conformational space [12]. More than 1800 ns of
simulations of TTR and its two mutants were analyzed (here only a part of that data are presented) and each
new trajectory added new conformations, only a few were sometimes reproduced. Owing to process simplification
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that renders dynamics assessment more intuitive, PN graphs are an invaluable aid in exploration of the nature
of such huge conformational spaces. We hope that algorithms presented in this study will facilitate research in
computational biology and bioinformatics.
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