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Abstract. The objective of this paper is to develop new models to
compare cost efficiency of decision making units (DMUs) in all feasible
input/output weights. Our focus is to determine cost ranking intervals
and cost dominance relations in which the former show the best and the
worst cost ranking of a special DMU in comparison with the other ones,
and the latter specify the DMUs whose cost efficiencies are dominated
by one special DMU. Finally, some new results on relevance of computed
cost ranking intervals and cost dominance relations are presented.
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1. Introduction

Data envelopment analysis (DEA) is a nonparametric optimization approach
which was developed in [4]. DEA assesses relative efficiency of decision making
units (DMUs). DEA compares efficiency of DMUs by computing optimum weights
of inputs and outputs of DMUs. These optimization models take into account all
nonnegative weights without any restriction and do not deal with special cases.
To resolve this issue, researchers have developed a couple of weight restriction
models. Assurance region (AR) method [20], assumes a lower and upper bound for
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the ratio of weights. Cone-ratio approach [5] generates AR method and assumed
that the weights belong to defined cones. In [18] the idea of using virtual weights
instead of absolute weights was presented and the reasons of using virtual weights
were explained. In [23] DMUs were ranked by imposing a minimum weight con-
straint which is determined by the decision maker. The deviation of input and
output weights were minimized in [11] from their minimum and maximum values
which caused the DMUs to be efficient. In [17] the models which handle all feasible
weights are introduced. Then the ranking intervals and efficiency dominance rela-
tionship of DMUs are achieved by using CCR (Charnes–Cooper–Rhodes) efficiency
score for all feasible weights.

The initial DEA models assume no information on input costs and output prices.
If costs and prices are available, cost, revenue, and profit models can be used to
assess the DMUs. In [7] an approach for efficiency analysis in the presence of input
prices is introduced. Then, cost efficiency model were introduced in [9, 10]. In [8]
cost and profit functions were derived from the directional technology distance
function. In recent years, there have been a few studies using the cost model in
the absence or presence of price information (see [2, 15]).

Although all the mentioned models are useful for evaluating the performance
of the systems, they cannot discriminate the DMUs precisely. Information about
DMU’s ranking and dominance relationship among DMUs enable researchers to
discriminate DMUs and help managers to compare the performance of their DMUs
with other ones. There are many studies to rank DMUs in the absence of prices.
The most important approaches for ranking DMUs are super-efficiency and cross-
efficiency methods (see [13,16,24] for more details). To rank efficient DMUs, in [1]
the DMU under evaluation is omitted from technological matrix. This method is
named super-efficiency one. However, this method has two drawbacks: (i) Since
ranking is done based on optimal weights of each efficient or inefficient DMU, so
there is no identical condition for comparing rank of DMUs. (ii) The model may
be infeasible for some data set.

To rank DMUs with cross efficiency method [19], efficiency of each DMU is eval-
uated by taking into account optimal weight of all DMUs. Then, cross-efficiency
matrix is built. However, cross-efficiency has some drawbacks. Firstly, it does not
consider all feasible weights in evaluation. Secondly, there might be negative ele-
ments in cross-efficiency matrix. On the other hand, some researchers focused on
dominance subject which can be useful in pairwise comparison of DMUs. In [3]
a method is introduced which uses dominance techniques to form optimistic and
pessimistic technologies for creating bounds for DEA models. To compute relative
efficiency scores, [14] proposed a model which uses second-order stochastic domi-
nance (SSD). In [12] a model to recognize the relationship among diversification,
coherent measures of risk, and stochastic dominance is presented.

In this paper, we wish to bridge the gap in previous studies in the field of cost
efficiency evaluation. The proposed ranking models show how the DMUs relate to
each other when we consider all feasible weights not only the self appraisal DEA
optimal weights. Note that the traditional DEA models just suggest the optimal
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weight to maximize the cost efficiency score of the under evaluation unit. In this
paper, we analyze the rank position of every units based on their cost efficiency
scores by taking all the feasible weights into account.

By considering all feasible weights, this paper presents the best and the worst
cost ranking of each DMU based on cost efficiency score. To recognize the DMUs
which have higher efficiency scores and also to determine the cost efficiency domi-
nance relations, using pairwise comparison of all feasible weights, some DEA mod-
els are introduced. To this end, we follow the approach of [17] for cost model.
Furthermore, in some special cases, the relationship of cost ranking and cost dom-
inance is explored. The contributions of this paper are as follows:

• For the first time, we determine the best and the worst ranks of cost efficiency
for all DMUs when the input price is the same or different across the units

• We represent the cost dominance relations of a DMU compared with other
DMUs.

