
RAIRO-Oper. Res. 50 (2016) 211–219 RAIRO Operations Research
DOI: 10.1051/ro/2015026 www.rairo-ro.org

A BRANCH AND BOUND ALGORITHM TO MINIMIZE THE SINGLE
MACHINE MAXIMUM TARDINESS PROBLEM UNDER EFFECTS

OF LEARNING AND DETERIORATION WITH SETUP TIMES

M. Duran Toksarı
1

Abstract. This paper sheds light on minimizing the maximum tardiness with processing and setup
times under both learning effect and deterioration. In this paper, all the jobs have processing and setup
times under effects of learning and deterioration. By the effects of learning and deterioration, we mean
that the processing time of a job is defined by an increasing function of its execution start time and
position in the sequence. We provide a branch and bound algorithm to minimize the maximum tardiness
under effects of learning and deterioration with setup times. Computational experiments show that the
proposed algorithm can solve instances up to 800 jobs in reasonable time.

Mathematics Subject Classification. 90B35, 90B36.

Received August 5, 2014. Accepted June 12, 2015.

1. Introduction

In classical scheduling problems, the processing times aren’t considered under some effects. However, in many
real world scheduling environments such as steel production, iron ingots, fire-fighting etc., both setup time of
any family and processing time of any job increase or decrease over time. If a job is processed later, it consumes
more time than the job when it is processed earlier. In this case, the job is under deterioration effect. Gupta
and Gupta [5], and Browne and Yechiali [3] introduced independently deterioration effect on jobs in scheduling
problems. Alidae and Womer [1] classified deterioration effect models into three different types: linear, piecewise
linear and non-linear. In this paper, we consider linear effect for both job processing times and family setup
times in single machine scheduling problems to minimize maximum tardiness by a branch and bound algorithm.
We assume that the actual processing time of job j under linear deterioration effect is such that

p̂j = (pj + (α × tj)) (1.1)

where pj is the basic processing time of job j, α is common deterioration effect, and tj is the starting time of
job j.

On the other hand, in many realistic scheduling environments, workstations speed continuously up as a
result of learning for repeating the same or similar activities. Thus, the processing time of a job is shorter
if it is scheduled later in the sequence [15, 16]. In the literature, this phenomenon, which was first entitled by

Keywords. Maximum tardiness problem, learning effect, deterioration effects, setup times.

1 Erciyes University, Engineering Faculty, Industrial Engineering Department, Kayseri, Turkey. dtoksari@erciyes.edu.tr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2016

http://dx.doi.org/10.1051/ro/2015026
http://www.rairo-ro.org
http://www.edpsciences.org


212 M.D. TOKSAR

Mosheiov [14], is known as a “learning effect”. We assume that the actual processing time of job j under learning
effect is such that

p̂j = pj × ra (1.2)

where pj is the basic processing time of job j, r is position into sequence of job j, and a is common learning
effect.

In the scheduling literature, many researchers [8, 9, 11, 12, 17–27,29, 30, 37] have simultaneously used deterio-
ration effect and learning effect to optimize scheduling problems. Furthermore, some scheduling problems under
learning effect and/or deterioration effect are extended to group scheduling problems [11,32,34–36]. In the some
problems, there is no setup time between two consecutive jobs in the same group. However, each group has a
group setup time to set up the tools, jigs and fixture on machines [10]. Some researchers [4,28,31,33] have worked
on group scheduling problem with setup times under learning effect and/or deterioration effect. Wang et al. [28]
mean that the group setup times is an increasing function of its starting time. Wu and Lee [31] considered which
setup times are lengthened as jobs wait to be processed. Cheng et al. [4] minimized the maximum tardiness
with deteriorating setup times. The problem under study in Xingong and Guangle [33] used setup times under
learning effect for single machine group scheduling problems. In this paper, we used different setup times for
each group.

The rest of the paper is organized as follows: in Section 2, we present the problem formulation. In Section 3, we
show a branch and bound algorithm and a lower bound. In Section 4, we present the computational experiment.
The conclusions of the research are summarized in Section 5.

