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N -POLICY FOR A REPAIRABLE REDUNDANT MACHINING SYSTEM
WITH CONTROLLED RATES
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Abstract. The present investigation deals with a multi-component machining system operating under
N-policy. There is a provision of k type of mixed standbys units and maintenance crew consisting of
permanent repairman as well as removable additional repairmen. The life time and repair time of the
units are exponentially distributed with interdependent rates. The permanent repairman can start the
repair only when N failed units are accumulated in the system. As soon as a unit fails, it is replaced
by an available standby unit. In case when all the standby units are exhausted, the machining system
starts to function in a degraded mode due to overload. Markov model is developed by constructing
the governing transient state equations which are solved by using Runge−Kutta method. Various
performance measures viz. queue size distribution, expected number of failed units, cost function, etc.
are evaluated. By taking numerical illustration, numerical results are computed and also depicted with
the help of graphs and figures.
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1. Introduction

In the modern era of advanced technology, the machining systems have become more complex and are always
prone to failure. The spare part support system as well as an efficient repair facility are required for the smooth
functioning of such system. In the present investigation we are concerned with the performance analysis of
a machine repair problem having mixed standbys, one permanent and r additional removable repairmen to
support the functioning of the system in an optimal manner. In order to reduce the cost of maintenance, the
repair is initiated by the permanent repairman only when N failed units are accumulated in the system to form
the queue.

The machine repair problems (MRPs) with spares have always been dragging the interest of many researchers;
for recent survey on the topic MRP we refer the articles by Haque et al. [2] and Jain et al. [14]. The machine
repair problem with k type of warm spares and multiple vacations of the server was studied by Maheshwari
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et al. [24]. Jain [4] studied an embedded machining system having mixed standbys under the priority concept
and compared some of the performance measures evaluating by both analytical as well as neuro-fuzzy inference
approaches. Sometimes, it is seen that the switch over process fails while standby unit takes the place of a failed
operating unit. Thus the incorporation of switching failure has become an important factor to be considered
while dealing with the performance modelling of MRP with standby support. Recently, some researchers studied
machining systems with standby facility by including the switching failure concept [9,15,22]. Jain and Preeti [8]
established the cost function for a redundant machine repair problem in which the server is unreliable and takes
working vacation when there is no load of failed units. Very recently, the machine repair problem with multiple
vacations has been analysed by Liou [23]. The performance of machine repair system with hot standbys has
been studied by Shree et al. [33] by incorporating the partial server vacation.

N -policy is the optimal policy to control the repair process. According to N -policy, the repair starts only
after the accumulation of N failed units in the system and continues till there is no failed unit in the system.
Many researchers have worked on the performance analysis of queueing systems operating under N -policy. Some
prominent works on the machine repair problems are present in queueing literature [6,25,29,35]. Jain and Upad-
hyaya [10] studied a multi-component machine repair system having heterogeneous repairmen working under
the N -policy. A machine repair system under N -policy was investigated by Parthasarathy and Sudhesh [28].
Kempa [19,20] gave the transient state solution for a queueing system operating under N -policy by incorporat-
ing the busy period and multiple vacations, respectively. Recently, multi-component redundant machine repair
problems under N -policy have also been investigated by some researchers [16, 21, 38]. Very recently, Yang [37]
studied a queueing system with N -policy and working vacation and developed a cost minimisation model for
it. Wu [36] developed an optimisation model for N -policy K-out-of-N : G machine repair system in which the
server is prone to breakdown and also goes for multiple vacations in case when the system becomes empty.

The provision of additional repairmen as and when required is an effort to improve the quality of service of
any organization as it will help in reducing the workload of the primary repairman as well as delay experienced
by the customers. A few papers have appeared on machine repair problems with additional removable repair-
men [3, 7, 32]. Jain et al. [13] investigated a multi component repairable system with mixed standbys having
state dependent rates and the additional removable repairmen. Recently, Jain [5] developed the transient state
Markov model of a machine repair system with standbys and provision of additional repairmen along with
permanent repairmen and obtained various performance indices.