• We illustrate the relationship between cost ranking and cost dominance.

The rest of this paper is organized as follows: Section 2 gives a background.
Section 3 presents cost ranking intervals, dominance relations of cost efficiency, and
new results when the input prices are the same for all DMUs. Section 4 extends the
proposed models for the case input prices are different across the units. Illustrative
examples are presented in Section 5. Section 6 concludes.

2. Background

Assuming constant returns to scale (CRS) technology, consider n DMUs
which consume m inputs to produce s outputs. Then, production possibility set
(PPS)T = {(x,y) ∈ Rm+s

+ | x can produce y} takes the form TCRS = {(x,y)|x ≥
Xλ,y ≤ Yλ, λ ≥ 0}. Here, X and Y are inputs and outputs matrix, respectively.
xj and yj are inputs and outputs vectors for DMUj, respectively. λ is a vector
which enables us to construct unobserved but feasible DMUs by shrinking and
expanding DMUs. Also, the corresponding input set for any output vector y is
L(y) = {x|(x,y) ∈ TCRS}.

The CCR model [4] is introduced to evaluate the efficiency scores of DMUs in
the absence of market prices. This model could be written as follows:

max
u,v

u′yk

s.t. v′xk = 1
u′yl − v′xl ≤ 0 l = 1, . . . , n

u ≥ 0, v ≥ 0

(2.1)

where u and v are weight vectors (shadow prices) for outputs and inputs, respec-
tively. In optimality, the model (2.1) provides the set of most favorable weights for
DMUk and its objective values give a relative efficiency score called CCR-Technical



882 R. AZIZI ET AL.

Efficiency. Note that the weights in this model are restricted to be non-negative
and the optimal weights vary across DMUs.

Classical DEA models such as CCR assume that there is no price information.
Given price information, if decision makers wish to know whether or not their
resources are used efficiently, cost model can be employed. Also, cost model unlike
other classical models is useful in competitive markets or tenders to analyze the
methods for consuming resources to produce outputs with the lowest cost. Tenders
are version of competition in which managers should evaluate and suggest the
lowest cost for producing outputs or presenting projects to win the competition.
In competitive markets, if one firm produces its products with lower cost than
other firms, it will be able to present the products in lower price and pre-empt the
market.

When input prices are available, measuring the cost efficiency lies in producing
the output vector y at the minimum cost. Suppose that the input price vector for
all DMUs is c. Then, the actual cost for DMUk is c′xk and the minimum cost of
producing the target output yk is min

x
c′x ;x ∈ L(yk).

Like usual technical efficiency scores, computed by the model (2.1), the cost
efficiency scores can be also used to rank the DMUs. However, the obtained ranking
is changeable based on different weights and also these scores cannot discriminate
all the DMUs.

In the next section, we answer the following questions:

(1) What is the best and worst rank for the DMUs when we use cost-efficiency
score as a ranking criterion?

(2) Which DMUs dominate the given DMU in a pairwise cost-efficiency
comparison?

(3) Is there any relationship between cost ranking and cost dominance and/or is
there any special case for them?

As mentioned before, classical ratio models are not as much useful as cost model
in competitive markets or in analyzing systems from economic aspect. Therefore, to
answer to the above mentioned questions, we follow ratio-based multiplier method
proposed in [17]. Then, we express relationships between cost ranking and cost
dominance.

We start with the case where units have common input prices. The proposed
models are then extended to the more general case, when prices are different for
the units.

3. Cost efficiency with common input prices:

A comparison criterion

Based on the linear structure of the CRS technology, the minimum cost could
be obtained by solving the following linear programming (LP) when input vector
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price for all DMUs is shown by c:

c′x∗ = min
λ,x

c′x

s.t.
∑

l xlλl ≤ x∑
l ylλl ≥ yk

λl ≥ 0 l = 1, . . . , n

(3.1)

The cost efficiency score for DMUk is then measured as CEk =
c′x∗

c′xk
. We have

0 ≤ CEk ≤ 1 and the DMUk is cost efficient if and only if CEk = 1 (see [9,10] for
more details).