2. Problem formulation

In the single machine environment, we have n jobs to be classified into m families. All jobs are available at
time zero. Each family has sequence-independent setup time. In our problem, we define the actual processing
time under learning and deterioration effects as follows:

p[r] = (pk + (α × t)) (r)a (2.1)

where pk and p[r] are the basic processing time and the actual processing time of job k, which schedule in rth
position, respectively. t is the starting time of the job, a is common learning effect for all jobs, and α is common
deterioration effect for all jobs. Moreover, we assume that the actual setup time of a job from family i under
learning and deterioration effects can be expressed as follows:

s[i] = (si + (θ × t)) (R)b (2.2)

where si and s[i] are the basic setup time and the actual setup time of family i, respectively. R, t are the
position and starting time of family i, respectively, b is common learning effect for all family, and θ is common
deterioration effect for all jobs.

Cheng et al. [4] proposed a branch and bound algorithm to solve maximum tardiness with deteriorating jobs
and setup times. There are two important differences between this paper and [4]. Firstly, the structure of the
deterioration effect used in [4] is different from this paper. Cheng et al. [4] assume that the actual job processing
time of job j is a simple linear function of its starting time t such that

pj = αj × t. (2.3)

However, the deterioration effect for a job in this paper is common, and bases on both its starting time and
simple processing time.

Secondly, the problem worked by Cheng et al. [4] is without learning effect. The processing time of a job under
learning effect is shorter if it is scheduled later. On the other hand, if a job under deterioration is processed
later, it consumes more time than the job when it is processed earlier. In this paper, we use simultaneously
these reverse effects when Cheng et al. [4] consider only deterioration effect.



A BRANCH AND BOUND ALGORITHM FOR MAXIMUM TARDINESS PROBLEM UNDER SOME EFFECTS 213

3. A branch and bound algorithm

Cheng et al. [4] show that single-machine scheduling problem with deterioration jobs and setup times for
minimizing the maximum tardiness is NP-hard. Thus we propose a branch and bound algorithm to minimize
the maximum tardiness with processing times and setup times under both learning effect and deterioration.
We present first some dominance properties and a lower bound, and then we introduce the branch and bound
algorithm in detail.

3.1. Dominance properties

In this section, we propose some rules to eliminate the dominated sequences.

Theorem 3.1. If jobs j and k are into the family i, and the relations between their processing times and due
dates are pi

j < pi
k and di

j � di
k, respectively, then job j precedes job k in an optimal sequence.

Proof. Let Si = (πi, J i
j , J

i
k, π̂i) show a sequence in family Gi where Jj and Jk are scheduled in the rth and

(r + 1)th positions, respectively. When schedule is Ŝi = (πi, J i
k, J i

j , π̂
i), Jj and Jk are scheduled in the rth

and (r + 1)th positions, respectively. The tardiness of the jobs in the partial sequence (πi, π̂i) is the same in
both sequences since jobs Jj and Jk are from the family Gi. We use a similar approach as the one described
in [17, 21, 22]. T i

[r](S
i) = T i

j (S
i) and T i

[r](Ŝ
i) = T i

k(Ŝi) are tardiness for the jobs in (r) th positions of both

schedules, respectively. T i
[r+1](S

i) = T i
k(Si) and T i

[r+1](Ŝ
i) = T i

j (Ŝ
i) are tardiness for the jobs in (r + 1)th

positions of both schedules, respectively. t is starting time of the job scheduled in position r.

T i
[r]

(
Si
)

= T i
j

(
Si
)

=
(
t +

(
pi

j + α.t
)
(r)a)︸ ︷︷ ︸

Ci
[r](S

i)

−di
j

T i
[r+1]

(
Si
)

= T i
k

(
Si
)

=
(
Ci

[r]

(
Si
)

+
(
pi

k + α
(
Ci

[r]

(
Si
)))

(r + 1)a
)
− di

k

T i
[r]

(
Ŝi
)

= T i
k

(
Ŝi
)

=
(
t +

(
pi

k + α.t
)
(r)a)︸ ︷︷ ︸

Ci
[r](Ŝi)

−di
k

T i
[r+1]

(
Ŝi
)

= T i
j

(
Ŝi
)

=
(
Ci

[r]

(
Ŝi
)

+
(
pi

j + α
(
Ci

[r]

(
Ŝi
)))

(r + 1)a
)
− di

j .