In the past, some papers on the performance analysis of queueing systems having controlled rates have
appeared [1, 11, 26, 27, 30, 31, 34]. But only a very few papers are related to the queueing models of machine
repair problem with controlled rates. A controllable and interdependent MRP with additional repairman and
mixed standbys was investigated by Jain et al. [12]. Recently, Jain et al. [17] studied the M/M/R+ r machining
system having controlled rates. In this investigation, they incorporated the controlled rates for the Markov
modeling of a machine repair system, operating under N -policy and supported by additional repairman apart
from regular repairman. Further, Jain et al. [18] investigated a multi component machine repair problem with
controllable failure and repair rates and provided the comparison of numerical results obtained by product type
technique with those results obtained by neuro-fuzzy technique.

In the present investigation, we present the transient analysis of a machine repair system with interdependent
rates and supported by a repair facility and k types of mixed standby units. The repair facility consists of one
permanent repairman who is made available to the system as per N -policy and multi-additional repairmen
who turn on and turn off depending upon workload of failed units in the system. A practical application of
the model developed in the present investigation can be found at the billing section of a super market in a
shopping mall. There may be M cash counters having cash counting machines which should be kept in working
order. As these counting machines are prone to failure, the supermarket organiser has the inventory of two
types of standby counting machines each group having S1 and S2 units. As soon as a machine fails, the standby
machine gets activated and put in place of the failed machine and the failed machine is immediately attended
by the repairman who is appointed on permanent basis to take care of failed machines. However to cut down
the cost of maintenance, the permanent repairman turns on (off) according to N -policy, i.e. start the repair
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job only when some machines are accumulated in the system. The system manager of the supermarket also
has the facility of a few extra (i.e. additional repairmen) service engineers on contract basis and those can be
called upon one by one to repair the failed units according to threshold policy depending upon the workload
of failed machines. In the starting, the permanent repairman is not activated and the failed machines have
to wait for its repair till N machines are failed. When the first type of standby machines have utilised, the
permanent repairman starts the repair job at a faster rate in the anticipation that the system will not degrade
in case when other type of standbys are exhausted in between. To cope up with the increased load, the first
additional repairman gets activated at a pre-specified threshold level and starts the repairing work. As soon
as the second type of standby machines are exhausted, the second additional repairman is also called upon.
The additional removable repairmen are withdrawn at the same threshold level at which they were activated.
The failure and repair processes may be interdependent. With the facility of standby machines and provision
of additional repairmen apart from permanent repairman, billing section will work smoothly in spite of failure
prone cash counting machines. The remaining paper is organized as follows. The mathematical model of the
machine repair problem having the provision of mixed standby units and facility of repair, has been described
in the next Section 2. Chapman−Kolmogorov equations governing Markov model are given in Section 3. In
Section 4, numerical technique based on Runge−Kutta method is employed for the computation of transient
state probabilities of the system states, which are further used to evaluate various performance indices. To
understand the usefulness and practicality of the model, numerical results and sensitivity analysis of some
performance indices have been facilitated in Section 5. The conclusion has been drawn in the last Section 6.

2. The model description

The present study is devoted to the performance modeling of MRP by incorporating many realistic features
such as mixed standbys, additional removable repairmen and controllable rates to develop Markov model and
solving it for the transient state probabilities. The assumptions used to develop the model are as follows:

� The system starts operating in normal mode with M operating units which are required for the sys-
tem to function smoothly. As soon as an operating unit fails, it is replaced with negligible switching time by the
available warm standby units. There are Si standby units of ith(1 ≤ i ≤ k) type available in the system. The
different types of standby units differ in their failure characteristics. When a spare unit is put into operation
in the system to take place of failed operating unit, its failure characteristic is same as that of the operating unit.

� The operating units and ith(1 ≤ i ≤ k) type of standby units may fail according to a Poisson pro-
cess with rate λ and αi(1 ≤ i ≤ k). After all the spare units are being used, due to increased load on each
operating units, it fails with a degraded failure rate λd.

� If a unit fails, it is immediately sent for repair; the repair times of the operating as well as the
standby units are assumed to be exponentially distributed.

� If the number of operating units become lesser than M but more than m (m < M) then the system
will start working in short mode following the (m, M) policy. As soon as there is less than m operating units in
the system, the system breaks down and becomes inoperable till again after repairing, there are m operating
units in the system.

