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A SIMPLE ANALYSIS OF SYSTEM CHARACTERISTICS IN THE BATCH
SERVICE QUEUE WITH INFINITE-BUFFER AND MARKOVIAN SERVICE

PROCESS USING THE ROOTS METHOD: GI/C-MSP (a,b)/1/∞
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Abstract. We consider an infinite-buffer single-server queue with renewal input and Markovian service
process where customers are served in batches according to a general bulk service rule. Queue-length
distributions at epochs of pre-arrival, arbitrary and post-departure have been obtained along with
some important performance measures such as mean queue lengths and mean waiting times in both
the system as well as the queue. We also obtain the steady-state service batch size distributions as well
as system-length distributions. The proposed analysis is based on roots of the associated characteristic
equation of the vector-generating function of queue-length distribution at a pre-arrival epoch. Also,
we provide analytical and numerical comparison between the roots method used in this paper and the
matrix geometric method in terms of computational complexities and required computation time to
evaluate pre-arrival epoch probabilities for both the methods. Later, we have established heavy- and
light-traffic approximations as well as an approximation for the tail probabilities at pre-arrival epoch
based on one root of the characteristic equation. Numerical results for some cases have been presented
to show the effect of model parameters on the performance measures.
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1. Introduction

Bulk service queues have received considerable attention due to their wide applications in several areas such as
computer-communications, telecommunications, transportation systems and automatic manufacturing systems.
Chaudhry and Templeton [15] and Dshalalow [21] provide an extensive discussion of bulk-service queueing
systems. In such queues, customers are served by a single server in batches of maximum size ‘b’ with a minimum
threshold size ‘a’. Such type of service rule is referred to as the general bulk service rule. In recent years some
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authors have analyzed models that involve this rule, see e.g. Gold and Tran-Gia [25] as well as Chaudhry
and Gupta [14]. For the more general model GI/G(1,b)/1/N , Hébuterne and Rosenberg [30] have obtained
relations among queue-length distributions at various epochs. Chakravarthy [10, 11] analyzes GI/PH(1,b)/1/b
and MAP/G(1,b)/1/b queueing systems. Later, Gupta and Vijaya Laxmi [29] and Laxmi and Gupta [44] carried
out the analysis of MAP/G(a,b)/1/N and GI/M (1,b)/1/N queues, respectively. Recently, Yu and Alfa [45] have
analyzed the D-MAP/G(1,a,b)/1/N queue with batch-size-dependent service time.

Queueing models with non-renewal arrivals and Markov service processes are often used to model networks
of complex computer and communication systems. In such systems, both the arrival and service processes
may exhibit correlations which have significant impact on queueing behaviour. Markovian arrival process (C-
MAP ) is used to capture the correlation among the inter-arrival times. Similarly, batch Markovian arrival
process (C-BMAP ) is used to capture correlation among inter-batch arrival times. C-BMAP is a convenient
representation of the versatile Markovian point process (N-process) which was introduced and discussed by
Neuts [38]. Later on it was formalized by Lucantoni et al. [33] and Lucantoni [31]; see Pacheco et al. [40]
for an historical account on the C-BMAP and related Markov additive processes of arrivals. Considerable
amount of literature is available on the queueing systems with C-MAP or C-BMAP arrivals. Like these non-
renewal arrival processes, Markovian service process C-MSP is a versatile service process which can capture
the correlation among successive service times. Several other service processes, e.g., Poisson process, Markov
modulated Poisson process (C-MMPP ), PH-type renewal process, etc. can be considered as special cases of
MSP . For details of C-MSP readers are referred to Bocharov [5], Albores and Tajonar [1] and Gupta and
Banik [28]. In Bocharov [5], the analysis of finite and infinite-buffer G/C-MSP/1/r (r ≤ ∞) queue has been
performed; in [1], GI/C-MSP/n/r queue has been analyzed; and in [28], GI/C-MSP/1 queue with finite- and
infinite-buffer is discussed along with its computational procedure.

In this paper, we carry out the analytic analysis of the GI/C-MSP (a,b)/1/∞ queue through the calculation of
roots of the denominator of the underlying generating function for the steady state probabilities of the embedded
Markov chain after a particular threshold level for infinite state space. In this connection, readers are referred
to Chaudhry et al. [17, 18], Tijms [43] and Chaudhry et al. [16], who have used the roots method. The roots
can be easily found using one of the several commercially available packages such as Maple and Mathematica.
Historically, when MAPLE and Mathmatica could not find a large number of roots, a software package called
QROOT developed by Chaudhry [13] was used by him and his collaborators to find a large number of roots
and use them in solving several queueing models. The algorithm for finding such roots is available in some
papers, e.g., see Chaudhry et al. [16]. The purpose of studying this queueing model using roots is that we
obtain computationally simple and analytically closed form solution to the infinite-buffer GI/C-MSP (a,b)/1
queue. It may be remarked here that the matrix-geometric method (MGM) uses iterative procedure to get
steady-state probabilities at the pre-arrival epochs. Further, it is well known that while for the case of the
MGM it is required to solve the non-linear matrix equation and the dimension of each matrix in this equation
is the maximum number of service phases involved in a GI/C-MSP (a,b)/1 queue. However, in roots method
we do not have to investigate the structure of the transition probability matrices (TPM) at the embedded
pre-arrival epochs. It may be worthy to mention here that Mitrani and Chakka [35] have made a comparison
of matrix-geometric and spectral expansion method used to evaluate steady-state probabilities for a class of
similar stochastic models. Also, Mitrani and Chakka [35] have concluded that the spectral expansion method
has certain advantages over the matrix-geometric method. Further, it may be stated that it is always interesting
and instructive to have an alternative solution to a complex problem such as the one being considered here.
It may be mentioned here that the basic idea of correlated service was first introduced by Chaudhry [12]. It
may be remarked that the analysis of the finite-buffer queues with renewal input and batch Markovian service
process (GI/C-MSP (a,b)/1/N) has been carried out by Banik et al. [4]. The present queueing model is an
infinite-buffer queue which is more difficult to handle than the corresponding finite-buffer counterpart, e.g.,
see Banik et al. [4]. Secondly, we obtain several other quantitative measures such as queue-length distribution
at post-departure epoch, service batch size distributions, system-length distributions, evaluation of expected
busy and idle periods which are not derived in [4]. Further, we provide a comparison between the computational
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complexities of the roots method used in this paper and matrix-geometric method. It may worth mentioning that
matrix-geometric method due to Neuts [39] may be used to obtain embedded pre-arrival epoch probabilities for
this particular queueing model under consideration. In fact, the roots method is simple analytically, notationally
and computationally. Besides, whereas the roots method is insensitive to the traffic intensity (ρ), the matrix-
geometric is not. Also, we have established heavy- and light-traffic approximations as well as approximation
for the tail probabilities at pre-arrival epoch based on one root of the characteristic equation. Finally, some
numerical results have been presented which may help researchers/practitioners to tally their results with those
of ours.

It may be added here that the queueing model studied in this paper finds applications in the design of
semi-conductor manufacturing workstations and cloud computing centers. Recently, Banik [3] mentions such
applications in the analysis of similar bulk-service queueing model. Machines involved in semiconductor manu-
facturing process can be characterized into discrete processing machines (DPMs) and batch processing machines
(BPMs). The batch processing machines can process a subset of queued lots at the same time without inter-
ruption. As presented in Cha et al. [9], there is a limit to the number of lots, called maximum batch size, which
may be processed in a particular batch due to the limitation of the machine and/or the process constraints.
The determination of the optimal minimum and maximum batch size in different manufacturing environments
is generally a topic of research. In cloud computing, transmissions of user requests are of various types (e.g.,
data, voice, video, images etc.). There are many applications which need bulk data to be transferred in the web
which are accessed by a large client at the same time. As per the service level agreement (SLA) all the requests
received by the clients may be processed in bulk. The instances of the target web application running into vir-
tual machines (VMs) act as service centers to process the requests in the queue. When one by one requests are
submitted in the queue, the requests are forwarded to the VM which is currently idle because of lack of sufficient
number of requests. The requests are served in batches with a minimum of a and a maximum of b requests for
this VM, where 1 ≤ a ≤ b. The system under consideration contains multiple homogeneous VMs which render
service in order of task request arrivals that is, first-come, first served (FCFS). For a recent survey of system
model of bulk service on cloud, the readers are referred to Goswami et al. [26]. Following above examples, we
propose to study GI/C-MSP (a,b)/1/∞ queue for semiconductor wafer fabrication and cloud computing centers.

2. Description of the model

Let us consider a single-server infinite-buffer queueing system wherein inter-arrival times are independent
and identically distributed (i.i.d.) random variables (r.vs.) with distribution function (DF) A(x), probability
density function a(x), Laplace–Stieltjes transform (LST) A∗(θ) and mean inter-arrival time 1/λ. The service
process is C-MSP (a,b) and is governed by an underlying m-state Markov chain of C-MSP . The inter-arrival
times are independent of the service process.

The customers are served in batches according to C-MSP with matrix representation (L0,L1), wherein the
services are governed by an underlying m-state recurrent Markov chain. Let us assume that the Markov process
is in state i (1 ≤ i ≤ m). The sojourn time in this state is exponentially distributed with parameter μi. Now,
if at some instant a batch is under service and the service is in phase i (1 ≤ i ≤ m), then in a “small” time
Δt with probability [L0]i,jΔt + o(Δt) the service phase changes to j, j = 1, . . . , m, j �= i, and the service
of the batch continues; and, with probability [L1]i,jΔt + o(Δt) the service phase changes to j, j = 1, . . . , m,
with the batch service being completed and the batch in service leaving from the system. If we let [L0]i,i =

−μi = −
( ∑

j �=i

[L0]i,j +
∑
j

[L1]i,j
)
, then the matrix L0 = [[L0]i,j ] has nonnegative off-diagonal and negative

diagonal elements, and the matrix L1 = [[L1]i,j ] has nonnegative elements. We also assume that the service
phase does not change in an idle period, i.e., the service process is interrupted during idle periods. Let N(t)
denote the number of batches served in t units of time and J(t) the state of the underlying Markov chain at
time t with its state space {i : 1 ≤ i ≤ m}. Then {N(t), J(t)} is a two-dimensional Markov process with state
space {(�, i) : � ≥ 0, 1 ≤ i ≤ m}. The infinitesimal generator for this Markov process is given by Chaudhry
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et al. [17]. Let us denote L(z) = L0 +L1z with L ≡ L(1) = L0 +L1 being an irreducible infinitesimal generator
of the underlying Markov chain {J(t)}. Therefore from Chaudhry et al. [17], we have Le = 0 (throughout e
denotes the column vector of ones with the appropriate dimension depending on the context). Average batch
service rate μ∗ (the so called fundamental service rate) of the stationary C-MSP is given by μ∗ = πL1e, where
π = [π1, π2, . . . , πm] with πj denoting the steady-state probability of server being in phase j (1 ≤ j ≤ m). The
stationary probability row-vector π can be calculated from πL = 0 with πe = 1.

The customers are served in batches according to a Markovian service process. The service takes place in
batches of maximum size b with a minimum threshold equal to a (1 ≤ a ≤ b). However, if fewer than a (≥ 1)
customers are present in the queue, the server waits till the number of customers in the queue reaches a and
then initiates service for that group of customers. The offered load ρ is defined as ρ = λ/bμ∗. The customers
are served in batches according to a C-MSP (a,b) rule with mean batch service time 1/μ∗.

Further, let us define {P(n, t) : n ≥ 0, t ≥ 0} as the m × m matrix whose (i, j)th element is the conditional
probability defined as

Pi,j(n, t) = Pr{N(t) = n, J(t) = j|N(0) = 0, J(0) = i}, 1 ≤ i, j ≤ m.

This system may be written in matrix notation as

d
dt

P(0, t) = P(0, t)L0 (2.1)

d
dt

P(n, t) = P(n, t)L0 + P(n − 1, t)L1, n ≥ 1, (2.2)

with P(0, 0) = Im and P(n, 0) = 0 , n ≥ 1, where Im is the identity matrix of order m × m. Let us define the
matrix-generating function P∗(z, t) as

P∗(z, t) =
∞∑

n=0

P(n, t)zn, |z| ≤ 1. (2.3)

From Chaudhry et al. [17], we get

P∗(z, t) = eL(z)t, |z| ≤ 1, t ≥ 0. (2.4)

Recall that the arrival times are assumed to be i.i.d. random variables and they are independent of the service
process.