If di
j � di

k, then we obtain T i
k(Ŝi) < T i

j (Ŝ
i). That is, T i

j (Ŝ
i) = max(T i

k(Ŝi), T i
j (Ŝ

i)) if di
j � di

k.
If pi

j < pi
k, then Ci

k(Si) < Ci
j(Ŝ

i). Thus, if di
j � di

k and pi
j < pi

k, then T i
k(Si) < T i

j (Ŝ
i) and T i

j (S
i) < T i

j (Ŝ
i).

Therefore, max{T i
[r](S

i), T i
[r+1](S

i)} � max{T i
[r](Ŝ

i), T i
[r+1](Ŝ

i)} while pi
j < pi

k and di
j � di

k.

Thus, Si = (πi, J i
j , J

i
k, π̂i) dominates Ŝi = (πi, J i

k, J i
j , π̂

i) and the proof is completed. �

We present three properties to use in the branch and bound algorithm, followed by a lower bound. We have
used for all properties that Si = (π, Jj , Jk, π′) and Ŝi = (π, Jk, Jj , π

′) are two sequences. For all properties, we
assume pi

j < pi
k and di

j � di
k. t is the starting time of the job scheduled in position r.

At this point, we introduce a proposition to determine the feasibility of a partial schedule to work better
through the search process. Assume that (π, πc) is sequence of jobs where π and πc are the scheduled part and
unscheduled part, respectively. S∗ = (π∗, π) be a sequence in which the unscheduled jobs (πc) are arranged as
follows: jobs, which are in the same family with the first job of π, are scheduled last, and if they are more than
one, they are scheduled in the earliest due date (EDD) order. Other jobs are scheduled in the EDD order, if
they are in the same family. Families are scheduled in the EDD order of the maximum due dates of the families.
A similar approach was used in [4].

Theorem 3.2. If maxj∈π Tj(S∗) � maxj∈π∗ Tj(S∗) then sequence (π∗, π) dominates sequences of type
(π, πc) [4].



214 M.D. TOKSAR

Proof. We know that S is a sequence of the type (π, πc). We assume that maxj∈π{Tj(S∗)} � maxj∈π∗{Tj(S∗)}
then

max
1<j�n

{Tj (S)} = max
{

max
j∈π

{Tj (S)} , max
j∈πc

{Tj (S)}
}

� max
j∈π

{Tj (S)}

� max
{

max
j∈π

{Tj (S∗)} , max
j∈π∗

{Tj (S∗)}
}

= max
j∈π

{Tj (S∗)} .

Thus, (π∗, π) is optimal among sequences of type (π, πc) [4]. �

Property 1. If jobs (j, k) are into family i, A = t+αtra+αt(r + 1)a+α2tra(r + 1)a and di
j < A+(pi

j(r + 1)a)+
((pi

kra)(1 + α(r + 1)a)), then Si dominates Ŝi.

Proof. Ci
[r](S

i) = Ci
j(S

i) and Ci
[r](Ŝ

i) = Ci
k(Ŝi) are completion times for the jobs in (r)th positions of schedules

Si and Ŝi, respectively. Ci
[r+1](S

i) = Ci
k(Si) and Ci

[r+1](Ŝ
i) = Ci

j(Ŝ
i) are completion times for the jobs in

(r + 1)th positions of schedules Si and Ŝi, respectively.

Ci
[r]

(
Si
)

= Ci
j

(
Si
)

= t +
(
pi

j + αt
)
(r)a

Ci
[r+1]

(
Si
)

= Ci
k

(
Si
)

= Ci
[r]

(
Si
)

+
(
pi

k + α
(
Ci

[r]

(
Si
)))

(r + 1)a

Ci
[r]

(
Ŝi
)

= Ci
k

(
Ŝi
)

= t +
(
pi

k + αt
)
(r)a

Ci
[r+1]

(
Ŝi
)

= Ci
j

(
Ŝi
)

= Ci
[r]

(
Ŝi
)

+
(
pi

j + α
(
Ci

[r]

(
Ŝi
)))

(r + 1)a

= A +
(
pi

j (r + 1)a)+
((

pi
kra
)
(1 + α (r + 1)a)

)
then we have max{T i

k(Si), T i
j (S

i)} � T i
j (Ŝ

i) where

di
j < A +

(
pi

j (r + 1)a)+
((

pi
kra
)
(1 + α (r + 1)a)

)
, pi

j < pi
k

and di
j � di

k and the proof is completed. �

Recall that we obtained the setup time of family i as s[i] = (si + θt)(R)b before Property 2 and Property 2
is presented.