� After repairing, the failed unit is as good as a new unit. The repaired unit is put into operation if
there are less than M operating units; otherwise the repaired unit is kept in the inventory with the other spare
units.

� Unless and until N operating units are failed and accumulated in the system to form the queue, no
repair is provided. When the queue size of the failed units reaches to N , the repair process is started by the
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Figure 1. State transition diagram.

permanent repairman.

� The permanent repairman repairs the failed units according to N -policy i.e. starts the repair job
with rate μ in normal mode when N units are accumulated in the system and continues the repair jobs till
when there are no failed units in the system. When the first type of standbys (S1) are exhausted, to cope
up with the workload, the permanent repairman starts to repair the failed units at a faster rate μf which is
continued till the system queue size ceases to threshold level N0. At this stage, the first additional removable
repairman also gets activated and starts the repairing of failed units waiting in the queue with the rate μ1. As
soon as, the first type of standby units are exhausted and some more operating units fail, the second type of
standby units are used to replace the failed units in the system and at this stage second additional repairman
gets activated. This process goes on till all (r ≤ k) repairmen become busy. Thus, jth(2 ≤ j ≤ r) additional
removable repairman will be activated as soon as standby units of ith type (2 ≤ i ≤ r) are exhausted. Then
after, all r additional repairmen remain activated till the system fails in case when the number of operating
units drops below m. The jth(1 ≤ j ≤ r) additional repairman is removed at the level of workload of failed
machine where it was introduced.

� The permanent as well as additional removable repairmen take the failed units for repair according
to First Come First Served (FCFS) rule.

� The mean dependence rate between the failure and the repair rates is ε which is the covariance be-
tween the failure and repair processes. The failure and repair processes are assumed to be inter-dependent and
are governed by the bi-variate Poisson distribution.

Let the random variable representing the different system states at time t be defined as follows:

ξ(t) =

⎧⎪⎨
⎪⎩

l = 0; Permanent repairman is idle
l = 1; Permanent repairman is repairing the failed units
l = 2; Permanent repairman is working in faster mode and additional repairman is activated

as per the threshold policy.

Let ′n′ denotes the number of failed units in the system; the transition rates λn and μn corresponding to
failure and repair processes respectively, are depicted in Figure 1. Now, the state dependent transition rates
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are defined as

λn =

⎧⎪⎨
⎪⎩

M(λ − ε) + (S1 − n)(α1 − ε) +
∑k

j=2 Sj(αj − ε); 0 ≤ n < S1

M(λ − ε) + (S(i+1) − n)(α(i+1) − ε) +
∑k

j=i+2 Sj(αj − ε); S(i) ≤ n < S(i+1), 1 ≤ i < k

(M + S(k) − n)(λd − ε); S(k) ≤ n < L

μn(l) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0; 0 ≤ n < N, l = 0
(μ − ε); 1 ≤ n ≤ S1 − 1, l = 1
(μf − ε) + (μ1 − ε); N0 + 1 ≤ n ≤ S(2) − 1, l = 2
(μf − ε) +

∑i
j=1(μj − ε); S(i) ≤ n ≤ S(i+1) − 1, 2 ≤ i < r, l = 2

(μf − ε) +
∑r

j=1(μj − ε); S(r) ≤ n ≤ L, l = 2

where S(i) =
∑i

(j=1) Sj and L = M + S(k) − m + 1.
The bi-variate Poisson process of the failure and repair processes has the joint probability mass function of

the form: P (X1 = x1, X2 = x2; t) = e−(λn+μn−ε)t
∑min(x1,x2)

j=0
(εt)j [(λn−ε)t](x1−j)[(μn−ε)t](x2−j)

j!(x1−ε)!(x2−ε)! such that x1, x2 =
0, 1, 2, . . . ; 0 < λn, μn; λn > 0 & μn > 0; and 0 < ε < min(λn, μn) where λn(n = 0, 1, 2, . . . , L) and μn(n =
1, 2, 3, . . . , L) are the inter-dependent failure and repair rates, respectively and ε is mean dependence rate
between failure rate and repair rate.