Let Sn (n ≥ 0) denote the matrix of order m×m whose (i, j)th element represents the conditional probability
that during an inter-arrival period n batches are served and the service process passes to phase j, provided at
the initial instant of the previous arrival epoch there were at least n batches (i.e., at least (n−1)b+a customers)
in the system and the service process was in phase i. Then

Sn =
∫ ∞

0

P(n, t)dA(t), n ≥ 0. (2.5)

If we let S(z) denote the matrix-generating function of Sn, where Si,j(z) (1 ≤ i, j ≤ m) are the elements of
S(z), then, using (2.5) and (2.4), we get

S(z) =
∞∑

n=0

Snzn =
∫ ∞

0

∞∑
n=0

P(n, t)zndA(t)

=
∫ ∞

0

P∗(z, t)dA(t) =
∫ ∞

0

eL(z)ta(t)dt. (2.6)
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The evaluation of the matrices Sn can be carried out along the lines proposed by Lucantoni [31]. Chaudhry
et al. [18] have given the procedure of obtaining S(z).

As above, we introduce the matrices Ωn (n ≥ 0) of order m×m whose (i, j)th element represents the limiting
probability that n batches are served during an elapsed inter-arrival time of the arrival process with the service
process being in phase j, given that there were at least (n + 1) batches in the system with the service process
being in phase i at the beginning of the inter-arrival period. Then, from Markov renewal theory as given by
(Chaudhry and Templeton [15], p. 80), equation (2.3.14), we have

Ωn = λ

∫ ∞

0

P(n, x)(1 − A(x)) dx, n ≥ 0. (2.7)

The matrices Ωn can be expressed in terms of the matrices Sn. This is shown as follows:

Sn =
∫ ∞

0

P(n, t)dA(t) = −
∫ ∞

0

P(n, t)d[1 − A(t)],

= δn,0Im +
∫ ∞

0

P(1)(n, t)[1 − A(t)]dt, where P(1)(n, t) =
d
dt

P(n, t) and δn,0 is the

Kronecker’s delta,

= δn,0Im +
1
λ
ΩnL0 +

1
λ
Ωn−1L1.1{n≥1}, where 1{n≥1} is the indicator function. (2.8)

To obtain the last equality, we have replaced P(1)(n, t) from equation (2.2). Therefore,

Ω0 = λ
(
Im − S0

)
(−L0)−1, (2.9)

Ωn =
(
Ωn−1L1 − λSn

)
(−L0)−1, n ≥ 1. (2.10)

Further, let P̃ij(n, t) be the conditional probability that at least n batches are served in (0, t] and the service
process is in phase j at the end of the nth batch service completion, given that there were n batches in the
system and the service process was in phase i at time t = 0. The probabilities P̃ij(n, t), n ≥ 1, t ≥ 0, then
satisfy the equations

P̃ij(n, t + Δt) = P̃ij(n, t) +
m∑

k=1

Pik(n − 1, t)[L1]kjΔt + o(Δt),

with the initial condition P̃ij(n, 0) = 0, n ≥ 1. Rearranging the terms and taking the limit as Δt → 0, it
reduces to

d
dt

P̃ij(n, t) =
m∑

k=1

Pik(n − 1, t)[L1]kj , n ≥ 1,

for t ≥ 0, 1 ≤ i, j ≤ m, with the initial conditions P̃ij(n, 0) = 0. This system may be written in matrix
notation as

d
dt

P̃(n, t) = P(n − 1, t)L1, n ≥ 1, (2.11)

with P̃(n, 0) = 0.
Further, let S∗

n denote the matrix of order m × m whose (i, j)th element represents the probability that at
least n batches are served during an inter-arrival period and the service process is in phase j at the end of
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the nth batch service completion, provided at the initial instant of previous arrival epoch there were exactly n
batches in the system and the service process was in phase i. Then

S∗
n =

∫ ∞

0

P̃(n, t)dA(t)

= −
∫ ∞

0

P̃(n, t)d[1 − A(t)]

= −
[
P̃(n, t)[1 − A(t)]

]∞
0

+
∫ ∞

0

d
dt

P̃(n, t)[1 − A(t)]dt

=
∫ ∞

0

P(n − 1, t)L1[1 − A(t)]dt

=
1
λ
Ωn−1L1, n ≥ 1. (2.12)

Further, we introduce the matrix Ω∗
n (n ≥ 1) as the m × m matrix whose (i, j)th element represents the

limiting probability that n or more batches have been served during an elapsed inter-arrival time period of
the arrival process with the service process being in phase j at the end of nth batch service completion in the
period, provided at the previous arrival epoch the service process was in phase i and the arrival lead the system
to stay with n batches of customers. Then, from Markov renewal theory, we have

Ω∗
n = λ

∫ ∞

0

P̃(n, x)(1 − A(x)) dx, n ≥ 1. (2.13)

Using (2.11) in the above equation, we have

Ω∗
n = λ

∫ ∞

0

(∫ t

0

P(n − 1, x)L1dx

)
[1 − A(t)]dt, n ≥ 1. (2.14)

Using (2.1) in (2.14), for n = 1, we obtain

Ω∗
1 = λ

∫ ∞

0

(∫ t

0

eL0xL1dx

)
[1 − A(t)]dt

= λ

∫ ∞

0

(
(Im − eL0t).(−L0)−1

)
[1 − A(t)]dtL1

= λ

∫ ∞

0

(
Im − eL0t

)
[1 − A(t)]dt (−L0)

−1 L1. (2.15)

To evaluate
∫∞
0

(
Im − eL0t

)
[1−A(t)]dt we assume X =

∫∞
0

(
Im − eL0t

)
[1−A(t)]dt and consider the following∫ ∞

0

(
Im − eL0t

)
dA(t) = −

∫ ∞

0

(
Im − eL0t

)
d[1 − A(t)]

= −
∫ ∞

0

eL0t[1 − A(t)]dt · L0

=
∫ ∞

0

(
Im − eL0t

)
[1 − A(t)]dt · L0 −

∫ ∞

0

[1 − A(t)]dt · L0

= X · L0 − 1
λ
· L0. (2.16)

The left-hand side of the above equation (2.16) can be written as∫ ∞

0

(
Im − eL0t

)
dA(t) = Im − S0. (2.17)
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Comparing equations (2.16) and (2.17), we obtain

X =
(
Im − S0 +

1
λ
· L0

)
· (L0)

−1
. (2.18)

Therefore, from equation (2.15), we get, using (2.18),

Ω∗
1 = λ

(
Im − S0 +

1
λ
· L0

)
. (L0)

−1 · (−L0)
−1 L1,

= (Im − Ω0) · (−L0)
−1 L1. (2.19)

Using (2.2) in (2.14), we have

Ω∗
n+1 = λ

∫ ∞

0

∫ t

0

(
d
dx

P(n, x) − P(n − 1, x)L1

)
(L0)

−1 L1dx[1 − A(t)]dt, n ≥ 1,

which leads to

Ω∗
n+1 = (Ω∗

n − Ωn) (−L0)
−1 L1, n ≥ 1. (2.20)

For more information on C-MSP , readers are referred to Bocharov [5], Albores and Tajonar [1] and Gupta
and Banik [28].

3. Analysis of the model

We consider a GI/C-MSP (a,b)/1/∞ queueing system as described above. Since we study the system in
steady-state, we assume ρ < 1.

3.1. Queue-length distribution at pre-arrival epoch

We now consider the queue-length distribution just before an arrival epoch of a customer. Let the kth
customer arrive at time instant τk, k = 0, 1, . . ., with τ0 = 0, and let τ−

k denote the pre-arrival epoch of a
customer, i.e., the time epoch just before the arrival instant τk. Then the state of the system at τ−

k defined
as ζk = {Nτ−

k
, Jτ−

k
, ξτ−

k
} is a Markov chain, where Nτ−

k
represents the number of customers in the queue

excluding the batch in service, Jτ−
k

the phase of the service process at the embedded point τ−
k and ξτ−

k
the

state of the server, i.e., either busy (ξτ−
k

= 1) or idle (ξτ−
k

= 0). In the limiting case, let us define π−
j,0(n) =

limk→∞ P (Nτ−
k

= n, Jτ−
k

= j, ξτ−
k

= 0), 0 ≤ n ≤ a − 1, 1 ≤ j ≤ m, and π−
j,1(n) = limk→∞ P (Nτ−

k
= n, Jτ−

k
=

j, ξτ−
k

= 1), n ≥ 0, 1 ≤ j ≤ m, where π−
j,0(n) represents the pre-arrival epoch probability of a customer when

there are n (< a) customers in the system and the server is idle in phase j. On the other hand, π−
j,1(n) denotes

the pre-arrival epoch probability of an arrival when there are n (≥ 0) customers in the queue and the server
is busy in phase j. Let π−

l (n) (l = 0, 1) be the 1 × m vector whose jth component is π−
j,l(n). Observing the

state of the system at consecutive imbedded points, we have an imbedded Markov chain whose state space is
equivalent to Ω = {(i, r, 0), 0 ≤ i ≤ a − 1, 1 ≤ r ≤ m}⋃{(j, s, 1), j ≥ 0, 1 ≤ s ≤ m}. The one step transition
probability matrix (TPM), P of the above Markov chain can be constructed similar to the corresponding finite-
buffer GI/C-MSP (a,b)/1 queue; for details, see Banik et al. [4]. To obtain the vector-generating function (VGF)
of the distribution of the number of customers in the system at pre-arrival epochs, we write π− = π−P , where
π−=[π−

0 (0), π−
0 (1), . . . , π−

0 (a− 1), π−
1 (0), π−

1 (1), π−
1 (2), . . .]. Therefore, we have the following system of vector
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difference equations

π−
0 (0) = π−

0 (a − 1)S∗
1 +

∞∑
i=0

(i+1)b−1∑
j=i.b+a−1

π−
1 (j)S∗

i+2, (3.1)

π−
0 (n) = π−

0 (n − 1) +
∞∑

i=0

π−
1 (i.b + n − 1)S∗

i+1, 1 ≤ n ≤ a − 1, (3.2)

π−
1 (0) = π−

0 (a − 1)S0 +
∞∑

i=0

(i+1)b−1∑
j=i.b+a−1

π−
1 (j)Si+1, (3.3)

π−
1 (n) =

∞∑
i=0

π−
1 (i.b + n − 1)Si, n ≥ 1. (3.4)

Multiplying (3.4) by zn and summing from n = 1 to ∞, adding equation (3.3) and using the vector-generating
function π−∗

1 (z) =
∑∞

n=0 π−
1 (n)zn, we get

π−∗
1 (z)[Im − zS(z−b)] = π−

0 (a − 1)S0 −
∞∑

i=1

i.b−1∑
r=0

π−
1 (r)Siz

−i.b+1+r, (3.5)

leading to

π−∗
1 (z) =

(
π−

0 (a − 1)S0 −
∑∞

i=1

∑i.b−1
r=0 π−

1 (r)Siz
−i.b+1+r

)
Adj[Im − zS(z−b)]

det[Im − zS(z−b)]
· (3.6)

For further analysis, we first determine an analytic expression for each component of π−∗
1 (z). Each component

π−∗
j,1 (z) defined as π−∗

j,1 (z) =
∑∞

n=0 π−
j,1(n)zn of the VGF π−∗

1 (z) given in (3.6) being convergent in |z| ≤ 1 implies
that π−∗

1 (z) is convergent in |z| ≤ 1. Since rational Laplace transforms cover a large class of distributions (see
Botta et al. [8]), for further analysis we assume that the inter-arrival time distributions have a rational Laplace
transforms. In view of this, each element of S(z−b) will be a rational function (for details, see Chaudhry et al. [18])
implying each element of det[Im − zS(z−b)] will also be a rational function and thus we assume that

det[Im − zS(z−b)] =
d(z)
ϕ(z)

·

Equation (3.6) can be rewritten element-wise as

π−∗
j,1 (z) =

ξj(z)
d(z)