Property 2. If the last job in π is not into family i, A′ = (t + s[i])(1 + α + α2a + α22a) and di
j < A′ +

2a(pi
j + αpi

k), then Si dominates Ŝi.

Proof. If the last job in π is not family i, then the completion times of jobs (j, k) in Si and Ŝi are

Ci
[1]

(
Si
)

= Ci
j

(
Si
)

= t + s[i] +
(
pi

j + α
(
t + s[i]

))
(1)a

Ci
[2]

(
Si
)

= Ci
k

(
Si
)

= Ci
[1]

(
Si
)

+
(
pi

k + α
(
Ci

[1]

(
Si
)))

(2)a

Ci
[1]

(
Ŝi
)

= Ci
k

(
Ŝi
)

= t + s[i] +
(
pi

k + α
(
t + s[i]

))
(1)a

Ci
[2]

(
Ŝi
)

= Ci
j

(
Ŝi
)

= Ci
[1]

(
Ŝi
)

+
(
pi

j + α
(
Ci

[1]

(
Ŝi
)))

(2)a = A′ + 2a
(
pi

j + αpi
k

)
then we have max{T i

k(Si), T i
j (S

i)} � T i
j (Ŝ

i) where di
j < A′ + 2a(pi

j + αpi
k), pi

j < pi
k and di

j � di
k and the proof

is completed. �



A BRANCH AND BOUND ALGORITHM FOR MAXIMUM TARDINESS PROBLEM UNDER SOME EFFECTS 215

Property 3. If there is no job in π that is into family i,

A′′ =
((

t + s[i]

)
(1 + αra + α (r + 1)a)

)
+
(
(ra (r + 1)a)

(
α2ts[i] + α2s2

[i]

))
and

di
j < A′′ +

(
pi

j (r + 1)a)+
((

pi
kra
)
(1 + α (r + 1)a)

)
,

then Si dominates Ŝi.

Proof. If the last job in π is not family i, then the completion times of jobs (j, k) in Si and Ŝi.

Ci
[r]

(
Si
)

= Ci
j

(
Si
)

= t + s[i] +
(
pi

j + α
(
t + s[i]

))
(r)a

Ci
[r+1]

(
Si
)

= Ci
k

(
Si
)

= Ci
[r]

(
Si
)

+
(
pi

k + α
(
Ci

[r]

(
Si
)))

(r + 1)a

Ci
[r]

(
Ŝi
)

= Ci
k

(
Ŝi
)

= t + s[i] +
(
pi

k + α
(
t + s[i]

))
(r)a

Ci
[r+1]

(
Ŝi
)

= Ci
j

(
Ŝi
)

= Ci
[r]

(
Ŝi
)

+
(
pi

j + α
(
Ci

[r]

(
Ŝi
)))

(r + 1)a

= A′′ +
(
pi

j (r + 1)a)+
((

pi
kra
)
(1 + α (r + 1)a)

)
di

j < A′′ +
(
pi

j (r + 1)a)+
((

pi
kra
)
(1 + α (r + 1)a)

)
then we have max{T i

k(Si), T i
j (S

i)} � T i
j (Ŝ

i) where

di
j < A′′ +

(
pi

j (r + 1)a)+
((

pi
kra
)
(1 + α (r + 1)a)

)
, pi

j < pi
k

and di
j � di

k and the proof is completed. �

3.2. A lower bound

We developed, by inspiring from [4], a lower bound for minimizing the maximum tardiness problem with
processing times and setup times under both learning effect and deterioration.

Let S∗ be a partial schedule (PS) in which the order of the last (n-k) jobs is known and in which the first
k jobs are unscheduled. Let p1 � p2 � . . . � pk be the basic processing times of the unscheduled jobs, in
non-decreasing order and let d1 � d2 � . . . � dk their due dates, also in non-decreasing order. Note that p1 and
d1 may not belong to the same job. Further, let n1 � n2 � . . . � nm be the sizes of the families associated with
the unscheduled jobs, and let s1 � s2 � . . . � sm be their setup times, both of them in non-decreasing order
Note that n1 and s1 may not belong to the same family.