Let N(t) be number of failed units in the system at time t. Then the ordered pair {N(t), ξ(t)} describes the
Markov process in continous time t. Now, we define the transient probabilities Pi,n(t) = Prob{ξ(t) = i, N(t) = n}
for various states of Markov chain.

3. Transient state equations

In this section, we formulate Chapman Kolmogorov equations for the system states by using the appropriate
transition rates as shown in Figure 1.

(i) Level l = 0: When the permanent repairman is idle:
At this level, the failed units are not repaired as the permanent repairman is in the accumulation (i.e. idle)
state, and remains idle till the number of failed units becomes N . By equating the out-flow from the state
(0, n), 0 ≤ n ≤ N − 1 having probability P0,n(t) with the in-flow from the neighbouring state, the equations are
constructed as:

d
dt

P0,0(t) = −
⎧⎨
⎩M(λ − ε) +

k∑
j=1

Sj(αj − ε)

⎫⎬
⎭ P0,0(t) + (μ − ε)P1,1(t) (3.1)

d
dt

P0,n(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − n)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P0,n(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − n + 1)(α − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P0,n−1(t); 1 ≤ n ≤ N − 1. (3.2)

(ii) Level l = 1: When the permanent repairman gets activated and is busy in the repair job:
As soon as the number of failed units in the queue reaches N , the permanent repairman starts repair job with
normal rate and continues till the first type of standbys are finished, then after permanent repairman switches
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over to faster rate. In this case, we construct the transient state equations for states (1, n) by balancing the
in-flows and out-flows between the states (0, n), (1, n) and (2, n) as follows:

d
dt

P1,1(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭ P1,1(t) + (μ − ε)P1,2(t) (3.3)

d
dt

P1,n(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − n)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭P1,n(t) + (μ − ε)P1,n+1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − n + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P1,n−1(t); 2 ≤ n ≤ N − 1 (3.4)

d
dt

P1,N (t) = −
⎧⎨
⎩M(λ − ε) + (S1 − N)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭P1,N (t) + (μ − ε)P1,N+1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − N + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭P1,N−1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − N + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭P0,N−1(t) (3.5)

d
dt

P1,n(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − n)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭P1,n(t) + (μ − ε)P1,n+1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − n + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P1,n−1(t); N + 1 ≤ n ≤ N0 − 1 (3.6)

d
dt

P1,N0(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − N0)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭P1,N0(t) + (μ − ε)P1,N0+1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − N0 + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭P1,N0−1(t)

+ {(μf − ε) + (μ1 − ε)}P2,N0+1(t) (3.7)

d
dt

P1,n(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − n)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭ P1,n(t) + (μ − ε)P1,n+1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − n + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P1,n−1(t); N0 + 1 ≤ n ≤ S1 − 2 (3.8)
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d
dt

P1,S1−1(t) = −
⎧⎨
⎩M(λ − ε) + (α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μ − ε)

⎫⎬
⎭P1,S1−1(t)

+

⎧⎨
⎩M(λ − ε) + 2(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P1,S1−2(t). (3.9)

(iii) Level l = 2: When the permanent repairman is working at a faster rate and additional re-
pairmen are also activated as per threshold policy: In this case, the standbys of first type are already
used and the other types of standbys are being deployed in place of more failed units in the system. Due to
overload the additional removable repairmen are introduced one by one according to threshold policy in the
system to provide the repair of failed units. By balancing the in-flows and out-flows of the states (2, n) with
their respective neighbouring states, we obtain the balance equations for the state probabilities for this case as
follows:

d
dt

P2,N0+1(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − N0 − 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μf − ε) + (μ1 − ε)

⎫⎬
⎭P2,N0+1(t)

+ {(μf − ε) + (μ1 − ε)}P2,N0+2(t) (3.10)

d
dt

P2,n(t) = −
⎧⎨
⎩M(λ − ε) + (S1 − n)(α1 − ε) +

k∑
j=2

Sj(αj − ε) + (μf − ε) + (μ1 − ε)

⎫⎬
⎭ P2,n(t)

+

⎧⎨
⎩M(λ − ε) + (S1 − n + 1)(α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P2,n−1(t)