3.1. Ranking intervals

To get a ranking criterion based on cost efficiency scores, first we rewrite the
model (3.1) in the following ratio form to compute the cost efficiency score of
DMUk directly:

CEk = min
λ,x

c′x
c′xk

s.t.
∑

l xlλl ≤ x∑
l ylλl ≥ yk

λl ≥ 0 l = 1, . . . , n·

(3.2)

The dual formula of the model (3.2) is as follows:

CEk(u) = max
u

u′yk

s.t. u′yl − c̄′xl ≤ 0 l = 1, . . . , n

c̄ =
c

c′xk
u ≥ 0.

(3.3)

Note that c̄ is the input cost vector which is normalized by the observed cost
of the DMU under evaluation and from the second equation, we have c̄′xk = 1.
Therefore, we can rewrite the model (3.3) in a ratio form as follows:

CEk(u) = max
u

u′yk

c̄′xk
s.t. u′yl − c̄′xl ≤ 0 l = 1, . . . , n

c̄ =
c

c′xk
u ≥ 0.

(3.4)

The cost efficiency of each DMU depends only on the output weights (shadow
prices) of the DMUs in the model (3.4). Note that the optimal output weights vary
across the DMUs. To avoid zero weights and to impose decision maker’s preferences
on the outputs, we can impose more general constraints on output weights. For
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example, the output weights can be chosen from restricted sets U ⊆ �s
++ derived

in the cone-ratio approach [5] or they can be selected from assurance regions [20].
Now, as a criterion, DMUs can be ranked based on their best and worst cost effi-

ciency scores computed over the set of all feasible output weights in the model (3.4).
For the sake of simplicity, we consider following indices to distinguish DMUs

which have strictly higher cost efficiency score than the DMUk or at least as high
cost efficiency score as DMUk under a common set of output weights:

CR<
k = {l ∈ {1, . . . , n}|CEk(u) < CEl(u)}

CR≤
k = {l ∈ {1, . . . , n} − {k}|CEk(u) ≤ CEl(u)}.

With these notations, we can define the corresponding cost efficiency ranking as:

cr<
k = 1 + |CR<

k |,
cr≤k = 1 + |CR≤

k |,
where |CR| shows the cardinality of the set CR. Based on the above relations, if
there exist some feasible weights for DMUk to makes it cost-efficient, i.e. there is
no DMUs with strictly higher cost efficiency score than DMUk, then cr<

k = 1 and
in this case cr≤k is equal to the number of all cost efficient DMUs under the selected
output weights. On the other hand, if with some feasible output weights, DMUk

becomes cost inefficient, then the indices cr<
k (cr≤k ) will be increased in terms of

number of DMUs, which have higher cost efficiency score than DMUk (at least
have the same cost efficiency score).

To determine the best and the worst rank for DMUk and to get its ranking
interval, it is sufficient to find minimum cr<

k and maximum of cr≤k as the lower
and upper bounds of ranking interval, respectively.

Following the proposed technique in [17], we present two mixed integer linear
programs (MILP) to determine the ranking interval of cost efficiency.

min
u,z

1 +
∑

l �=k zl

s.t. u′yl − c̄′xl ≤ Mzl l �= k
u′yk = 1
zl ∈ {0, 1} l �= k
u ∈ U

(3.5)

and

max
u,z

1 +
∑

l �=k zl

s.t. −u′yl + c̄′xl ≤ M(1 − zl) l �= k
u′yk = 1
zl ∈ {0, 1} l �= k
u ∈ U.

(3.6)

Here, M is a sufficiently large positive constant. The output weight set is as-
sumed to be closed and bounded by the constraint u′yk = 1. Theorems 3.1 and 3.2
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Table 1. Data set.

DMU Input Output 1 Output 2
A 1 1 1
B 1 4 3
C 1 2 2
D 1 2 4
E 1 4 5

Table 2. The worst and the best rankings.

DMU min cr<
k max cr≤k

A 5 5
B 1 3
C 3 4
D 2 4
E 1 2

help to determine ranking interval in the cost efficiency evaluation. The proofs are
presented in Appendix.

Theorem 3.1. The optimal objective value of the model (3.5) is the best cost-
ranking of DMUk.

Theorem 3.2. The optimal objective value of the model (3.6) is the worst cost-
ranking of DMUk.

To illustrate the Theorems 3.1 and 3.2 consider Example 3.3:

Example 3.3. Assume that there are 5 DMUs to consume one input to produce
two outputs. The input price is 2. Table 1 depicts the data set.

Using the models (3.5) and (3.6), Table 2 shows the best and the worst ranking
of these DMUs.

For instance, consider the DMUs B and E. As is seen, the best ranks of these
DMUs are 1. It means there are output weights which make them as the best
performers. Since the worst rank of the DMU E is less than the DMU B, it has
better performance. The result also shows that DMU A has the worst performance
since its best rank is 5.