, 1 ≤ j ≤ m, (3.7)

where the jth component of
(
π−

0 (a−1)S0−
∑∞

i=1

∑i.b−1
r=0 π−

1 (r)Siz
−i.b+1+r

)
Adj[Im−zS(z−b)]ϕ(z) is represented

by ξj(z). To evaluate the vector in the numerator of equation (3.6), we show that the equation det[Imz−S(zb)] =
0 has exactly m roots inside the unit circle |z| = 1, see Appendix A. Let these roots be γi (1 ≤ i ≤ m). Now,
consider the zeros of the function d(z). Since the equation det[Imz − S(zb)] = 0 has m roots γi inside the unit
circle, the function det[Im − zS(z−b)] has m zeros 1/γi outside the unit circle. As π−∗

j,1 (z) is an analytic function
of z for |z| ≤ 1, applying the partial-fraction method, we have

π−∗
j,1 (z) =

m∑
i=1

kij

1 − γiz
, 1 ≤ j ≤ m, (3.8)
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where kij are constants to be determined. Now, collecting the coefficient of zn from both sides of (3.8), we have

π−
j,1(n) =

m∑
i=1

kijγ
n
i , 1 ≤ j ≤ m, n ≥ 0. (3.9)

Using (3.9) in (3.4) for r = 1, 2, 3, . . . , m − 1, we have[
m∑

i=1

ki1γ
r
i ,

m∑
i=1

ki2γ
r
i , . . . ,

m∑
i=1

kimγr
i

]
=

∞∑
n=0

[
m∑

i=1

ki1γ
nb+r−1
i ,

m∑
i=1

ki2γ
nb+r−1
i , . . . ,

×
m∑

i=1

kimγnb+r−1
i

]
Sn. (3.10)

Equations (3.10) gives m(m − 1) simultaneous equations in m2 unknowns, kij ’s (1 ≤ i ≤ m, 1 ≤ j ≤ m). We
must use other m equations which can be obtained in the following way. Substituting the values of π−

j,1(n) (n ≥ 0)
from equation (3.9) into equation (3.3), we obtain

π−
0 (a − 1) =

([
m∑

i=1

ki1,
m∑

i=1

ki2, . . . ,
m∑

i=1

kim

]

−
∞∑

n=0

(n+1)b−1∑
j=n.b+a−1

[
m∑

i=1

ki1γ
j
i ,

m∑
i=1

ki2γ
j
i , . . . ,

m∑
i=1

kimγj
i

]
Sn+1

)
(S0)−1, (3.11)

After getting the elements of the vector π−
0 (a−1) in terms of the roots γi (1 ≤ i ≤ m) and kij ’s (1 ≤ i ≤ m, 1 ≤

j ≤ m) from the above equation (3.11), we substitute π−
j,1(n) (n ≥ 0) from (3.9) and π−

0 (a − 1) from (3.11)
into equations (3.1) to (3.2). As a result of these substitutions we finally obtain each element of the vectors
π−

0 (i) (0 ≤ i ≤ a − 1) in terms of the roots γi (1 ≤ i ≤ m) and kij ’s (1 ≤ i ≤ m, 1 ≤ j ≤ m) as follows.

π−
0 (0) = π−

0 (a − 1)S∗
1 +

∞∑
l=0

(l+1)b−1∑
j=l.b+a−1

[
m∑

i=1

ki1γ
j
i ,

m∑
i=1

ki2γ
j
i , . . . ,

m∑
i=1

kimγj
i

]
S∗

l+2, (3.12)

π−
0 (n) = π−

0 (n − 1) +
∞∑
l=0

[
m∑

i=1

ki1γ
l.b+n−1
i ,

m∑
i=1

ki2γ
l.b+n−1
i , . . . ,

m∑
i=1

kimγl.b+n−1
i

]
S∗

l+1,

1 ≤ n ≤ a − 1. (3.13)

Finally, we equate the elements of the vector π−
0 (a−1) obtained from (3.13) for n = a−1 and (3.11), as a result

of which we have another m equations. Therefore, we have a total of m(m − 1) + m = m2 equations with m2

unknowns kij ’s (1 ≤ i ≤ m, 1 ≤ j ≤ m). One may note here that we ignore one component of equation (3.10)
for r = m − 1 which is a redundant equation and instead use the normalization condition given by

m∑
j=1

π−∗
j,1 (1) +

a−1∑
n=0

m∑
j=1

π−
j,0(n) = 1. (3.14)

Above normalization condition can be simplified by putting z = 1 in equation (3.8) leading to
m∑

j=1

π−∗
j,1 (1) +

a−1∑
n=0

m∑
j=1

π−
j,0(n) =

m∑
j=1

m∑
i=1

kij

1 − γi
+

a−1∑
n=0

m∑
j=1

π−
j,0(n) = 1. (3.15)

Thus solving these m2 equations, we get m2 unknowns.

Remark 3.1. If m = 1, the above results (3.1)–(3.4) are similar to those for GI/M (a,b)/1 queueing system
which is discussed by Madill and Chaudhry [34].
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3.1.1. Comparison of roots method with the matrix-geometric method

In the previous subsection we have used roots method to obtain pre-arrival epoch probabilities π−
0 (i) (0 ≤

i ≤ a − 1) and π−
1 (n) (n ≥ 0). One may be interested to use matrix-geometric method (MGM) to compute

pre-arrival epoch probability vectors π−
0 (i) (0 ≤ i ≤ a − 1) and π−

1 (n) (n ≥ 0). In this subsection we discuss
the procedure to calculate probability vectors at pre-arrival epoch using the MGM and also give computational
complexities involved in both methods.

3.1.1.1. Determination of pre-arrival probability vectors using matrix-geometric method

MGM is a popular method to solve a continuous-time Markov chain (CTMC) with a special block structure,
see Neuts [39]. Steady-state Probability vectors at pre-arrival epochs for GI/C-MSP (a,b)/1/∞ queue can be
obtained by the MGM. In case of the MGM, one has to determine the rate matrix R of the Markov chain
described by the state space Ω in the previous subsection. As given by Neuts [39] and Banik [2] R is the
minimal non-negative solution of the matrix equation as follows:

R =
∞∑

r=0

RbrSr. (3.16)

Pre-arrival probability vectors at server’s busy state can be given by

π−
1 (η + k) = π−

1 (η)Rk, k ≥ 0, η > 0. (3.17)

Pre-arrival probability vectors at server’s idle state, i.e., π−
0 (0), π−

0 (1), . . . , π−
0 (a − 1) and busy state, i.e.,

π−
1 (0), π−

1 (0), · · · , π−
1 (η) can be obtained from first (a + η + 1) components of the left-stationary vector of the

stochastic matrix B[R] of order (a + η + 1)m× (a + η + 1)m. The B[R] matrix can be obtained by truncating
the TPM P at any of the server’s busy state. Let k∗ = {(k, j, 0), 0 ≤ k ≤ a − 1, 1 ≤ j ≤ m} be the idle state
of the server and n = {(n, j, 1), n ≥ 0, 1 ≤ j ≤ m} be the busy state of the server. Now if we truncate P at
server’s busy state η then the B[R] matrix can be given by

States 0∗ 1∗ · · · (a − 1)∗ 0 1 · · · a · · · b · · · a + b · · · η

0∗ 0 Im · · · 0 0 0 · · · 0 · · · 0 · · · 0 · · · 0
1∗ 0 0 · · · 0 0 0 · · · 0 · · · 0 · · · 0 · · · 0
2∗ 0 0 · · · 0 0 0 · · · 0 · · · 0 · · · 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
(a − 2)∗ 0 0 · · · Im 0 0 · · · 0 · · · 0 · · · 0 · · · 0
(a − 1)∗ S∗

1 0 · · · 0 S0 0 · · · 0 · · · 0 · · · 0 · · · 0

0 0 S∗
1 · · · 0 0 S0 · · · 0 · · · 0 · · · 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a − 1 S∗

2 0 · · · 0 S1 0 · · · S0 · · · 0 · · · 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
b − 1 S∗

2 0 · · · 0 S1 0 · · · 0 · · · S0 · · · 0 · · · 0

b 0 S∗
2 0 0 0 S1 · · · 0 · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
a + b − 1 S∗

3 0 · · · 0 S2 0 · · · S1 · · · 0 · · · S0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
2b − 1 S∗

3 0 · · · 0 S2 0 · · · 0 · · · S1 · · · 0 · · · 0

2b 0 S∗
3 · · · 0 0 S2 · · · 0 · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

η B
(η)
0 [R] B

(η)
1 [R] · · · B

(η)
a−1[R] B

(η)
a [R] B

(η)
a+1[R] · · · B

(η)
2a [R] · · · B

(η)
a+b

[R] · · · B
(η)
2a+b

[R] · · · B
(η)
η [R]

.

We can express η as bν + β, where ν (≥ 0) is a non-negative integer and 1 ≤ β ≤ b, then B(η)
ι [R]
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(ι = 0, 1, · · ·η) are given by

B(η)
0 [R] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∑

i=ν

b(i+1)−β∑
j=bi+a−β

RjS∗
i+2, 1 ≤ β ≤ a − 1,

b−β∑
j=0

RjS∗
ν+2 +

∞∑
i=ν+1

b(i+1)−β∑
j=bi+a−β

RjS∗
i+2, a ≤ β ≤ b,

(3.18)

B(η)
k [R] =

⎧⎪⎪⎨⎪⎪⎩
∞∑

i=0

Rb(i+1)+k−βS∗
i+ν+2, 1 ≤ k ≤ β − 1,

∞∑
i=0

Rbi+k−βS∗
i+ν+1, β ≤ k ≤ a − 1,

(3.19)

B(η)
a [R] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∑

i=ν

b(i+1)−β∑
j=bi+a−β

RjSi+1, 1 ≤ β ≤ a − 1,

b−β∑
j=0

RjSν+1 +
∞∑

i=ν+1

b(i+1)−β∑
j=bi+a−β

RjSi+1, a ≤ β ≤ b,

(3.20)

B(η)
a+k[R] =

⎧⎪⎪⎨⎪⎪⎩
∞∑

i=0

Rb(i+1)+k−βSi+ν+1, 1 ≤ k ≤ β − 1,

∞∑
i=0

Rbi+k−βSi+ν , k ≥ β.
(3.21)

It should be mentioned here that pre-arrival epoch probabilities calculated through the above procedure must

be normalized using the normalizing condition
a−1∑
n=0

π−
0 (n)e +

∞∑
n=0

π−
1 (n)e = 1.

3.1.1.2. Computational complexities of the roots method and the matrix-geometric method

The main difference between the two methods is described below. The roots method requires the extraction
of m roots (inside the unit circle |z| = 1) of the associated characteristic equation of the vector-generating
function followed by the determination of m2 unknowns by solving m2 simultaneous linear equations. On the
other hand MGM requires the derivation of the rate matrix R and then evaluation of the left-stationary vector
of the stochastic matrix B[R] of order Nm × Nm (N > a).

In the roots method, the main goal is to calculate m roots inside the unit circle of the associated characteristic
equation of the vector-generating function. That is, we require the zeros of the determinant of the matrix
[Imz − S(zb)] of order m × m inside the unit circle |z| = 1. It may be noted that if the entries of an m × m
matrix are constant then the complexity of computing the determinant by Laplace expansion is O(m!), whereas
LU decomposition has complexity O(m3). Without loss of generality we can assume that m is the rank of
the associated polynomial-matrix with polynomials entries of at most degree d. Mulders and Storjohann [36]
proposed an algorithm to evaluate the determinant of a polynomial-matrix with complexity O(m3d2). After
successful determination of the characteristic equation our next job is to extract m roots inside the unit circle
|z| = 1. It should be mentioned here that we can numerically locate roots of a polynomial using Newton’s
method. Root extraction using Newton’s method and multiplication of two numbers has equal complexity, see
Borwein and Borwein [7]. That is, if we want to calculate roots of the characteristic equation up to d1 digits
accuracy, then the computational complexity of per root extraction will be at most O(d2

1). The last part is
to evaluate m2 unknowns by solving m2 simultaneous linear equations. There are several methods to solve
simultaneous equations, e.g., Cramer’s rule, Gaussian elimination, LU decomposition etc. One of the most
efficient method to determine the m2 unknowns is LU decomposition with complexity O(m6).