+ {(μf − ε) + (μ1 − ε)}P2,n+1(t); N0 + 2 ≤ n ≤ S1 − 1 (3.11)

d
dt

P2,S1(t) = −
⎧⎨
⎩M(λ − ε) +

k∑
j=2

Sj(αj − ε) + (μf − ε) + (μ1 − ε)

⎫⎬
⎭ P2,S1(t)

+

⎧⎨
⎩M(λ − ε) + (α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P1,S1−1(t) + {(μf − ε) + (μ1 − ε)}P2,S1+1(t)

+

⎧⎨
⎩M(λ − ε) + (α1 − ε) +

k∑
j=2

Sj(αj − ε)

⎫⎬
⎭ P2,S1−1(t) (3.12)

d
dt

P2,n(t) = −
⎧⎨
⎩M(λ − ε) + (S1 + S2 − n)(α2 − ε) +

k∑
j=3

Sj(αj − ε) + (μf − ε) + (μ1 − ε)

⎫⎬
⎭ P2,n(t)

+ {(μf − ε) + (μ1 − ε)}P2,n+1(t)

+

⎧⎨
⎩M(λ − ε) + (S1 + S2 − n + 1)(α2 − ε) +

k∑
j=3

Sj(αj − ε)

⎫⎬
⎭ P2,n−1(t); S1 + 1 ≤ n ≤ S(2) − 2

(3.13)
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d
dt

P2,S(i)−1(t) = −
⎧⎨
⎩M(λ − ε) + (αi − ε) +

k∑
j=i+1

Sj(αj − ε) + (μf − ε) +
i−1∑
j=1

(μj − ε)

⎫⎬
⎭P2,S(i)−1(t)

+

⎧⎨
⎩(μf − ε) +

i∑
j=1

(μj − ε)

⎫⎬
⎭ P2,S(i)(t)

+

⎧⎨
⎩M(λ − ε) + 2(αi − ε) +

k∑
j=i+1

Sj(αj − ε)

⎫⎬
⎭ P2,S(i)−2(t); 2 ≤ i ≤ r − 1 (3.14)

d
dt

P2,S(r)−1(t) = −
⎧⎨
⎩M(λ − ε) + (αr − ε) +

k∑
j=r+1

Sj(αj − ε) + (μf − ε) +
r−1∑
j=1

(μj − ε)

⎫⎬
⎭P2,S(r)−1(t)

+

⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,S(r)(t)

+

⎧⎨
⎩M(λ − ε) + 2(αr − ε) +

k∑
j=r+1

Sj(αj − ε)

⎫⎬
⎭ P2,S(r)−2(t) (3.15)

d
dt

P2,S(i)−1(t) = −
⎧⎨
⎩M(λ − ε) + (αi − ε) +

k∑
j=i+1

Sj(αj − ε) + (μf − ε) +
r∑

j=1

(μj − ε)

⎫⎬
⎭P2,S(i)−1(t)

+

⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,S(i)(t)

+

⎧⎨
⎩M(λ − ε) + 2(αi − ε) +

k∑
j=i+1

Sj(αj − ε)

⎫⎬
⎭ P2,S(i)−2(t); r + 1 ≤ i ≤ k (3.16)

d
dt

P2,S(i)(t) = −
⎧⎨
⎩M(λ − ε) +

k∑
j=i+1

Sj(αj − ε) + (μf − ε) +
i∑

j=1

(μj − ε)

⎫⎬
⎭ P2,S(i)(t)

+

⎧⎨
⎩(μf − ε) +

i∑
j=1

(μj − ε)

⎫⎬
⎭P2,S(i)+1(t)

+

⎧⎨
⎩M(λ − ε) + (αi − ε) +

k∑
j=i+1

Sj(αj − ε)

⎫⎬
⎭ P2,S(i)−1(t); 2 ≤ i ≤ r − 1 (3.17)
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d
dt

P2,S(i)(t) = −
⎧⎨
⎩M(λ − ε) +

k∑
j=i+1

Sj(αj − ε) + (μf − ε) +
r∑

j=1

(μj − ε)

⎫⎬
⎭ P2,S(i)(t)

+

⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭P2,S(i)+1(t)