3.2. Cost efficiency dominance relation

Based on the ranking intervals, we can study a pairwise comparison of cost
efficiency scores across feasible weights and determine the dominance correlation
between two DMUs. To this end, for each pair of DMUs we need to specify whether
or not a DMU dominates the other DMU. Here, we modify the dominance rela-
tionship proposed in [17]. Consider the following definition.
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Definition 3.4. DMUk dominates DMUl (DMUl ≺ DMUk)

if and only if
{

CEk(u) ≥ CEl(u) for allu ∈ U
CEk(u) > CEl(u) for someu ∈ U

Dominance relationship between DMUs k and l can be shown using their cost

efficiency ratio as CDk,l(u) =
CEk(u)
CEl(u)

. To analyze the dominance relationship of

cost efficiency between DMUk and DMUl the extreme values of this ratio should
be determined. Let CDk,l(u) and CDk,l(u) denote the maximum and minimum
amount of CDk,l(u), respectively. Based on these values, if CDk,l(u) > 1 then
in all feasible output weights we have CE∗

k(u) > CE∗
l (u) and DMUk dominates

DMUl. In the case of CDk,l(u) = 1, the value of CDk,l(u) should be computed and
if CDk,l(u) > 1, the DMUk dominates DMUl. Otherwise, CE∗

k(u) = CE∗
l (u) is

hold for all feasible weights and there is no dominance relationship for these DMUs.
Finally, condition CDk,l(u) < 1 imply no dominance relationship.

Theorem 3.5. The maximum (minimum) of CDk,l(u) will be obtained by solving
the following linear model.

max
u

(min
u

) u′yk

s.t. u′yl = c̄′xl

u ∈ U.

(3.7)

Note that DMUA dominates DMUB, if its cost efficiency score is more than
or equal to DMUB for all feasible weights and at least for one set of weights the
inequality holds strictly. Therefore, cost efficiency dominance does not necessarily
happen for all pairs of DMUs. For more illustrations, consider the DMUs in Table 1.
Without using information on input cost, and with a simple vector analysis we have
the following dominance relationship:

• A is dominated by other DMUs
• C is dominated by B, D, and E
• B and D are dominated by E
• Pairs B and D have no dominance relationship

Given input price, using the model (3.7) with non-negative weights yields the
same relations in cost efficiency dominance. To show that the results depend on
the weights, the results of this model with extra output restriction u1/u2 ≥ 0.5
are reported in Table 3.

Table 3 shows that DMUD is only dominated by E should we assume non-
negative output weights. However, if an extra condition like u1/u2 ≥ 0.5 is added
on the weights, DMUs B and E will dominate DMUD.

3.3. Further results

By computing the best and the worst cost rankings of DMUs and the cost
dominance relationships, some new results are obtained.
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Table 3. Dominance relations of cost efficiency among 5 DMUs.

Dominated by Dominated by
DMU u1, u2 ≥ 0 u1/u2 ≥ 0.5

A B-C-D-E B-C-D-E
B E E
C B-D-E B-D-E
D E B-E
E – –

If the best and the worst cost rank of DMUk is d and s and for optimal weights
of models (3.5) and (3.6) there are b and h DMUs respectively which their cost
efficiency score is similar to DMUk, then
• DMUk at most will dominate n − s + h DMUs.
• DMUk at most will be dominated by d + b − 1 DMUs.
In case of one output and multiple inputs, since the output weights are defined

and fixed by u′yk = 1, the maximizing or minimizing models play no roles in
weight assessment. Theorem 3.6 shows the feature of this case.

Theorem 3.6. Assume that there are no DMUs which have equal cost efficiency
except for efficient DMUs. In the case of single output and multiple inputs, the
best rank of cost-inefficient DMUs are similar to their worst rank. On the other
hand, for cost efficient DMUs, the best rank is one and their worst rank is equal
to the number of efficient DMUs.

4. Cost efficiency with different input prices:

A comparison criterion

Now, suppose that the cost per input is different across the units and each
DMU has its own prices. Based on the linear structure of the CRS technology, the
minimum cost of DMUk could be obtained by solving the following LP when the
input prices are available:

CEk = min
λ,x

x

xk
,

s.t.
∑

l x̄lλl ≤ x̄,∑
l ylλl ≥ yk,

λl ≥ 0 l = 1, . . . , n,

(4.1)

where xl = (c1lx1l, c2lx2l, . . . , cmlxml)′, l = 1, . . . , n (See [21]).
The dual model of model (4.1) is as follows:

CEk(u) = max
u

u′yk,

s.t. u′yl − c̃′x̄l ≤ 0, l = 1, . . . , n,

c̃ =
1

c′kxk
,

u ≥ 0.