Essentially matrix-geometric method is based on the determination of the rate matrix. Evaluation of the
rate matrix R follows an iterative procedure that is applied to equation (3.16). There are several methods to
compute R iteratively such as successive substitution (SS) method, see Neuts [39] and Newton’s iteration (NI)
method, see Neuts [37] and Ramaswami [42]. Let Λ be the smallest index n such that any element of Sn (n > Λ)
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is zero (numerically very small number). The SS algorithm converges linearly (that means it requires large
number of iterations) with complexity O(Λm3) per iteration, while the NI has complexity O(m6 + Λm4) per
iteration but converges faster (that is to say it requires few iterations to converge). Pérez et al. [41] used Schur-
decomposition method to the Newton’s iteration to reduce the per iteration complexity from O(m6 + Λm4)
to O(Λm4). The left-stationary vector of the stochastic matrix B[R] of order Nm × Nm (N > a) can be
computed by GTH (Grassmann, Taksar, Heyman) algorithm, see Grassmann et al. [27]. The GTH algorithm
has complexity O(m4N4), see Gelenbe and Lent [24].

3.2. Stationary distribution at arbitrary epoch

We now derive explicit expressions for the steady-state queue-length distribution πl(n) = [π1,l(n),
π2,l(n), . . . , πm,l(n)], n ≥ 0; l = 1 or 0 ≤ n ≤ a − 1; l = 0, at an arbitrary epoch using the classical argu-
ment based on renewal theory which relates the steady-state queue-length distribution at an arbitrary epoch
to that at the corresponding pre-arrival epoch. Using the results of Markov renewal theory and semi-Markov
processes, see, e.g., Çinlar [20] or Lucantoni and Neuts [32], we obtain

π0(0) = π−
0 (a − 1)Ω∗

1 +
∞∑

i=0

(i+1).b−1∑
j=i.b+a−1

π−
1 (j)Ω∗

i+2, (3.22)

π0(n) = π−
0 (n − 1) +

∞∑
i=0

π−
1 (i.b + n − 1)Ω∗

i+1, 1 ≤ n ≤ a − 1, (3.23)

π1(0) = π−
0 (a − 1)Ω0 +

∞∑
i=0

(i+1).b−1∑
j=i.b+a−1

π−
1 (j)Ωi+1, (3.24)

π1(n) =
∞∑

i=0

π−(i.b + n − 1)Ωi, n ≥ 1. (3.25)

Note that since the service process is interrupted during periods in which the system is empty or system has
less than or equal to a − 1 customers, it follows that

∞∑
n=0

π1(n) (L0 + L1) = 0, (3.26)

which in turn implies that
∞∑

n=0

π1(n) = Cπ, (3.27)

for some positive constant C, since π(L0 + L1) = 0. Thus, by post multiplying the members of the previous
equation by e, we conclude that

∞∑
n=0

π1(n)e = C. (3.28)

Therefore, using (3.28) in (3.27) we obtain

1
(
∑∞

n=0 π1(n)e)

∞∑
n=0

π1(n) = π, (3.29)

i.e.,
1
ρ′

∞∑
n=0

π1(n) = π, (3.30)

where ρ
′

=
∑∞

n=0 π1(n)e represents the probability that the server is busy. The above result (3.29) is useful
while performing numerical calculations.
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3.3. Queue-length distribution at post-departure epoch of a batch and its relation
with pre-service epoch

In this subsection, we derive the probabilities for the states of the system immediately after a service com-
pletion takes place. Let π+

l (n) = [π+
1,l(n), π+

2,l(n), . . . , π+
m,l(n)], n ≥ 0; l = 1 or 0 ≤ n ≤ a−1; l = 0, be the 1×m

vector whose ith component π+
i,l(n) represents the post-departure epoch probability that there are n customers

in the queue immediately after a service completion of a batch and the server is busy (l = 1) in phase i or the
server becomes idle (l = 0) in phase i. The post-departure epoch thus occurs immediately after the server has
either reduced the queue or become idle. Hence, using level-crossing arguments given in ([15], p. 299), we have

π+
0 (n) =

1
μ∗ρ′ π1(n)L1, 0 ≤ n ≤ a − 1, (3.31)

π+
1 (0) =

1
μ∗ρ′

b∑
n=a

π1(n)L1, (3.32)

π+
1 (n) =

1
μ∗ρ′ π1(n + b)L1, n ≥ 1. (3.33)

It may be noted that
∑∞

n=0 π1(n)L1e = μ∗ρ
′
, which represents the steady-state batch departure rate.

Let πs−
l (n) = [πs−

1,l (n), πs−
2,l (n), . . . , πs−

m,l(n)], n ≥ 0; l = 1 or 0 ≤ n ≤ a − 1; l = 0, be the 1 × m vector whose
ith component πs−

i,l (n) represents the pre-service epoch probability that there are n customers in the queue
immediately before a service of a batch takes place and the server is busy (l = 1) or idle (l = 0) in phase i. It
is apparent that πs−

i,0 (n) = 0 for any i (1 ≤ i ≤ m) and 0 ≤ n ≤ a − 1. The argument to find post-departure
epoch probabilities may be based on the distribution of the probabilities for the system at pre-service epoch of
a batch, the instant in time immediately before a real service of a batch starts. Using the above arguments, we
obtain the following results.

πs−
1 (n) = π+

0 (n), 0 ≤ n ≤ a − 1, (3.34)
b∑

n=a

πs−
1 (n) = π+

1 (0), (3.35)

πs−
1 (n + b) = π+

1 (n), n ≥ 1. (3.36)

4. Service batch size distribution

In case of general bulk service rule, we can determine the distribution of batch size in service. Let the batch or
group size in service at a given epoch be denoted by Gc

i , where c represents the epoch under consideration and
i (1 ≤ i ≤ m) is the phase of the service process. Further, let the probability that the server is busy with a group
of size j and the phase of the service process is i be denoted by gc

i (j) = P (Gc
i = j). It may be noted that gc

i (0)
is the probability that the server will be serving a group of size zero or a potential batch. Let gc(j) denote 1×m
vector whose ith component is gc

i (j). To be consistent gc(0) must be equal to
∑a−1

i=0 πc
0(i). This can be validated

for each of the epochs considered above. The other trivial result is that gc(a) =
∑∞

n=0 πc
1(n) if a = b. The other

cases for gc(j) need to be solved and they must obey
∑b

j=a gc(j) =
∑∞

n=0 πc
1(n). Let us further define P c

B and
P c

I as being the probability that the server is busy and idle, respectively, in the corresponding epoch “c”. Then,
we obtain from the above argument

∑b
j=a gc(j)e =

∑∞
n=0 πc

1(n)e = P c
B and gc(0)e =

∑a−1
i=0 πc

0(i)e = P c
I .

The approach adopted to solve for gc(j) (a ≤ j ≤ b) is to enumerate the mutually exclusive cases which can
result in a group of size j in service at the corresponding epoch and then weigh these by the probability of their
occurrence. Once this distribution has been found, the mean group size in service at a given epoch, M c

1 , and
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the second moment of the group size in service, M c
2 , can be calculated using

M c
1 =

b∑
j=a

jgc(j)e, M c
2 =

b∑
j=a

j2gc(j)e. (4.1)

4.1. Service batch size distribution at pre-arrival epoch

The pre-arrival epoch results must be found before the arbitrary epoch results as they occur as part of the
latter. Considering, in steady state, all possible mutually exclusive events which can occur between the “current”
pre-arrival epoch and the subsequent which can result in a batch of size j being in service at the subsequent
pre-arrival epoch, it is found that

g−(a) = π−
0 (a − 1)S0 +

∞∑
n=0

π−
1 (n.b + a − 1)Sn+1 + g−(a)S0, a �= b, (4.2)

g−(j) =
∞∑

n=0

π−
1 (n.b + j − 1)Sn+1 + g−(j)S0, a < j < b, (4.3)

g−(b) =
∞∑

n=1

b−1∑
i=0

π−
1 (n.b + i − 1)

⎛⎝ n∑
j=1

Sj

⎞⎠ + g−(b)S0, b �= a. (4.4)

It may be noted here that
∑b

j=a g−(j)e =
∑∞

n=0 π−
1 (n)e = P−

B and g−(0)e =
∑a−1

i=0 π−
0 (i)e = P−

I .

4.2. Service batch size distribution at arbitrary epoch

To derive the distribution of the batch size in service at a random epoch, the same argument which was
used to obtain the arbitrary epoch probabilities from pre-arrival epoch probabilities is applied here. That is,
to find the probabilities for the group size in service at the end of an elapsed inter-arrival time since the last
arrival, it is sufficient to change the time frame being considered by using the probabilities appropriate to the
elapsed inter-arrival time, rather than the inter-arrival time period. The expressions of these probabilities are
given below.

g(a) = π−
0 (a − 1)Ω0 +

∞∑
n=0

π−
1 (n.b + a − 1)Ωn+1 + g−(a)Ω0, a �= b, (4.5)

g(j) =
∞∑

n=0

π−
1 (n.b + j − 1)Ωn+1 + g−(j)Ω0, a < j < b, (4.6)

g(b) =
∞∑

n=1

b−1∑
i=0

π−
1 (n.b + i − 1)

⎛⎝ n∑
j=1

Ωj

⎞⎠ + g−(b)Ω0, b �= a. (4.7)

One may note here that the mean group size in service at a random epoch, M1 =
∑b

j=a jg(j)e, should be
equal to λ/μ∗. This serves as a good check while performing numerical computations. Also one may note here
that

∑b
j=a g(j)e =

∑∞
n=0 π1(n)e = PB = ρ

′
and g(0)e =

∑a−1
j=0 π0(j)e = PI = 1 − ρ

′
.

4.3. Service batch size distribution at post-departure epoch

The derivation of the probability distribution for the group size in service following a departure, g+(j), is
straightforward compared to either the pre-arrival epoch or the random epoch case. In fact, it is evident that
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the following relationships between this distribution and the pre-service epoch probabilities (πs−
1 (j)) must hold

g+(0) =
a−1∑
n=0

πs−
1 (n), (4.8)

g+(j) = πs−
1 (j), a ≤ j < b, (4.9)

g+(b) =
∞∑

n=b

πs−
1 (n), b ≥ a. (4.10)

4.4. Another conditional distribution and conservation of rate considerations

As the setting of the quorum is a management decision to promote the efficiency of the queueing system
under consideration, one may be interested in the distribution of the numbers in the batch in service. It is
apparent that the probability that an individual joining the queue is the rth (1 ≤ r ≤ b) member of his batch
(p−(r)), is identical to the probability of arrival finding (h.b + r − 1), h ≥ 0, customers in queue. Thus, using
vector notations as above we obtain this distribution as

p−(r) =

{
π−

0 (r − 1) +
∑∞

n=0 π−
1 (n.b + r − 1), 1 ≤ r ≤ a,∑∞

n=0 π−
1 (n.b + r − 1), a ≤ r ≤ b.

(4.11)

The rate conservation principle states that in stationary or steady-state the frequency of entry into a service
channel equals the frequency of departure from this channel. This result must hold true for rth customer of
a batch as derived above. The stationary departure rate for the rth customer is given by

∑b
j=(a,r)+ g(j)L1e

and stationary arrival rate of rth customer equals λp−(r)e, where (a, r)+ denotes the maximum of a or r. The
above argument implies

b∑
j=(a,r)+

g(j)L1e = λp−(r)e. (4.12)

5. Performance measures

As state probabilities at various epochs are known, performance measures can be easily obtained. The average
number of customers in queue at an arbitrary epoch is given by

Lq =
a−1∑
i=1

iπ0(i)e +
∞∑

n=1

nπ1(n)e. (5.1)

The second moment of queue length, Mq, which is required if the variance of queue-length is to be calculated,
is expressed similarly as

Mq =
a−1∑
i=1

i2π0(i)e +
∞∑

n=1

n2π1(n)e. (5.2)

Since it is difficult to directly find the system-length distribution that includes the size of a batch in service at a
given epoch, it is derived later (see below) using the queue-length distributions. However, one can immediately
obtain average system-length at an arbitrary epoch as follows. Let yl(n) = [y1,l(n), y2,l(n), . . . , ym,l(n)], n ≥
a; l = 1 or 0 ≤ n ≤ a− 1; l = 0, be the 1×m vector whose ith component yi,l(n) represents the arbitrary epoch
probability that there are n customers in the system (including the size of a batch in service) and the Markov
service process is in phase i with server busy (l = 1) or idle (l = 0). Then, the vector generating function
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of yl(n) may be defined by y(z) =
∑a−1

n=0 y0(n)zn +
∑∞

n=a y1(n)zn. The expected value of the system-length
distribution Ls may be obtained by

Ls =
d
dz

y(z) |z=1 e =
m∑

i=1

d
dz

yi(z) |z=1= Lq + M1, (5.3)

where M1 is obtained from (4.5)–(4.7), see the line below (4.7). Using the Little’s law, we can also get mean
waiting time of a customer in the queue Wq as Wq = Lq

λ . The expected virtual sojourn time or the waiting time
in the system will be given by Ws = Wq + 1

μ∗ . One may also use the Little’s law to obtain Ws which is given
by Ws = Ls

λ . In the following we present a procedure to derive system-length distribution in a slightly different
way than above.