+

⎧⎨
⎩M(λ − ε) + (αi − ε) +

k∑
j=i+1

Sj(αj − ε)

⎫⎬
⎭P2,S(i)−1(t); r ≤ i ≤ k − 1 (3.18)

d
dt

P2,n(t) = −
⎧⎨
⎩M(λ − ε) +

(
S(i+1) − n

)
(αi+1 − ε) +

k∑
j=i+2

Sj(αj − ε) + (μf − ε) +
i∑

j=1

(μj − ε)

⎫⎬
⎭P2,n(t)

+

⎧⎨
⎩(μf − ε) +

i∑
j=1

(μj − ε)

⎫⎬
⎭ P2,n+1(t)

+

⎧⎨
⎩M(λ − ε) +

(
S(i+1) − n + 1

)
(αi+1 − ε) +

k∑
j=i+2

Sj(αj − ε)

⎫⎬
⎭

× P2,n−1(t); S(i) + 1 ≤ n ≤ S(i+1) − 2, 2 ≤ i ≤ r − 1 (3.19)

d
dt

P2,n(t) = −
⎧⎨
⎩M(λ − ε) +

(
S(i+1) − n

)
(αi+1 − ε) +

k∑
j=i+2

Sj(αj − ε) + (μf − ε) +
r∑

j=1

(μj − ε)

⎫⎬
⎭P2,n(t)

+

⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,n+1(t)

+

⎧⎨
⎩M(λ − ε) +

(
S(i+1) − n + 1

)
(αi+1 − ε) +

k∑
j=i+2

Sj(αj − ε)

⎫⎬
⎭

× P2,n−1(t); S(i) + 1 ≤ n ≤ S(i+1) − 2, r ≤ i ≤ k − 1 (3.20)

d
dt

P2,S(k)(t) = −
⎧⎨
⎩M(λd − ε) + (μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,S(k) +

⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,S(k)+1(t)

+ {M(λ − ε) + (αk − ε)}P2,S(k)−1(t) (3.21)

d
dt

P2,n(t) = −
⎧⎨
⎩

(
M + S(k) − n

)
(λd − ε) + (μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,n(t)

+

⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭ P2,n+1(t) +

{(
M + S(k) − n + 1

)
(λd − ε)

}

× P2,n−1(t); S(k) + 1 ≤ n ≤ L − 1 (3.22)
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d
dt

P2,L(t) = −
⎧⎨
⎩(μf − ε) +

r∑
j=1

(μj − ε)

⎫⎬
⎭P2,L(t) + {m (λd − ε)}P2,L−1(t). (3.23)

To solve the above set of equations (1)−(23), we employ Runge−Kutta method of fourth order and get the
transient state probabilities. The set of equations (1)-(23) can be written as:

dP (t)
dt

= f (t, P (t)) (3.24)

where unknown probability vector P(t) = [P0,0(t), . . . P0,N−1(t), P1,1(t), . . . PS1−1,1(t), P2,N0+1(t), . . . , P2,L(t)] is
computed by using routine ode45 of MATLAB 7 with the initial condition P0,0(0) = 1. This method is based
on iterative computation as follows:

P(tw+1) = P(tw) +
h

6
(fw1 + 2fw2 + 2fw3 + 2fw4) (3.25)

where

fW1 = f (tW ,P(tW )) (3.26)

fW2 = f

(
tW +

h

2
,P(tW ) +

fW1h

2

)
(3.27)

fW3 = f

(
tW +

h

2
,P(tW ) +

fW2h

2

)
(3.28)

fW4 = f (tW + h,P(tW )) + fW3h. (3.29)

4. Performance measures

In order to validate the utility of the present model in real time system and to analyze the performance of
the concerned system, it is important to establish some measures of performance. Now, we formulate some
performance measures in terms of state probabilities of machining system supported by standbys and repair
crew as follows:

• The probability that at time t, the system is in accumulation state when the repair is not yet started and
the failed units are joining the queue,

PA(t) =
N−1∑
n=0

P0,n(t). (4.1)

• The probability that the permanent repairman is operating in normal mode at time t

PPN (t) =
S1−1∑
n=1

P1,n(t). (4.2)