(4.2)
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Note from the second constraint, we have c̃′x̄k =
1

c′kxk
c′kxk = 1. Therefore, we

can rewrite the model (4.2) in a ratio form as follows:

CEk(u) = max
u

u′yk

c̃′x̄k
,

s.t. u′yl − c̃′x̄l ≤ 0, l = 1, . . . , n,

c̃ =
1

c′kxk
,

u ≥ 0.

(4.3)

To present the best and the worst ranking of DMUs based on their cost efficiency
scores over the set of all feasible output weights, the same approach as proposed
in Section 3.1 can be used. So, the best and the worst cost rank of a production
unit with its own prices can be determined by the optimal solution of models (4.4)
and (4.5), respectively.

min
u,z

1 +
∑

l �=k zl,

s.t. u′yl − c̃′x̄l ≤ Mzl, l �= k
u′yk = 1,
zl ∈ {0, 1}, l �= k
u ∈ U,

(4.4)

and
max
u,z

, 1 +
∑

l �=k zl

s.t. −u′yl + c̃′x̄l ≤ M(1 − zl), l �= k
u′yk = 1,
zl ∈ {0, 1}, l �= k
u ∈ U.

(4.5)

The optimal solution of model (4.6) determines whether a DMU is dominated
by other DMUs based on its cost efficiency score.

CDk,l(u)(CDk,l(u)) = max
u

(min
u

) u′yk

s.t. u′yl = c̃′x̄l

u ∈ U
(4.6)

The same results as Section 3.3 are available for the case of different input prices.

5. Illustrative applications

In this section, we illustrate the ranking approach in cost efficiency and cost
dominance by three numerical examples.

Example 5.1. In Table 4, the data set related to 12 hospitals which have been
taken from [6] is depicted. There are two inputs (number of doctors and nurses)
and two outputs (number of outpatients and inpatients). For all DMUs, price of
doctors and nurses are assumed to be 436 and 86, respectively.

Computed cost efficiency scores are reported in Table 5. The best and the worst
cost efficiency rankings of the hospitals are represented in the third and fourth
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Table 4. Data from 12 hospitals.

Hospitals
Number Number Number Number

of doctors of nurses of outpatients of inpatients
A 20 151 100 90
B 19 131 150 50
C 25 160 160 55
D 27 168 180 72
E 22 158 94 66
F 55 255 230 90
G 33 235 220 88
H 31 206 152 80
I 30 244 190 100
J 50 268 250 100
K 53 306 260 147
L 38 284 250 120

Table 5. Cost efficiency, the best and the worst cost ranking,
and the dominance relationship of cost efficiency of 12 hospitals.

Hospital Cost efficiency min cr<
k max cr≤k Dominated by

A 1 1 11 –

0.8556 5 9 B-D-G-L

B 1 1 8 –

1 1 1 –

C 0.8560 3 10 B-D

0.8522 4 6 B-D-G

D 0.9648 2 6 –

0.9395 2 2 B

E 0.7574 5 12 A-I-K-L

0.6747 12 12 A-B-C-D-F-G-H-I-J-K-L

F 0.6974 9 12 B-C-D-G-I-J-K-L

0.6813 11 11 A-B-C-D-G-H-I-J-K-L

G 08936 3 9 B-D

0.8702 3 4 B-D

H 0.7781 7 11 D-I-K-L

0.7261 10 10 A-B-C-D-G-I-J-K-L
I 0.8917 3 7 –

0.8322 6 7 B-C-D-G-L

J 0.7834 7 11 B-C-D-G-I-L

0.7629 8 9 B-C-D-G-I-K-L

K 0.8725 2 8 –

0.8050 7 8 B-C-D-G-I-L

L 0.9318 2 5 –

0.8823 3 5 B-D
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columns of the Table 5. The dominance relationships among hospitals are reported
in the last column of the Table 5. We run the introduced models under two different
weight restriction scenarios. The first scenario does not consider any preference
relationships for outputs and in the second scenario, we assume the existence of
non-negative weights with 2 ≥ u1/u2 ≥ 1. Due to the fact that common prices are
considered in this example, the models of Section 3 are used to present the results.