5.1. System-length distributions at various epochs

We need to derive system-length distribution when the server is busy as queue-length and system-length
distributions become the same when the server is idle. Let Γ c

i,j,s denote the probability that the server is busy
with a group of size j (a ≤ j ≤ b) and the phase of the service process is s (1 ≤ s ≤ m) with i (i ≥ 0) customers
waiting in the queue at any given epoch “c”. Also, let Γc

i,j denote the corresponding row vector whose sth
component is Γ c

i,j,s. Now, at any given epoch, the following relationships hold.

b∑
j=a

Γc
i,j = πc

1(i), i ≥ 0, (5.4)

∞∑
i=0

Γc
i,j = gc(j), a ≤ j ≤ b. (5.5)

After this, inspecting the number of customers in system at two consecutive pre-arrival epochs, we have the
following relationships:

Γ−
0,a = π−

0 (a − 1)S0 +
∞∑

i=0

b∑
j=a

Γ−
i.b+a−1,jSi+1

= π−
0 (a − 1)S0 +

∞∑
i=0

π−
1 (i.b + a − 1)Si+1, (5.6)

Γ−
0,j =

∞∑
i=0

π−
1 (i.b + j − 1)Si+1, a + 1 ≤ j ≤ b, (5.7)

Γ−
i,j = Γ−

i−1,jS0, a ≤ j ≤ b − 1, i ≥ 1, (5.8)

Γ−
n,b = Γ−

n−1,bS0 +
∞∑

i=1

π−
1 (i.b + n − 1)Si, n ≥ 1. (5.9)
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Similarly, we can derive system-length distribution at an arbitrary epoch along the lines proposed in Section 3.2,
and we have the following relationships:

Γ0,a = π−
0 (a − 1)Ω0 +

∞∑
i=0

b∑
j=a

Γ−
i.b+a−1,jΩi+1

= π−
0 (a − 1)Ω0 +

∞∑
i=0

π−
1 (i.b + a − 1)Ωi+1, (5.10)

Γ0,j =
∞∑

i=0

π−
1 (i.b + j − 1)Ωi+1, a + 1 ≤ j ≤ b, (5.11)

Γi,j = Γ−
i−1,jΩ0, a ≤ j ≤ b − 1, i ≥ 1, (5.12)

Γn,b = Γ−
n−1,bΩ0 +

∞∑
i=1

π−
1 (i.b + n − 1)Ωi, n ≥ 1. (5.13)

One may verify that equations (5.4) and (5.5) are satisfied. This can be checked by using the above equa-
tions (5.6)–(5.13) along with the previous equations (3.3)–(3.4), (3.24)–(3.25) and (4.2)–(4.7).

5.2. Expected length of busy and idle periods

Since for this system, in the limiting case, the fractions of time the server is busy and idle are ρ
′
and 1 − ρ

′
,

respectively, we have
E(B)
E(I)

=
ρ

′

1 − ρ′ , (5.14)

where B and I are random variables denoting the lengths of busy and idle periods, respectively. We first
discuss the mean busy period E(B), which is comparatively easy to evaluate. Let at time t, Nq(t) denote the
number of customers in queue (excluding the size of a batch in service in the case of busy server) and ξq(t)
be the state of the server, i.e., busy (= 1) or idle (= 0). The state {Nq(t), ξq(t)} enters the set of idle states,
Υ ≡ {(0, 0), (1, 0), (2, 0), . . . , (a − 1, 0)} at the termination of a busy period. Let us denote the busy states
by Δ ≡ {(0, 1), (1, 1), (2, 1), . . .}. The conditional probability that {Nq(t), ξq(t)} enters state (i, 0) given that
{Nq(t), ξq(t)} enters Υ , is therefore Dπ+

0 (i)e, 0 ≤ i ≤ a − 1. Then one can evaluate D = 1∑a−1
i=0 π+

0 (i)e
· Now

{Nq(t), ξq(t)} enters busy states or idle states irrespective of customers’ arrival during a service time of a batch,
which may happen in expected time E(S), where E(S) = 1/μ∗. Thus

E(B) =

(∑∞
i=0 π+

1 (i)e +
∑a−1

j=0 π+
0 (j)e

)
.E(S)∑a−1

i=0 π+
0 (i)e

=
E(S)∑a−1

i=0 π+
0 (i)e

· (5.15)

Substituting E(B) from equation (5.15) in equation (5.14), we obtain

E(I) =
1 − ρ

′

ρ′ .
E(S)∑a−1

i=0 π+
0 (i)e

· (5.16)

6. Approximation for queue-length distributions based on one root

One can get several approximate results such as the tail probabilities of the queue-length distribution at
pre-arrival epoch, heavy- or light-traffic behaviours of the queue-length distributions based on the real root of
det[Im −zS(z−b)] = 0 which is closest to 1 and outside |z| ≤ 1. The existence of such a root has been discovered
since long time in the literature, e.g., Feller ([22], pp. 276–277) calculated the tail probabilities using a single root
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of the denominator which is the smallest root in absolute value. Also Chaudhry et al. [16] have given a formal
proof of the existence of such a root. One may note that it is not difficult to calculate this root numerically. In
this context it is worth to mention that sometimes an approximate value of this root may be used to get desired
queue-length distribution and this approximate value may be obtained in the following way. We investigate the
approximate root inside |z| ≤ 1 by expanding the matrix of the left-hand side of the characteristic equation
det[Imz − S(zb)] = 0 in powers of ρ as

Imz − S(zb) = Imz − S(ρ + zb − ρ)

= Imz − S(zb − ρ) − ρS
′
(zb − ρ) − ρ2

2!
S

′′
(zb − ρ) + o(ρ2)H, (6.1)

where H is some unknown matrix and S
′
(.), S

′′
(.) are the successive differentiation of S(.) of order one and

two, respectively. Also one may note that in equation (6.1), as usual, o(x) represents a function of x with the
property that o(x)

x → 0 as x → 0. Multiplying the right-hand side of the above equation (6.1) by the vector π
from left and the vector e from right, we may write the characteristic equation as follows

z − πS(zb − ρ)e − ρπS
′
(zb − ρ)e − ρ2

2!
πS

′′
(zb − ρ)e + o(ρ2)c = 0. (6.2)

where c = πHe and is a finite constant. Now an approximate value of the root for the above described three
cases is obtained as follows.

• Light-traffic case: Applying ρ ↓ 0 in equation (6.2) gives

z − πS(zb − ρ)e− ρπS
′
(zb − ρ)e− ρ2

2!
πS

′′
(zb − ρ)e = 0, (6.3)

which gives an approximate value of this one root.
• Heavy-traffic case: Replacing ρ by (1 − ρ) in equation (6.2) and applying the condition ρ ↑ 1, we obtain

z − πS(zb − 1 + ρ)e− (1 − ρ)πS
′
(zb − 1 + ρ)e − (1 − ρ)2

2!
πS

′′
(zb − 1 + ρ)e = 0. (6.4)

Solving (6.4) we get the desired value.
• Tail probabilities at a pre-arrival epoch: If ρ1 denotes any arbitrary offered load numerically very close to ρ

then we replace ρ by (ρ − ρ1) in equation (6.2) and applying the condition ρ → ρ1 to get

z − πS(zb − ρ + ρ1)e − (ρ − ρ1)πS
′
(zb − ρ + ρ1)e − (ρ − ρ1)2

2!
πS

′′
(zb − ρ + ρ1)e = 0. (6.5)

Hence, we can obtain the desired root, say z1, by solving equation (6.5) for z.

Finally, it may be noted that once we obtain an approximate value of a root, we can obtain the exact root
through various numerical methods. The equation det[Imz − S(zb)] = 0 may be used to find the original root
which is closest to 1 in all the above described cases. For the sake of completeness we present below the procedure
to calculate tail probabilities at pre-arrival epoch based on this one root. To get the tail probabilities, assume

π−
j,1(n) 
 k1,jz

n
1 = pa1

j,1(n), n > nε, 1 ≤ j ≤ m, (6.6)

where nε is chosen as the smallest integer such that |(π−
j,1(n)− pa1

j,1(n))/π−
j,1(n)| < ε, i.e., |1− pa1

j,1(n)

π−
j,1(n)

| < ε, ε > 0.

But, since the probability pa1
j,1(n) follows a geometric distribution with common ratio z1, it is better to choose

nε such that | π−
j,1(n)

z1π−
j,1(n−1)

− 1| < ε. The approximation gets better if more than one root, in ascending order
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of magnitude, is used. It should however be mentioned that those roots that occur in complex-conjugate pairs
should be used in pairs. Thus, the tail probabilities using three roots can be approximated by

π−
j,1(n) 


3∑
i=1

ki,jz
n
i = pa3

j,1(n), n > n1
ε , 1 ≤ j ≤ m, (6.7)

where zi (i = 1, 2, 3) are the roots in ascending order of magnitude and n1
ε may be chosen by |1 − pa3

j,1(n)

π−
j,1(n)

| <

ε, n > n1
ε . Similar procedure may be adopted to calculate queue-length distributions for the cases of light and

heavy traffics.

Remark 6.1. It may be remarked that this root can also be obtained accurately by simply using high precision
of the software packages mentioned earlier.

7. Numerical results and discussion

To demonstrate the applicability of the results obtained in the previous sections, some numerical results have
been presented in two self explanatory tables. At the bottom of the tables, several performance measures are
given. Since various distributions can be either represented or approximated by PH-distribution, we take inter-
arrival time distribution to be of PH-type having the representation (α,T), where α and T are of dimension
ν. Then S(z) can be derived as follows using the procedure adopted in Chaudhry et al. [18].

S(z) = (Im ⊗ α)(L(z) ⊕ T)−1(Im ⊗ Teν)

with L(z)⊕T = (L(z)⊗ Iν) + (Im ⊗T), where ⊕ and ⊗ are used for Kronecker product and sum, respectively.
For the derivation of S(z), see Chaudhry et al. [18]. Knowing that each element of L(z) is a polynomial in z,
each element of L(z) ⊕ T is also a polynomial in z and hence the determinant of (L(z) ⊕ T)−1 is a rational
function in z. Thus, from the above expression for S(z), we can immediately say that each element of S(z) is a
rational function in z with the same denominator.

We have carried out extensive numerical work based on the procedure discussed in this paper by considering
different service matrices C-MSP (L0,L1) and phase-type inter-arrival time distribution PH(α,T). Further, we
tested our procedure for different values of L0 and L1 with reasonable positive lag-1 correlation coefficient, i.e.,
correlation coefficient between two consecutive service times of batches. Several outputs were generated and the
results were matched against some existing results, e.g., we matched our results with Gagandeep et al. [23] in the
special case of PH/PH(a,b)/1/∞ queue. In all the cases matching was found almost perfect. The calculations
were performed on a PC having Intel(R) Core 2 Duo processor @3.00 GHz with 8 GB DDR2 RAM using MAPLE
18 until unless specified further. Besides these all the numerical results were carried out in high precision, they
are reported here in 6 decimal places due to lack of space.