• The probability that the permanent repairman is rendering service with faster rate and the additional
repairmen are also activated at time t

PPF (t) =
L∑

n=N0+1

P2,n(t). (4.3)
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• The probability that the system is working in short mode at time t

PS(t) =
L−1∑

n=S(k)+1

P2,n(t). (4.4)

• The expected number of failed units in the system at time t

EN (t) =
N−1∑
n=1

nP0,n(t) +
S1−1∑
n=1

nP1,n(t) +
L∑

n=N0+1

nP2,n(t). (4.5)

• The expected number of available standby units in the system at time t

ES(t) =
N−1∑
n=0

(
S(k) − n

)
P0,n(t) +

S1−1∑
n=1

(
S(k) − n

)
P1,n(t) +

S(k)−1∑
n=N0+1

(
S(k) − n

)
P2,n(t). (4.6)

• The expected number of additional repairmen in the system at time t

EA(t) =
S2−1∑

n=N0+1

P2,n(t) +
r−1∑
i=2

S(i+1)−1∑
n=S(i)

iP2,n(t) +
L∑

n=S(r)

rP2,n(t). (4.7)

• The throughput of the system at time t

T (t) =
N0∑

n=1

μP1,n(t) +
S1−1∑

n=N0+1

μP1,n(t) +
S2−1∑

n=N0+1

(μf + μ1)P2,n(t) +
r−1∑
i=2

S(i+1)−1∑
n=S(i)

⎛
⎝μf +

i∑
j=1

μj

⎞
⎠P2,n(t)

+
L∑

n=S(r)

⎛
⎝μf +

r∑
j=1

μj

⎞
⎠ P2,n(t). (4.8)

• The reliability of the system at time t is

R(t) = 1 − P2,L(t). (4.9)

• The failure frequency of the system at time t

F (t) = λL−1P2,L−1(t). (4.10)

• Cost function
In order to obtain the optimal number of additional removable repairmen and standbys required to maintain

the system availability and reliability, the cost function has been developed. To construct the cost function, the
different cost factors taken into consideration are as follows:
C0 = Cost per unit time of the operating units when the system is working in normal mode.
CS = Cost per unit time of the available standby units in the system.
CA = Cost per unit time of the additional repairmen while repairing the failed units.
Cμ = Cost per unit time of the repair done by the permanent repairman at normal rate.
Cf= Cost per unit time of the repair done by the permanent repairman at faster rate.
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Table 1. Fixed parameters for Figures 2−6.

Figure 2
Figure 3 Figure 4 Figure 5

Figure 6
(ii-iv) (i) (i-iv,vi) (v)

μf 1 4 2 2 2 2 2
λ 0.4 0.4 1 0.4 0.4 1
α [0.3,0.2,0.1] [0.3,0.2,0.1] [1,0.8,0.5] [0.3,0.2,0.1] [0.3,0.2,0.1] [1,0.8, 0.5]
λd 0.8 0.8 2 0.8 0.8 2

To find out the optimal number of additional repairmen and standbys subject to the reliability constraint,
the expected total cost per unit time is given by:

TC(t) = C0M − EN (t) + CSES(t) + CAEA(t) + Cμμ + Cfμf (4.11)

subject to

R(t) ≥ R0(t) (4.12)

where R0(t) is a minimum value of the reliability of the system to be achieved at time t.

5. Sensitivity analysis

After establishing the performance indices given in the previous section, it is worthwhile to com-
pute these measures by taking suitable illustration. By keeping some default parameters fixed as
M = 10, k = 3, r = 3, N = 3, N0 = 5, m = 2, μ = 1 and ε = 0.05 and other parameters as given in
Table 1, we compute performance indices which are interpreted from the sensitivity analysis view points, are
as follows:

(i) Effect of the time (t):
The expected number of failed units EN (t) in the system and the throughput of the system T (t) increases
(Figs. 2 and 5) as time t grows. On the contrary, the expected number of available standby units ES(t) and the
reliability of the system R(t) decrease (Figs. 3 and 4) with the increase in time t which is what we expect in
the real time system also.