In Table 5, there are two rows for every hospital which are associated with the
two scenarios. The first row of each hospital with the bold components shows the
results of hospitals evaluation in which u1, u2 ≥ 0 are incorporated. The second
row of each hospital with the simple components is associated with the case in
which 2 ≥ u1/u2 ≥ 1 is incorporated.

We illustrate the approach by considering the first weight restriction scenario.
The interpretation of our cost ranking and dominance models is the same as any
weight restriction scenario. Cost-efficient hospitals A and B achieve the best per-
formance for some feasible weights. The cost ranking intervals of A and B are
[1,11] and [1,8], respectively. It means that their ranking is flexible in these in-
tervals based on the different feasible weights. These DMUs are unable to have
the worst rank among all feasible output weights. Hospital A, for some feasible
weights, in the worst case has better performance than only one DMU. Given their
cost ranking intervals, we conclude that hospital B has better performance than
the hospital A. Consequently, B has the best performance among all hospitals.
Hospitals A and B are not cost-dominated. However, the last column of Table 5
shows that hospital A dominates one and hospital B dominates four hospitals.

Now, we consider hospitals E and F. Using non-negative output weights, hos-
pitals E and F are the only hospitals that get the worst possible rank 12. As is
seen in Table 5, the maximum number of the DMUs which dominate E and F are
4 and 8, respectively. The worst rank of F is 12 and the best rank of F is 9 which
are not good. Therefore, it can be concluded that the hospital F has the worst
performance among inefficient hospitals.

Example 5.2. Table 6 reports the results of analyzing data set of Indian Life In-
surance Corporation (LIC) operations in 19 annual periods (DMUs) by the models
of Section 3. The data set is taken from [22]. We have four inputs and one output.
The inputs are business services, labor, debt capital, and equity capital, respec-
tively. The output is losses as the claims settled during the year including claims
written back. The common price is computed with the simple average of all input
prices among DMUs. So, the input prices are considered 0.0000211, 0.0000948,
0.112 and 0.175, respectively.

Note that in the case of one output and multiple inputs we cannot define any
special constraints on weights because it may lead to infeasibility. As is shown in
Table 6, the DMU13 is the only DMU which is cost-efficient. Therefore, given the
Theorem 3.6, its best and worst rank is one. Also, for all DMUs the best and the
worst ranks are equal. Based on the discussions in Section 3, DMU11 is dominated
by 5 DMUs and it dominates 13 DMUs. The DMU1 with the worst performance
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Table 6. Cost efficiency, the best and the worst cost ranking,
and the dominance relationship of cost efficiency of 19 DMUs.

DMU
Cost

min cr<
k max cr≤k Dominated by

efficiency
1 0.7164 19 19 2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19
2 0.7414 18 18 3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19
3 0.8206 17 17 4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19
4 0.8262 15 15 5-6-7-8-9-10-11-12-13-14-15-16-17-18-19
5 0.8236 16 16 4-6-7-8-9-10-11-12-13-14-15-16-17-18-19
6 0.8538 14 14 7-8-9-10-11-12-13-14-15-16-17-18-19
7 0.8879 10 10 11-12-13-14-15-16-17-18-19
8 0.8738 13 13 7-9-10-11-12-13-14-15-16-17-18-19
9 0.8826 12 12 7-10-11-12-13-14-15-16-17-18-19
10 0.8876 11 11 7-11-12-13-14-15-16-17-18-19
11 0.9568 6 6 12-13-15-16-19
12 0.9760 4 4 13-15-19
13 1 1 1 –
14 0.9233 8 8 11-12-13-15-16-18-19
15 0.9774 3 3 13-19
16 0.9587 5 5 12-13-15-19
17 0.9213 9 9 11-12-13-14-15-16-18-19
18 0.9365 7 7 11-12-13-15-16-19
19 0.9921 2 2 13

cannot dominate any DMU and it is dominated by all DMUs. Finally, DMU13

which has the best performance can dominate all the other 18 DMUs.
In this example, it was shown that the minimum number of DMUs which have

strictly higher cost efficiency scores than the DMU under evaluation is equal to
the maximum number of DMUs which have at least as high efficiency score as the
DMU under evaluation. Thus, the different sets of feasible weights do not have
any effect on the cost rank of DMUs, and all the feasible weights make the same
cost ranking for all DMUs. The results show that there is no interval ranking.
Therefore, decision makers should be aware that there are not any alternative
positions which make their DMUs has better or worse ranking in comparison with
the position reported in the Table 6. For example, the worst cost rank of DMU14

is 8. It means there is no set of feasible weights to make better cost rank because
its best cost ranking is 8. Consequently, considering all feasible weights, it can be
said that there is just one position for cost ranking of each DMU which is ideal in
performance analysis of DMUs because all position makes the same results.