In Tables 1 and 2, we have presented various epoch probabilities for a PH/C-MSP (4,10)/1/∞ queue using our
method described in this paper. Inter-arrival time is PH-type and its representation is given by α =

[
0.7 0.3

]
,

T =
[−3.23 0.60

1.7 −7.36

]
with λ = 3.2268898. We choose service batch sizes a = 4, b = 10 and the C-MSP matrices

as L0 =
[−2.119 0.761

1.985 −4.541

]
, L1 =

[
1.119 0.239
2.015 0.541

]
with stationary mean service rate μ∗ = 1.5976 and π =

[
0.8 0.2

]
so that ρ = λ/(b.μ∗) = 0.201983. To calculate queue-length distribution we need to calculate the roots of

det[Imz − S(zb)] = 0, (7.1)

where m = 2 and b = 10 are given above. Here S(z) may be obtained by equation (B.3), see Appendix B.
The m = 2 roots of (7.1) inside |z| < 1 are evaluated. The corresponding kij (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) values
are calculated using the procedure described in Section 3.1, see Appendix C. Now using equations (3.9), (3.12)
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Table 1. Queue-length distributions at pre-arrival and arbitrary epoch.

Pre-arrival π−
j,0(n) Arbitrary πj,0(n)

n j = 1 j = 2
∑2

j=1 j = 1 j = 2
∑2

j=1

0 0.059886 0.013790 0.073677 0.062294 0.014345 0.076639
1 0.100224 0.023091 0.123315 0.101686 0.023429 0.125115
2 0.127573 0.029403 0.156976 0.128563 0.029632 0.158195
3 0.146095 0.033679 0.179775 0.146766 0.033834 0.180600

Pre-arrival π−
j,1(n) Arbitrary πj,1(n)

n j = 1 j = 2
∑2

j=1 j = 1 j = 2
∑2

j=1

0 0.121325 0.029379 0.150704 0.120208 0.029149 0.149357
1 0.081719 0.020346 0.102065 0.080293 0.020008 0.100301
2 0.055131 0.013949 0.069080 0.054172 0.013713 0.067885
3 0.037229 0.009509 0.046738 0.036582 0.009347 0.045929
4 0.025154 0.006461 0.031615 0.024718 0.006350 0.031068
5 0.017002 0.004381 0.021383 0.016707 0.004305 0.021012
...

...
...

...
...

...
...

10 0.002402 0.000622 0.003024 0.002360 0.000611 0.002971
...

...
...

...
...

...
...

20 0.000048 0.000012 0.000060 0.000047 0.000012 0.000059
...

...
...

...
...

...
...

100 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
...

...
...

...
...

...
...

sum 0.806834 0.193165 1.00000 0.806870 0.193130 1.000000
Lq =1.941546, Wq (Little’s law) =0.601677

Table 2. Batch-size distributions at pre-arrival and arbitrary epoch.

Pre-arrival g−
j (n) Arbitrary gj(n)

n j = 1 j = 2
∑2

j=1 j = 1 j = 2
∑2

j=1

4 0.320762 0.080123 0.400885 0.315437 0.078853 0.394290
5 0.016925 0.004232 0.021157 0.016869 0.004219 0.021088
6 0.011448 0.002863 0.014311 0.011411 0.002854 0.014265
7 0.007743 0.001936 0.009679 0.007718 0.001930 0.009648
8 0.005236 0.001310 0.006546 0.005220 0.001305 0.006525
9 0.003541 0.000886 0.004427 0.003529 0.000883 0.004412
10 0.007397 0.001850 0.009247 0.007373 0.001844 0.009217

sum 0.373055 0.093201 0.466256 0.367558 0.091889 0.459448

Ls =3.961371,
b∑

n=a

g(n)L1e =0.734014 Ws = 1.227613

and (3.13), one can obtain system-length distribution at pre-arrival epoch and after that using relations (3.22)–
(3.25) the arbitrary epoch probabilities may be derived (see Tab. 1). Also, in Table 2, we present service batch
size distribution as presented in Section 4 of the paper, see equations (4.2)–(4.7). One may note the required
matrices Sn (n ≥ 0) may be calculated using Theorem B.1 in Appendix B.

It may be noted that in the above numerical experiment we find the probability that a customer joins as a
first member in a servicing batch as p−(1) =

[
0.183664 0.043803

]
, see equation (4.11). Therefore, the stationary

arrival rate of this first customer is λ.p−(1)e = 0.734014 which matches with the stationary departure rate of
this first customer as shown in the bottom of the above table. Also we have calculated system-length distribution
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Table 3. Queue-length distributions at pre-arrival and arbitrary epoch.

π−
j,0(n) πj,0(n)

n j = 1 j = 2 j = 3
∑3

j=1 j = 1 j = 2 j = 3
∑3

j=1

0 0.116146 0.000293 0.072953 0.189391 0.116276 0.000293 0.073119 0.189688
1 0.137953 0.000390 0.107475 .245818 0.137974 0.000390 0.107553 0.245917
2 0.142465 0.000454 0.123866 .266785 0.142470 0.000455 0.123903 .266828

π−
j,1(n) πj,1(n)

n j = 1 j = 2 j = 3
∑3

j=1 j = 1 j = 2 j = 3
∑3

j=1

0 0.068337 0.001214 0.024440 0.093991 0.068169 0.001216 0.024350 0.093735
1 0.032397 0.001460 0.004412 0.038269 0.032317 0.001461 0.004394 0.038172
2 0.015391 0.001562 0.000834 0.017787 0.015353 0.001562 0.000831 0.017746
3 0.007344 0.001598 0.000183 0.009125 0.007326 0.001598 0.000183 0.009107
4 0.003535 0.001603 0.000060 0.005199 0.003527 0.001603 0.000060 0.005190
5 0.001733 0.001594 0.000035 0.003362 0.001729 0.001594 0.000035 0.003358
...

...
...

...
...

...
...

...
...

10 0.000146 0.001501 0.000024 0.001671 0.000146 0.001501 0.000024 0.001670
...

...
...

...
...

...
...

...
...

20 0.000094 0.001312 0.000021 0.001427 0.000094 0.001312 0.000021 0.001427
...

...
...

...
...

...
...

...
...

100 0.000032 0.000447 0.000007 0.000486 0.000032 0.000447 0.000007 0.000486
...

...
...

...
...

...
...

...
...

sum 0.535248 0.128627 0.336124 0.999999 0.535083 0.128623 0.336293 0.999999
Lq = 11.204321, Wq= 23.070422

as discussed in Section 5 (see Eqs. (5.6)–(5.13)) of performance measures and checked the validity of some of
equations (5.4) and (5.5). We found that numerical matchings are almost perfect.

In Tables 3 and 4, we have presented various epoch probabilities for a HE2/C-MSP (3,6)/1/∞ queue using
our method described in this paper. Inter-arrival time is 2-phase hyper-exponential distribution and its PH-type

representation is given by α =
[
0.4 0.6

]
, T =

[−0.53 0.0
0.0 −0.46

]
with λ = 0.485657. We choose service batch sizes

a = 3, b = 6 and the C-MSP matrices as

L0 =

⎡⎢⎣−0.542409519 0.0037279 0.0

0.004349217 −0.02298872 0.000621317

0.0 0.001242633 −2.269670072

⎤⎥⎦ , L1 =

⎡⎢⎣0.020503453 0.0 0.518178166

0.0 0.017396869 0.000621317

2.259107688 0.004970534 0.004349217

⎤⎥⎦
with stationary mean service rate μ∗ = 0.5000000 and π =

[
0.464978 0.428426 0.106596

]
so that ρ = λ/(b.μ∗) =

0.161886. Similar procedure as described in Tables 1 and 2, we calculate the roots of

det[Imz − S(zb)] = 0, (7.2)

where m = 3 and b = 6 are given above. The roots as well as corresponding kij (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) values
are calculated similar to Tables 1 and 2, see Appendix C. In Tables 3 and 4, system-length distributions and
service batch size distributions are presented similar to Tables 1 and 2.

One may note that for Tables 3 and 4, almost all numerical matchings as discussed in Tables 1 and 2 are
almost perfect. As above one can check that λ.p−(1)e = 0.148780 which checks the validity of our numerical as
well as analytical results, see equation (4.12).
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Table 4. Batch-size distributions at pre-arrival and arbitrary epoch.

g−
j (n) gj(n)

n j = 1 j = 2 j = 3
∑3

j=1 j = 1 j = 2 j = 3
∑3

j=1

3 0.129187 0.033276 0.028295 0.190758 0.128866 0.033272 0.028187 0.190325
4 0.000397 0.001334 0.000808 0.002538 0.000396 0.001334 0.000806 0.002536
5 0.000221 0.001271 0.000396 0.001888 0.000220 0.001271 0.000396 0.001887
6 0.008876 0.091575 0.002331 0.102782 0.008875 0.091575 0.002330 0.102780

Ls = 12.411557,
b∑

n=a

g(n)L1e =0.148764 Ws = 25.070422

Table 5. Queue-length distributions at pre-arrival and arbitrary epoch.

Pre-arrival π−
j,0(n) Arbitrary πj,0(n)

n j = 1 j = 2
∑2

j=1 j = 1 j = 2
∑2

j=1

0 0.042760 0.078846 0.121606 0.035165 0.064477 0.099642
1 0.069069 0.129879 0.198948 0.064777 0.121476 0.186253
2 0.084400 0.160067 .244467 0.081904 0.155139 0.237043

Pre-arrival π−
j,1(n) Arbitrary πj,1(n)

n j = 1 j = 2
∑2

j=1 j = 1 j = 2
∑2

j=1

0 0.075262 0.106575 0.181837 0.078892 0.115312 0.194204
1 0.046286 0.059947 0.106233 0.051368 0.067277 0.118645
2 0.027286 0.034435 0.061721 0.030440 0.038541 0.068981
3 0.015895 0.019907 0.035802 0.017759 0.022262 0.040021
4 0.009227 0.011530 0.020757 0.010313 0.012891 0.023204
5 0.005351 0.006682 0.012033 0.005982 0.007470 0.013452
...

...
...

...
...

...
...

10 0.000350 0.000437 0.000787 0.000391 0.000489 0.000880
...

...
...

...
...

...
...

20 0.000001 0.000002 0.000003 0.000002 0.000002 0.000004
...

...
...

...
...

...
...

100 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
...

...
...

...
...

...
...

sum 0.382916 0.617083 0.999999 0.384850 0.615149 0.999999
Lq =1.333983, Wq (Little’s law) =2.094461

In Tables 5 and 6, we have presented various-epoch probabilities of a WB/C-MSP (3,7)/1/∞ queue, where
WB stands for Weibull distribution whose probability density and distribution functions are given by a(x) =(

α
β

)(
x
β

)(α−1)e−(x/β)α

, α = 1.3, β = 1.7, x > 0, and A(x) = 1 − e−0.501668x1.3
, x > 0, with λ = 0.636910,

respectively. We choose service batch sizes a = 3 and b = 7, and the service matrices as

L0 =

[−1.5125 0.750

0.875 −1.025

]
, L1 =

[
0.1625 0.600

0.125 0.025

]

with stationary mean service rate μ∗ = 0.410638 and π =
[
0.425532 0.574468

]
so that ρ = λ/(b.μ∗) = 0.221575.

To calculate system-length distribution we need to calculate the roots of

det[Imz − S(zb)] = 0, (7.3)
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Table 6. Batch-size distributions at pre-arrival and arbitrary epoch.

Pre-arrival g−
j (n) Arbitrary gj(n)

n j = 1 j = 2
∑2

j=1 j = 1 j = 2
∑2

j=1

3 0.162979 0.216193 0.379172 0.178874 0.241283 0.420157
4 0.009963 0.013488 0.023451 0.010140 0.013771 0.023911
5 0.005777 0.007822 0.013599 0.005880 0.007986 0.0138664
6 0.003349 0.004534 0.007883 0.003409 0.004630 0.008039
7 0.004619 0.006253 0.010872 0.004701 0.006385 0.011086

sum 0.186688 0.248291 0.434979 0.203005 0.274056 0.477061

Ls =2.885271,
b∑

n=a

g(n)L1e =0.195899 Ws = 4.529694

where m = 2 and b = 7. Here S(z) may be obtained by equation (2.6) as S(z) = A∗(−L(z)) and it is not
possible to compute the matrix S(z) as the LST of Weibull distribution is in non-rational form. Therefore, we
calculate 20 moments from a(x) to construct an approximate A∗(θ) through the Padé approximation [4/5] as:

A∗(θ) 
 1.0 + 1.418658θ + 0.747474θ2 + 0.138424θ3 + 0.461604θ4

1.0 + 2.988738θ + 3.465767θ2 + 1.894261θ3 + 0.454315θ4 + 0.287537θ5
, (7.4)

where [4/5] stands for a rational function with degree of numerator polynomial 4 and degree of denominator
polynomial 5. Taking these S(z) (using Eq. (7.4)) into account, we obtain m = 2 roots of (7.3) inside |z| < 1,
see Appendix C. The corresponding kij (1 ≤ i ≤ 9, 1 ≤ j ≤ 3) values are calculated similarly as above. Now
using the procedure discussed in Tables 1 and 2, we obtain system-length distribution at pre-arrival epoch and
the arbitrary epoch, see Tables 3 and 4. One may note the required matrices Sn (n ≥ 0) may be calculated
using the procedure discussed in an appendix, see the first few lines of Appendix B.