The actual completion time of the first job is Ci
[1] = t+s[i]+(pi

1 + α(ti1 + s[i]))(1)a where setup time of family
i is s[i] = (si + θt)(R)b. Similarly, the completion time of the rth job (if job k is scheduled in position r) is

C[r] = Cq = t0 +
i−1∑
u=1

(
s[u] +

nu∑
v=1

pu
[v]

)
+ s[i] +

r−1∑
z=1

pi
[z]︸ ︷︷ ︸

ti
q

+
(
pi

q + α
(
tiq + s[i]

))
(r)a 1 � r � k.

We can derive a lower bound on the completion time of the kth job by assuming that jobs into the first family
with smallest basic processing times form a family with setup times s[1], the next family with the second smallest
basic processing times form a family with setup times s[2], and so on. Thus, we have

C[r] � C∗
[r] = t0 +

i−1∑
u=1

(
s[u] +

lr∑
v=1

pu
[v]

)
+ s[i] +

lr∑
v=1

pi
[v] 1 � r � k



216 M.D. TOKSAR

where lr is the smallest number such that r � n[1] + n[2] + . . . + n[lr]. We can compute a lower bound on the
completion times of the scheduled jobs accordingly. That is,

C[r] � C∗
[r] = C[k] +

m−1∑
u=i+1

(
s[u] +

nu∑
v=1

pu
[v]

)
+ s[m] +

r−1∑
z=1

pm
[z] +

(
pi

q + α
(
tiq + s[i]

))
(r)a

k + 1 � r � n.

Thus, we have

Tmax (PS) = max
{

max
1�r�k

{
C[r] (PS) − d[j]

}
, max
k+1�r�n

{
C[r] (PS) − d[j]

}
, 0
}

� max
{

max
1�r�k

{
C∗

[r] − d[j]

}
, max
k+1�r�n

{
C∗

[r] − d[j]

}
, 0
}

.

This inequality holds because C∗
[r] is a lower bound on the actual completion times. Therefore, a lower bound

on the maximum tardiness of the PS is

LB = max
{

max
1�r�k

{
C∗

[r] − d[j]

}
, max
k+1�r�n

{
C∗

[r] − d[j]

}
, 0
}

.

3.3. The branch and bound algorithm

We used the depth-first search in the branching procedure. A similar approach was used in [4,13,16]. According
to this approach, the algorithm only needs to store the lower bounds for at most n− 1 active nodes through the
branch procedure. The algorithm assigns jobs in a forward manner starting from the first position. The steps
of the branch-and-bound algorithm are described as follows.

Step 1. Arrange the initial solution S = (−,−, . . .−) with maximum tardiness ∞.
Step 2. Apply Theorem 3.1 and Properties 1–3 to eliminate the dominated partial sequences.
Step 3. For non-dominated nodes, apply Theorem 3.2 to find the order for unscheduled jobs.
Step 4. Find the lower bound of the maximum tardiness for the unscheduled partial sequences or the maximum
tardiness for the completed sequences. If the lower bound for the unscheduled partial sequence is greater than or
equal the initial solution, eliminate the node and all nodes beyond it in the branch. If the value of the completed
sequence is less than the initial solution, replace it as the new solution. Otherwise, eliminate it.
Step 5. Repeat Steps 2–4 until all trees have been completed.

4. Computational experiments

We conducted computational experiments in order to evaluate the performance of the optimal branch and
bound algorithm. The proposed algorithms were coded in Visual Studio C#, and run on a PC with 2.33 GHz
CPU and 3 GB RAM. We used three different numbers of jobs (n = 200, 500 and 800). The basic processing
times were generated from a uniform distribution over the integers between 10 and 70 in every case, while the
due dates were generated from a uniform distribution over the integers on (0, 15nλ) where n is the number of
jobs. Two different sets of problem instances were generated by giving λ the values 0.06 and 0.08. Moreover,
the basic setup times were generated from a uniform distribution over the integers between 2 and 15 in every
case. We assumed that the learning rate is 80% and 70%.