Example 5.3. To illustrate the results of the new proposed models in Section 4,
we consider the same units of Example 5.1 with different input prices. The new
data set is presented in Table 7.

Second column of Table 8 reports cost efficiency score of 12 hospitals computed
by model (4.2). The next two columns show the best and worst cost ranking of
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Table 7. Input prices of 12 hospitals.

Hospitals Cost of doctors Cost of nurses
A 500 100
B 350 80
C 450 90
D 600 120
E 300 70
F 450 80
G 500 100
H 450 85
I 380 76
J 410 75
K 440 80
L 400 70

Table 8. Cost efficiency, the best and the worst ranks, and dom-
inance relationship of cost efficiency of 12 hospitals.

Hospital Cost efficiency min cr<
k max cr≤k Dominated by

A 0.9594 2 12 E
B 1 1 6 –
C 0.7239 4 10 B-I-L
D 0.6241 10 12 B-C-E-F-G-I-J-K-L
E 1 1 8 –
F 0.6343 9 11 B-C-E-G-I-J-K-L
G 0.6934 6 10 B-I-J-L
H 0.7259 7 11 B-E-I-L
I 0.9533 3 4 L
J 0.7763 4 8 B-I-L
K 0.8627 5 7 I-L
L 1 1 3 –

DMUs achieved by models (4.4) and (4.5), respectively. The last column reports
the dominance relationship among hospitals which is determined by model (4.6).

The weights are constrained to be nonnegative and no preference for outputs is
assumed. Table 8 shows that hospitals B, E and L are cost efficient, so, their best
ranking is 1. Now we consider hospital L. Hospital L performs better than other
ones because its worst ranking is better than hospitals B and E. The ranking
interval for hospital L is [1,3], this means that there are some sets of feasible
weights for which the rank of hospital L is 1, 2 and 3. In other words, there is no
set of feasible weights for which the ranking of hospital L be worse than 3. As is
shown in the last column of Table 8, hospital L is not dominated by other DMUs
but it dominates 8 other ones.
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6. Conclusion

In this paper, basic DEA models were reviewed to assess production units with
complete information on inputs and outputs without prior need on prices. When
the input prices are available the cost model is a better choice to evaluate the
performance of the DMUs. In this paper, we analyzed the relative performance
of DMUs based on their cost efficiency scores by taking into account all feasible
input/output weights. First, we determined the best and the worst cost ranking of
a given DMU with respect to the existence of DMUs alternate cost efficiency scores
in all feasible weights. Furthermore, a pairwise comparison was designed to show
whether a DMU can dominate any specific DMU based on their cost efficiency
score while all feasible output weights are considered, not just the optimal ones.
Then, some relations between cost ranking intervals and cost dominance were
presented. The models and results are presented when the cost per input is the
same or different across the units. Finally, some numerical examples were given to
show the advantages of our developed models.

Similar models can be developed for variable returns to scale technology. To
address more practical problems, we suggest further research to be conducted for
determining cost dominance relationship in variable returns to scale technology.
It is also worth to determine efficiency bounds which show how much more ef-
ficient a given DMU can be relative to some other DMU, for different efficiency
measures.

Appendix

Proof of Theorem 3.1. Let the best ranking of DMUk is achieved at u ∈ U. There-
fore, there exists L = CR<

k so that

{
CE∗

k(u) < CE∗
l (u) for all l ∈ L,

CE∗
k(u) ≥ CE∗

l (u) for all l �∈ L.

Let û =
u

u′yk

. Then û ∈ U and û′yk = 1.

Let zl = 1, (l �= k) for l ∈ L and zl = 0, l �= k for l �∈ L. zl(l �= k) is the lth
component of z. Therefore, for any l �∈ L we have

CE∗
k(u) ≥ CE∗

l (u) =⇒ 1 ≥ CE∗
l (u)

CE∗
k(u)

=
CE∗

l (û)

CE∗
k(û)

=

û′yl

c̄′xl

û′yk

c̄′xk

=
û′yl

c̄′xl

=⇒ û′yl ≤ c̄′xl =⇒ û′yl − c̄′xl ≤ 0
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for any l ∈ L we have

CE∗
k(u) < CE∗

l (u) =⇒ 1 <
CE∗

l (u)
CE∗

k(u)
=

CE∗
l (û)

CE∗
k(û)

=

û′yl

c̄′xl

û′yk

c̄′xk

=
û′yl

c̄′xl

=⇒ û′yl > c̄′xl =⇒ û′yl − c̄′xl > 0.