(ii) Effect of the failure rate (λ), repair rates (μ & μf) and interdependence rate (ε):
At any specific time epoch t, with the increase in the failure rate λ of the operating units, the expected number of
failed units EN (t), the expected number of additional repairmen available in the system EA(t), the throughput
of the system T (t) and the failure frequency of the system F (t) increase which is quite obvious as depicted in
Figures 6(i), 6(iii), 6(iv) and 6(vi), respectively. The expected number of available standby units ES(t) and the
reliability of the system R(t) decrease with the increase in the failure rate λ which can be seen in Figures 6(ii)
and 6(v), respectively.

The repair rate of the permanent repairman μ affects the expected number of failed units in the system EN (t)
abruptly. In Figure 2(i), for the lower values of t, it is almost constant but for the higher value of t, it decreases
on increasing the values of μ. The expected number of available standby units ES(t) remains unaffected by the
increase in the repair rate μf as depicted in Figure 3(iv). The reliability of the system R(t) and throughput of
the system T (t) increase with the increase in the value of μf as shown in Figures 4(iv) and 5(iv), respectively,
which is quite understandable and obvious too.

The mean dependence rate of the failure and repair rates ε affects the performance measures significantly.
The expected number of failed units EN (t) and the throughput T (t) show a decreasing trend in Figures 2(iii)
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Figure 2. Effect of (a) μ (b) N (c) ε (d) k on the expected number of failed units in the system.

Figure 3. Effect of (a) N (b) ε (c) k (d) μf on the expected number of standby units in the
system.
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Figure 4. Effect of different set of (a) ε (b) m (c) k (d) μf on the reliability of the system up.

Figure 5. Effect of (a) N (b) ε (c) k (d) μf on the throughput of the system.
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Figure 6. On varying the failure rate λ of the operating units, the effect of values of M on
(a) EN (t) (b) ES(t) (c) EA(t) (d) T (t) (e) R(t) (f) F (t).

and 5(ii), respectively. On the contrary, the expected number of available standby units ES(t) and the reliability
R(t) show an increasing trend with the increase in ε as displayed in Figures 3(ii) and 4(i), respectively.

(iii) Effect of N :
The expected number of failed units EN (t) and T (t) increase with the increasing values of N as shown in
Figures 2(ii) and 5(ii), respectively. On the other hand, the expected number of available standby units ES(t)
remains almost constant on increasing the values of N as demonstrated in Figure 3(i).

(iv) Effect of the number of types of standbys (k):
With the increase in the number of the standbys k, the expected number of failed units EN (t) increases (see
Fig. 2(iv)) whereas the expected number of available standby units ES(t) and the reliability of the system R(t)
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decrease as depicted in Figures 3(iii) and 4(iii), respectively. In Figure 5(iii), we notice that the throughput
T (t) first increases and then decreases with increasing values of k.

(v) Effect of (m, M):
The system will be less reliable if the minimum number (m) of operating units required to keep the system
working, will be more. The reliability of the system R(t) varies inversely with the values of m as depicted in
Figure 4(ii). In Figures 6(i), 6(ii) and 6(iv), it is observed that the expected number of failed units EN (t), the
expected number of available standby units ES(t) and the throughput of the system T (t) respectively, increase
with the increase in the number of operating units M . It is further noticed in Figure 6(ii) that the expected
number of available standby units ES(t) decreases with the increase in M .

Based on the trends of numerical results displayed we conclude that the system will be more reliable if more
number of standbys are deployed in the system and the repair is done at a faster pace. It is also visible from the
graphs that if the units fail with a higher rate, then the failure frequency of the system will be more and there
will be more chances of the system failure. To cope up with this situation, it is recommended that the optimal
combination of maintainability and redundancy should be kept based on queueing and reliability performance
indices.

6. Conclusion

The study of the performance measures enables us to control the threshold parameters as per requirement
of the machining system which operates under certain techno-economic constraints. This investigation will be
helpful in developing an efficient and economical machining system which is equipped with multi-type of standbys
and maintenance crew to achieve a higher grade of service. Such type of machining system can be commonly
found in shopping malls, transportation systems, manufacturing systems, production systems, computer and
communication systems, etc. The present study can be further extended in the direction of providing a cost
optimization model for a machine repair problem with controlled rates and additional repairmen.
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