In this case, the learning effect is found using a (=log2 e � 0) when e is the learning rate. By the literature,
we know that different products have different learning curves, and that the rate of learning varies depending
upon the potential of the process and product [6]. So, the learning rates vary between 70% and 90% for different
manufacturing industries in the US between 1920 and 1988. For examples; 79% and 80% were in the steel
industry and aircraft assembly, respectively [16]. On the other hand, some researchers [2, 7, 16] used (0, 1] for
determination of deterioration rate, so we assumed deterioration rates of the job processing times α = 0.1 and



A BRANCH AND BOUND ALGORITHM FOR MAXIMUM TARDINESS PROBLEM UNDER SOME EFFECTS 217

Table 1. The performance of proposed branch and bound algorithm.

n e α λ

Branch and bound algorithm

CPU time (s) Number of nodes

Mean SD Max Mean SD Max

200

80%

0.1
0.06 0.0565 0.0408 0.0351 353.6900 263.0323 1194

0.08 0.0781 0.0664 0.0610 556.1400 401.7436 1218

0.2
0.06 0.0304 0.0312 0.0283 246.1100 173.1940 781

0.08 0.1285 2.1154 14.6257 1351.1900 7714.6406 45 893

70%

0.1
0.06 0.0667 0.0591 0.0490 472.8600 241.9080 1547

0.08 0.0712 0.0704 0.0657 566.6800 400.1145 1805

0.2
0.06 0.0518 0.0488 0.0351 367.0700 165.4402 1201

0.08 0.1255 9.2516 15.2657 3598.6100 8903.5885 83 672

500

80%

0.1
0.06 0.4512 0.3858 1.4576 654.5000 1200.1674 8736

0.08 0.9658 4.5268 14.6215 5427.6600 14 788.8537 75 327

0.2
0.06 0.7091 0.6654 3.0025 858.9600 1909.0245 7176

0.08 7.3652 18.8873 87.6302 5051.3500 19 256.3935 97 034

70%

0.1
0.06 0.8856 0.7451 2.9573 1057.9800 2386.8947 9701

0.08 1.0291 22.0276 114.2592 7283.4700 23 721.2232 102 694

0.2
0.06 0.9912 0.8886 4.5614 1020.8900 2603.4232 7571

0.08 8.2650 72.9154 433.8504 9381.7940 28 608.4713 159 697

800

80%

0.1
0.06 1.5874 1.6238 9.9566 1190.5600 1423.0420 8796

0.08 22.1547 101.7452 994.2318 7125.5000 12 488.3670 35 056

0.2
0.06 2.6547 2.0581 18.6254 1806.4500 1406.5084 11 374

0.08 39.2514 185.6183 2564.8400 8071.8000 60 732.0770 20 883

70%

0.1
0.06 5.2194 5.2773 27.9932 1999.0800 1859.5783 9553

0.08 18.8957 77.4599 924.6329 11 062.5560 45 425.8710 266 734

0.2
0.06 8.6581 7.9228 28.6615 2121.1300 1652.0618 6536

0.08 74.6215 254.2165 3324.5641 14 435.0200 50 411.9209 273 445

0.2, and we generated the deterioration rates of the family setup times (θ) from uniform distributions over 0
and 1. For each condition, 100 instances were randomly generated, and the results are presented in Table 1.

Table 1 shows that if the value of λ becomes large, the range of the job release times is large, thus Theorem 3.2
is useful in that case. This explains the decreasing trend of the number of nodes as the value of λ becomes large.
The mean error percentages decreased to zero as the value of λ became large. This explains the increment of
the number of nodes for small values of λ. Moreover, this is due to the fact that Theorem 3.2 is less potent
when due dates are more variable and small, as explained earlier.

5. Conclusions

In this paper, we consider single machine scheduling problem with processing times and setup times under
both learning effect and deterioration to minimize the maximum tardiness. Cheng et al. [4] show that single-
machine scheduling problem with deterioration jobs and setup times for minimizing the maximum tardiness is
NP-hard. Therefore, the problem with both learning effect and deterioration is NP-hard, indicating that finding
an optimal solution is difficult. In this paper, we develop a branch and bound algorithm incorporating several
dominances and a lower bound to solve the problem, which seems to work well for reasonably sized problems.
The branch-and-bound algorithm performs well in terms of the number of nodes and the CPU time when the
number of jobs is less than or equal to 800. Different performance measures such as other due date related
objective functions can also be considered under these effects and batch setup times.



218 M.D. TOKSAR

References

[1] B. Alidaee and N.K. Womer, Scheduling with time dependent processing times: Review and extensions. J. Oper. Res. Soc. 50
(1999) 711–720.