Given zl = 0, (l �= k) for l �∈ L and zl = 1, (l �= k) for l ∈ L and multiplying zl

by M the first constraint is established. Moreover, the solution of the model (3.5)
is not larger than the best ranking of DMUk, because 1 +

∑
l �=k zl = 1 + |L| =

1 + |CR<
k | = min cr<

k . Conversely, let the optimal solution of the model (3.5) is
attained at (u,z ). Let L = {l|zl = 1, (l �= k)} and for all l �∈ L then zl = 0, l �= k.

So, for all l �∈ L it follows that the first constraint of the model (3.5) reaches to

u′yl ≤ c̄′xl. Therefore,
CE∗

l (u)
CE∗

k(u)
=

u′yl

c̄′xl
≤ 1 is held because of the second constraint

of the model (3.5) and the expressions of c̄. For l ∈ L, the u′yl ≤ c̄′xl ⇐⇒
CE∗

l (u) ≤ CE∗
k(u) is not hold, otherwise optimality of z makes zl = 1, (l �= k)

could be changed to zl = 0, l �= k (it causes the first constraint remains satisfied,
but the objective function is decreased). Thus, CR<

k = L and min cr<
k = 1 +

|CR<
k | = 1 + |L| = 1 +

∑
l �=k zl. �

Proof of Theorem 3.2. The procedure of proof of this theorem is similar to the
Theorem 3.1. �

Proof of Theorem 3.5. Choose u∗ ∈ U so that CDk,l(u∗) ≥ CDk,l(u) for all u ∈ U .

Define û =
u∗ × (c̄′xl)

u∗′yl

. Thus, û satisfies in the constraints of the model (3.7) and

CDk,l(u∗) = CDk,l(û) = û′yk, because the model is unit invariant. Therefore, the
optimal amount of the model (3.7) is not smaller than CDk,l(u∗). Conversely, let
the optimal solution of the model (3.7) is attained at û. Therefore, because of the
first constraint of the model (3.7) and the expressions of c̄, we have

û ∈ U and CDk,l(û) =
CEk(û)

CEl(û)
=

û′yk

c̄′xk

û′yl

c̄′xl

= û′yk. (A.1)

Thus, the maximum of CDk,l(u) over U is at least as high as the solution of the
model (3.7). The same procedure can be applied to prove the minimum case. �

Proof of Theorem 3.6. It is clear that in both models (3.5) and (3.6), maximizing
and minimizing do not have any effect in the amount of u and c̄, because c̄ is
obtained by data and is not a variable. u which is obtained by models is unique
in both of them because we have one output.
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We know model (3.5) sets zl = 1 for l ∈ L={l ∈ {1, . . . , n}|CE∗
k(u) < CE∗

l (u)},
and model (3.6) sets zl = 1 for l ∈ L={l ∈ {1, . . . , n} − {k}|CE∗

k(u) ≤ CE∗
l (u)},

therefore,

The model (3.5) sets zl = 1 if CE∗
k(u) < CE∗

l (u) =⇒ 1 <
CE∗

l (u)
CE∗

k(u)
=

u′yl

c̄′xl
(A)

The model (3.6) sets zl = 1 if CE∗
k(u) ≤ CE∗

l (u) =⇒ 1 ≤ CE∗
l (u)

CE∗
k(u)

=
u′yl

c̄′xl
(B)

First we prove for inefficient DMUs. According to the assumptions of the theorem
we have

The model (3.6) sets zl = 1 if CE∗
k(u) < CE∗

l (u) =⇒ 1 <
CE∗

l (u)
CE∗

k(u)
=

u′yl

c̄′xl
(C )

Since u and c̄ are equal in both models, the constraints (A) and (C ) are equiv-
alent. Thus, the models (3.5) and (3.6) set zl = 1 for identical DMUs. Therefore,
the best and the worst cost rankings are equal. For cost efficient DMUs, it is clear
that the model (3.6) set zl = 1 for all DMUl which has the same cost efficiency
score as DMUk (see (B)) and because of the equality of u and c̄ in both models,
the only difference of the best and the worst ranking of DMUs is the number of
the cost efficient DMUs minus 1. �
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