Almost all numerical matchings are found almost perfect as discussed for above tables. Here λ.p−(1)e =
0.195899 which also checks the validity of our numerical as well as analytical results.

Rest of this section presents numerical results corresponding to the comparison of roots method and the MGM
as described in Section 3.1.1. The numerical values and tables presented so far were based on results obtained
by the roots method. Further, in Section 3.1.1 we have given complexities of the steps involved in both the roots
method and the MGM. In Tables 7 and 8, some numerical data have been provided to compare the computational
aspects of these methods. Before giving the numerical results it should be mentioned that theoretically both
methods give the exact result, but in practice results obtained by one method slightly differ from the other.
The variation of results due to the dependency of accuracy on several factors. Rest of the numerical results
presented in this section were generated by MAPLE 18 software in a 64-bit windows 7 professional OS having
Intel(R) core i5-0330 processor @ 3.00 GHz with 4GB DDR3 RAM. Also, the rest of the numerical calculations
were done by 15 decimal digit numbers.

The critical step of the roots method is determination of roots of the associated characteristic equation,
whereas the MGM includes the determination of R. We have used “fsolve” command in MAPLE 17 to effi-
ciently evaluate the roots of a polynomial. Determination of R is an iterative procedure. We have used the
matrix-geometric method via successive substitution (MGM-SS) method and the matrix-geometric method via
Newton’s iteration (MGM-NI) method proposed by Neuts [37, 39], respectively to evaluate the R matrix. The
iteration scheme for MGM-SS method can be given by

R(n + 1) =
∞∑

r=0

R(n)brSr, (7.5)
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Table 7. Iteration count, time (in seconds) to get π−
0 by using roots, MGM-SS and MGM-NI.

ρ = 0.161885779144375

Time (roots) = 41.636, π−
0 (roots) = 0.701994982046078

ε Iterations Iterations Time Time π−
0 π−

0

(MGM-SS) (MGM-NI) (MGM-SS) (MGM-NI) (MGM-SS) (MGM-NI)

10−3 12 5 15.771 177.887 0.695488528079496 0.702149662941305
10−4 23 5 16.520 177.029 0.701385965895218 0.702149662941307
10−5 34 5 18.610 177.154 0.701931974338031 0.702149662941309
10−6 45 5 18.782 177.544 0.701988505020825 0.702149662941307
10−7 57 10 20.155 363.092 0.701994552031505 0.701995296934400
10−8 68 10 22.089 351.610 0.701995057393527 0.701995296934399
10−9 79 10 22.978 360.533 0.701995110371120 0.701995296934402
10−10 90 14 23.462 490.623 0.701995115924871 0.701995116758121
10−11 101 14 24.772 491.153 0.701995116507084 0.701995116758122
10−12 113 14 26.036 493.041 0.701995116569443 0.701995116758124
10−13 124 14 26.800 490.186 0.701995116574655 0.701995116758123
10−14 135 18 28.048 640.945 0.701995116575201 0.701995116575311
10−15 146 18 29.031 642.240 0.701995116575258 0.701995116575312
10−16 157 22 30.388 772.875 0.701995116575265 0.701995116575266
10−17 164 22 31.075 765.200 0.701995116575266 0.701995116575266
10−18 168 22 31.527 751.425 0.701995116575266 0.701995116575266

Table 8. Time (in seconds) taken by the roots method and the MGM-SS method to get π−
0

for different ρ.

ρ Time (roots) Time (MGM)
0.10 26.722 25.084
0.15 30.747 29.936
0.20 28.672 35.349
0.25 27.970 42.447
0.30 27.643 48.251
0.35 27.752 54.537
0.40 29.234 62.712
0.45 27.081 69.295
0.50 28.111 77.563
0.55 30.076 91.276
0.60 29.094 105.004
0.65 26.582 120.822
0.70 27.892 144.784
0.75 29.577 170.930
0.80 26.457 204.220
0.85 29.062 272.143

where R(n) is the computed value of R after nth iteration, starting with R(n) = 0. Proceeding in a similar
fashion discussed by Neuts [37], one can have the iteration scheme for MGM-NI method as

r(n + 1) = r(n) + F [R(n)]

{
I −

∞∑
r=1

br−1∑
ν=0

[R(n)br−1−ν ⊗ R(n)ν
T ](I ⊗ Sr)

}−1

, (7.6)

where r(n) is the row vector obtained from R(n) by taking the direct sum of the rows of R(n), F is an operator
defined by F [R(n)] =

∑∞
r=0 R(n)brSr − R(n) and XT is the transpose of the matrix X. Convergence of the
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Figure 1. Iteration count versus x.

iteration depends on the desired accuracy and different model parameters, such as ρ and Λ. We can terminate
the iterations for SS and NI methods when

max
i,j

|R(n + 1)(i, j) − R(n)(i, j)| < ε and max
j

|r(n + 1)(j) − r(n)(j)| < ε,

respectively, where ε(> 0) is the desired accuracy, X(i, j) is the (i, j)th element of the matrix X and x(j) is the
jth element of the row vector x. Let π−

0 be the probability of having an idle server at pre-arrival epoch, i.e.,

π−
0 =

a−1∑
n=0

π−
0 (n)e. In order to compare the two methods we have calculated π−

0 for the HE2/C-MSP (3,6)/1/∞
queue by roots method and the MGM. The parameters of the HE2 and the C-MSP are given while describing
Tables 3 and 4. Repeated Results have been generated by the MGM-SS and MGM-NI methods for different
accuracy level of the matrix R and have been presented in Table 7. In Figure 1, we have plotted the number
of iterations required to determine the R matrix in both MGM-SS and MGM-NI methods against x, where the
assigned accuracy is ε = 10−x, x = 3, 4, . . . , 18. We can see from Figure 1 and Table 7 that with increasing
accuracy, the iteration count for the MGM-SS method increases almost linearly and the value of π−

0 approaches
to a constant, while in case of the MGM-NI method the iteration count is much lesser than the MGM-SS
method. Although the iteration count for the MGM-NI method is less than MGM-SS method, we experienced
that the MGM-NI method took much more time than the other method and Table 7 reflects this fact. Pérez
et al. [41] proposed a new NI method to reduce the time per iteration to compute R. It should be mentioned
here that for constructing the B[R] matrix we have considered η = a + 1.

We also evaluate π−
0 for the HE2/C-MSP (3,6)/1/∞ queue with different ρ by changing the the diagonal

elements of the matrix T of the corresponding PH-type representation used in the HE2 distribution. The time
taken by the roots method and the MGM-SS method to calculate π−

0 has been listed in Table 8. Results given in
Table 8 have been plotted in Figure 2. From Figure 2 one can see that the time required by roots for different ρ
remains almost same, while MGM-SS method required more time for higher ρ and grows significantly. Further, it
should be mentioned that variability of the time in roots method is due to the initial approximation in Newton’s
iteration to determine the roots of a polynomial. It may further be mentioned that the computation time for
the MGM-NI method is larger than that of the MGM-SS method. Due to this reason in Figure 2 and Table 8,
we have made a comparison of the computation time between the roots method and the MGM-SS method.
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8. Conclusions and future scope

In this paper, we have successfully analyzed GI/C-MSP (a,b)/1 queue with infinite-buffer. We have suggested
a procedure to obtain steady-state distributions of the number of customers in the queue as well as system at
various epochs. Also we obtain service batch size probability distributions. Several other batch service/arrival
queueing models under Markovian service process can be analyzed similarly, e.g., analysis of the corresponding
batch arrival queue, i.e., GI [X]/C-MSP (a,b)/1/∞ system, or the analysis of GI/C-MSP [Y ]/1/∞ queue. Anal-
ysis of this batch service queue with single and multiple vacation policies are other possible extensions of this
work. We leave these problems as a future extension of the current research.

Appendix A.

Theorem A.1. Every function z − Si,i(zb), 1 ≤ i ≤ m has exactly one zero inside the unit circle.

Proof. Consider absolute values of f(z) = z and F̄ (z) = −Si,i(zb) on the circle |z| = 1 − δ, where δ is positive
and sufficiently small. First, note that S ≡ S(1) is the imbedded transition probability matrix of J(t) in a
random amount of time with the distribution of an inter-arrival time. Since the state space of J(t) is finite, S is
an irreducible and aperiodic discrete-time Markov chain, which is necessarily ergodic. This implies, in particular,
that Si,i(1) ≤ 1, for 1 ≤ i ≤ m. As equation (2.6) yields S′(1) =

∑∞
n=1 nSn which represents the mean number

of customers served during an inter-arrival time period and the phase changes of the underlying Markov chain,
we have S′

i,i(1) ≥ 0. Now let us consider the following inequality for |F̄ (z)|, with |z| = 1 − δ,

|F̄ (z)| ≤ |F̄ (|z|)| = Si,i

(
(1 − δ)b

)
= Si,i(1) − bδS′

i,i(1) + o(δ). (A.1)

Also
|f(z)| = |z| = 1 − δ. (A.2)

We note that S = S(1) is a stochastic matrix which represents the number of batches of customers served during
an inter-arrival time and the phase changes of the underlying Markov chain during a busy period. Thus, we have
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S(1)e = e. Hence, (A.1) yields

|F̄ (z)| ≤ Si,i(1) − bδS′
i,i(1) + o(δ)

= Si,i(1 − bδ + o(δ)) + o(δ), using Taylor’s series expansion

= Si,i

(
(1 − δ)b

)
+ o(δ), using Taylor’s series expansion

= 1 −
m∑

j=1, j �=i

Si,j

(
(1 − δ)b

)
+ o(δ) (A.3)

< 1 − δ = |f(z)|, for sufficiently small δ

and lim
δ↓0

m∑
j=1, j �=i

Si,j

(
(1 − δ)b

)
> 0. (A.4)

Hence, using the well-known Rouché’s theorem, f(z) and f(z)+ F̄ (z) have the same number of zeros inside the
unit circle. It is obvious that f(z) = z has exactly one zero inside the unit circle. Thus, f(z)+ F̄ (z) = z−Si,i(zb)
has exactly one zero inside the unit circle. �

Theorem A.2. The following inequalities hold on the circle |z| = 1 − δ:

|z − Si,i(zb)| >

m∑
j=1, j �=i

|Si,j(zb)|, 1 ≤ i ≤ m. (A.5)

Proof. On the circle |z| = 1 − δ, using the Taylor series expansion we have

|z − Si,i(zb)| ≥ |z| − |Si,i(zb)|
≥ 1 − δ − (Si,i(1) − bδS′

i,i(1) + o(δ))

≥
m∑

j=1, j �=i

Si,j(1) − δ(1 − bS′
i,i(1)) + o(δ),

and

m∑
j=1, j �=i

|Si,j(zb)| ≤
m∑

j=1, j �=i

Si,j(|z|b)

≤
m∑

j=1, j �=i

Si,j(1) − bδ

m∑
j=1, j �=i

S′
i,j(1) + o(δ).

Now, assume that the following inequality holds:

|z − Si,i(zb)| ≤
m∑

j=1, j �=i

|Si,j(zb)|, 1 ≤ i ≤ m.
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This implies that

m∑
j=1, j �=i

Si,j(1) − δ(1 − bS′
i,i(1)) + o(δ) ≤

m∑
j=1, j �=i

Si,j(1) − bδ

m∑
j=1, j �=i

S′
i,j(1) + o(δ)

⇒ (1 − bS′
i,i(1)) ≥ b

m∑
j=1, j �=i

S′
i,j(1)

⇒ 1 ≥ b

m∑
j=1

S′
i,j(1)

⇒ πi ≥ b.πi

m∑
j=1

S′
i,j(1)

⇒
m∑

i=1

πi ≥ b.

m∑
i=1

πi

m∑
j=1

S′
i,j(1) = b.πS′(1)e

⇒ 1 ≥ 1
ρ
⇒ ρ ≥ 1.

This contradicts the system stability condition ρ < 1, and hence equation (A.5) is satisfied. �

Theorem A.3. The determinant det[zIm − S(zb)] has exactly m zeros inside the unit circle.

Proof. Mathematical induction is used to prove this theorem. Let us denote

Dn(z) = det[zIn − Sn(zb)], 1 ≤ n ≤ m, (A.6)

where Sn(zb) is the principal minor of order n of the matrix S(zb) starting from the element S1,1(zb). First,
we show that the statement is true for n = 1. For n = 1, equation (A.6) becomes D1(z) = z − S1,1(zb). This
is the characteristic function for the classical GI/M (a,b)/1 queue. It has been proved at several places that
z = S(zb) has exactly one root inside the unit circle as ρ < 1, see, e.g., Madill and Chaudhry [34]. Next for
n = 2, equation (A.6) becomes

D2(z) =

∣∣∣∣∣ z − S1,1(zb) −S1,2(zb)

−S2,1(zb) z − S2,2(zb)

∣∣∣∣∣
= −S2,1(zb)C2,1(z) + [z − S2,2(zb)]D1(z), (A.7)

where C2,1(z) = −S1,2(zb) is the cofactor of −S2,1(zb). Again, we can write (A.7) as∣∣∣∣D2(z) − [z − S2,2(zb)]D1(z)
[z − S2,2(zb)]D1(z)

∣∣∣∣ =
∣∣∣∣ −S2,1(zb)C2,1(z)
[z − S2,2(zb)]D1(z)

∣∣∣∣
=

∣∣S2,1(zb)
∣∣ |y2,1(z)|

|z − S2,2(zb)| < 1, (A.8)

where

|y2,1(z)| =
|C2,1(z)|
|D1(z)| =

|S1,2(zb)|
|z − S1,1(zb)| < 1 and

∣∣S2,1(zb)
∣∣

|z − S2,2(zb)| < 1,

by Theorem A2 for i = 1 and i = 2, respectively. Hence, by Rouché’s theorem D2(z) has 2 roots inside the unit
circle, |z| = 1, since (z−S2,2(zb))D1(z) has 2 roots. Finally, we assume that the statement is true for n = m−1.
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It must then be shown that the statement holds for n = m. The determinant Dn(z) for n = m is given by

Dm(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z − S1,1(zb) −S1,2(zb) · · · −S1,m−1(zb) −S1,m(zb)

−S2,1(zb) z − S2,2(zb) · · · −S2,m−1(zb) −S2,m(zb)

...
...

...
...

...

−Sm−1,1(zb) −Sm−1,2(zb) · · · z − Sm−1,m−1(zb) −Sm−1,m(zb)

−Sm,1(zb) −Sm,2(zb) · · · −Sm,m−1(zb) z − Sm,m(zb)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (A.9)

Now, we can rewrite (A.9) in the following way

Dm(z) = −
m−1∑
j=1

Sm,j(zb)Cm,j(z) + [z − Sm,m(zb)]Dm−1(z), (A.10)

where Cm,j(z) is the cofactor of −Sm,j(zb). Again, we can write (A.10) as∣∣∣∣Dm(z) − [z − Sm,m(zb)]Dm−1(z)
[z − Sm,m(zb)]Dm−1(z)

∣∣∣∣ =

∣∣∣∣∣−
∑m−1

j=1 Sm,j(zb)Cm,j(z)
[z − Sm,m(zb)]Dm−1(z)

∣∣∣∣∣
≤

∑m−1
j=1

∣∣Sm,j(zb)
∣∣ |ym,j(z)|

|z − Sm,m(zb)| , (A.11)

where |ym,j(z)| = |Cm,j(z)|
|Dm−1(z)| is the unique solution (by Cramer’s rule, provided |Dm−1(z)| �= 0) of the system of

equations ⎛⎜⎜⎜⎜⎜⎜⎝
z − S1,1(zb) −S1,2(zb) · · · −S1,m−1(zb)

−S2,1(zb) z − S2,2(zb) · · · −S2,m−1(zb)

...
...

...
...

−Sm−1,1(zb) −Sm−1,2(zb) · · · z − Sm−1,m−1(zb)

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
ym,1(z)

ym,2(z)

...

ym,m−1(z)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝
−S1,m(zb)

−S2,m(zb)

...

−Sm−1,m(zb)

⎞⎟⎟⎟⎟⎟⎟⎠ . (A.12)

The kth equation of (A.12) is given by

[z − Sk,k(zb)]ym,k(z) −
m−1∑

j=1,j �=k

Sk,j(zb)ym,j(z) = −Sk,m(zb), 1 ≤ k ≤ m − 1. (A.13)

Now, the entries of the matrix Dn(z) (1 ≤ n ≤ m) satisfy Hadamard’s condition, i.e., the modulus of each entry
of the matrix is less than or equal to one and the modulus of the diagonal element is greater than the sum of
the moduli of all other elements in that row on the circle |z| = 1 − δ. It implies that the matrix Dm−1(z) is
nonsingular and the system (A.12) has a unique solution ym,j(z) with |ym,j(z)| < 1, 1 ≤ j ≤ m−1 on the circle
|z| = 1 − δ. Let us assume the contrary that

Maxj |ym,j(z)| = |ym,k(z)| ≥ 1. (A.14)
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Because of our assumption
∣∣∣ ym,j(z)
ym,k(z)

∣∣∣ ≤ 1 and
∣∣∣ 1
ym,k(z)

∣∣∣ ≤ 1, we can rewrite (A.13) in the form

|z − Sk,k(zb)| ≤
m−1∑

j=1,j �=k

∣∣Sk,j(zb)
∣∣ ∣∣∣∣ ym,j(z)

ym,k(z)

∣∣∣∣ +
∣∣Sk,m(zb)

∣∣ ∣∣∣∣ 1
ym,k(z)

∣∣∣∣
≤

m∑
j=1,j �=k

∣∣Sk,j(zb)
∣∣ .

This contradicts Theorem A.2. Thus we have |ym,j(z)| < 1. Hence, using Theorem A.2 and |ym,j(z)| < 1,
the right-hand side expression of equation (A.11) is smaller than one, and therefore |Ḡ(z)| < |f(z)|, where
f(z) = [z − Sm,m(zb)]Dm−1(z) and Ḡ(z) = Dm(z) − [z − Sm,m(zb)]Dm−1(z). By Rouché’s theorem f(z) and
f(z) + Ḡ(z) have the same number of zeros inside the unit circle, |z| = 1. Since by our assumption, Dm−1(z)
has (m− 1) zeros, and [z−Sm,m(zb)] has one zero by Theorem A1, f(z) has m zeros inside the unit circle. This
implies that f(z) + Ḡ(z) = Dm(z) has exactly m zeros inside the unit circle, |z| = 1, if we let δ → 0. �

Appendix B.

For the sake of completeness, we have given the procedure of obtaining Sn as follows:
As presented in [31], applying the uniformization argument, P(n, t) is of the form:

P(n, t) =
∞∑

l=n

e−θt (θt)
l

l!
U(l)

n n ≥ 0, (B.1)

where θ = maxi{−[L0]ii} (1 ≤ i ≤ m) and U(l)
n is given by

U(0)
0 = Im, U(0)

n = 0, n ≥ 1,

U(l+1)
0 = U(l)

0 (Im + θ−1L0), l ≥ 0,

U(l+1)
n = U(l)

n (Im + θ−1L0) + θ−1U(l)
n−1L1, n ≥ 1, l ≥ 0.

By substituting the values of P(n, t) in (B.1), we obtain

Sn =
∞∑
l=0

vlU(l)
n , n ≥ 0, (B.2)

where vl =
∫∞
0

e−θt (θt)l

l! dA(t).
However, when the inter-arrival time distributions are of phase type (PH-distribution), these matrices can be

evaluated using a procedure given by Neuts [39]. The following theorem gives a procedure for the computation
of the matrices Sn.

Theorem B.1. If A(t) follows a PH-distribution with irreducible representation (α,T), where α and T are of
dimension ν, then the matrices Sn are given by

Sn = Un(Im ⊗ T0), n ≥ 0,

where

U0 = −(Im ⊗ α)[L0 ⊗ Iν + Im ⊗ T]−1,

Un = −Un−1(L1 ⊗ Iν)[L0 ⊗ Iν + Im ⊗ T]−1, n ≥ 1,

with T0 = −Teν and the symbol ⊗ denotes the Kronecker product of two matrices.
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Proof. The proof is given by Neuts [39] for PH-type service. �

Theorem B.2. If inter-arrival time distribution is of phase type having the parameters (α,T), then the matrix-
generating function S(z) of Sn’s is given by

S(z) =
∞∑

n=0

Snzn =
∫ ∞

0

eL(z)t ⊗ a(t)dt

= (Im ⊗ α)(L(z) ⊕ T)−1(Im ⊗ Teν), (B.3)

where L(z) ⊕ T = (L(z) ⊗ Iν) + (Im ⊗ T).

Proof. Similar proof was presented by Chaudhry et al. [18] for C-MAP arrival and service time distribution
with rational Laplace–Stieltjes transform and is applicable in our case with some modification. We present it as
follows. As inter-arrival time distribution is of phase type with representation (α,T), we can write its density
function as a(t) = αeTtT0 and T0 = −Teν . Now write (2.6) as

S(z) =
∫ ∞

0

eL(z)t ⊗ a(t)dt, (B.4)

where ⊗ is a Kronecker product of two square matrices of order m and 1, respectively. We write (B.4) in a form
such that each square matrix is the product of three different matrices (not necessarily square matrices) as

S(z) =
∫ ∞

0

(
ImeL(z)tIm

)
⊗ (

αeTtT0
)
dt.

Using the well-known rule of Kronecker product (E1E2E3) ⊗ (F1F2F3) = (E1 ⊗ F1)(E2 ⊗ F2)(E3 ⊗ F3), Now
write

S(z) =
∫ ∞

0

(Im ⊗ α)
(
eL(z)t ⊗ eTt

) (
Im ⊗ T0

)
dt

= (Im ⊗ α)
(∫ ∞

0

(
eL(z)t ⊗ eTt

)
dt

)(
Im ⊗ T0

)
.

We use another important rule of Kronecker product, i.e., eE1 ⊗ eF1 = eE1⊕F1 , where ⊕ is the Kronecker sum
defined as E1 ⊕ F1 = E1 ⊗ Iν + Im ⊗ F1. Here, it is assumed that E1 and F1 are square matrices of order m
and ν, respectively. We let E = (L(z)⊕T) and assume that E−1 exists and, in fact, this is the case here. From
the fact that

∫∞
0

eEtdt = −E−1, we finally get

S(z) = (Im ⊗ α)
(−(L(z) ⊕ T)−1

)
(Im ⊗ T0),

where L(z) ⊕ T = (L(z) ⊗ Iν) + (Im ⊗ T). �

Using T0 = −Teν , we can finally write

S(z) = (Im ⊗ α)(L(z) ⊕ T)−1(Im ⊗ Teν).

Appendix C.

The roots used in Tables 1 and 2 are given as follows: γ1 = 0.3990684, γ2 = 0.676222. The corresponding
kij (1 ≤ i ≤ 2, 1 ≤ j ≤ 2) values are as follows: k1,1 = 0.001169, k1,2 = −0.001729, k2,1 = 0.120157, k2,2 =
0.031108.

The roots used in Tables 3 and 4 are given below: γ1 = 0.176834, γ2 = 0.473153 and γ3 = 0.986627.
The corresponding kij (1 ≤ i ≤ 3, 1 ≤ j ≤ 3) values are as follows: k1,1 = 0.000000, k1,2 = −0.000013,
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k1,3 = 0.024184, k2,1 = 0.068215, k2,2 = −0.000490, k2,3 = 0.000229, k3,1 = 0.000123, k3,2 = 0.001717, k3,3 =
0.000027.

The roots used in Tables 5 and 6 are as follows: γ1 = 0.171335, γ2 = .579662. The corresponding kij (1 ≤
i ≤ 2, 1 ≤ j ≤ 2) values are as follows: k1,1 = −0.006514, k1,2 = 0.004483, k2,1 = 0.081776, k2,2 = 0.102092.
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