[2] A. Bachman, T.C.E. Cheng, A. Janiak and C.T. Ng, Scheduling start time dependent jobs to minimize the weighted total
completion time. J. Oper. Res. Soc. 53 (2002) 668–693.

[3] S. Browne and U. Yechiali, Scheduling deteriorating jobs on a single processor. Oper. Res. 38 (1990) 495–498.

[4] T.C.E. Cheng, C.J. Hsu, Y.C. Huang and W.C. Lee, Single-machine scheduling with deteriorating jobs and setup times to
minimize the maximum tardiness. Comput. Oper. Res. 38 (2011) 1760–1765.

[5] J.N.D. Gupta and S.K. Gupta, Single facility scheduling with nonlinear processing times. Comput. Ind. Eng. 14 (1988) 387–393.

[6] J. Heizer and B. Render, Operations Management, 6th edition. Prentice-Hall (2001).

[7] Y.S. Hsu and B.M.T. Lin, Minimization of maximum lateness under linear deterioration. Omega: Int. J. Manag. Sci. 31 (2003)
459–469.

[8] X. Huang and M.-Z. Wang, Parallel identical machines scheduling with deteriorating jobs and total absolute differences
penalties. Appl. Math. Model. 35 (2011) 1349–1353.

[9] X. Huang, J.-B. Wang, L.-Y. Wang, W.-J. Gao and X.-R. Wang, Single machine scheduling with time-dependent deterioration
and exponential learning effect. Comput. Ind. Eng. 58 (2010) 58–63.

[10] W.H. Kuo and D.L. Yang, Single machine group scheduling with a time-dependent learning effect. Comput. Oper. Res. 33
(2006) 2099–2112.

[11] W.-C. Lee and C.-C. Wu, A note on single-machine group scheduling problems with position-based learning effect. Appl. Math.
Model. 33 (2009) 2159–2163.

[12] W.-C. Lee and C.-C. Wu, Some single-machine and m-machine flowshop scheduling problems with learning consideration. Inf.
Sci. 179 (2009) 3885–3892.

[13] W.C. Lee, C.C. Wu and P.H. Hsu, A single-machine learning effect scheduling problem with release times. Omega: Int. J.
Manag. Sci. 38 (2010) 3–11.

[14] G. Mosheiov, Scheduling problems with a learning effect. Eur. J. Oper. Res. 132 (2001) 687–693.

[15] M.D. Toksarı and E. Guner, Minimizing the earliness/tardiness costs on parallel machine with learning effects and deteriorating
jobs: a mixed nonlinear integer programming approach. Int. J. Adv. Manuf. Technol. 38 (2008) 801–808.

[16] M.D. Toksarı, A branch and bound algorithm for minimizing makespan on a single machine with unequal release times under
learning effect and deteriorating jobs. Comput. Oper. Res. 38 (2011) 1361–1365.

[17] M.D. Toksarı and E. Güner, Parallel machine earliness/tardiness scheduling problem under the effects of position based learning
and linear/nonlinear deterioration. Comput. Oper. Res. 36 (2009) 2394–2417.

[18] M.D. Toksarı and E. Güner, Scheduling problems with the nonlinear effects of learning and deterioration. Int. J. Adv. Manuf.
Technol. 45 (2009) 801–807.

[19] M.D. Toksari, D. Oron and E. Güner, Single machine scheduling problems under the effects of nonlinear deterioration and
time-dependent learning. Math. Comput. Model. 50 (2009) 401–406.

[20] M.D. Toksari, D. Oron and E. Güner, Some Scheduling Problems with Past Sequence Dependent Setup Times Under the
Effects of Nonlinear Deterioration and Time-Dependent Learning. RAIRO: RO 44 (2010) 107–118.

[21] M.D. Toksarı and E. Güner, The common due date Early/tardy scheduling problem on a parallel machine under the effects of
time dependent learning and linear/ nonlinear deterioration. Expert Systems with Applications 37 (2010) 92–112.

[22] M.D. Toksarı and E. Güner, Parallel machine scheduling problem to minimize the earliness/tardiness costs with learning effect
and deteriorating jobs. J. Intelligent Manuf. 21 (2010) 843–851.

[23] B. Wang, C.T. Ng and T.C.E. Cheng, Single-machine scheduling with deteriorating jobs under a series-parallel graph constraint.
Comput. Oper. Res. 35 (2008) 2684–2693.

[24] J.-B. Wang, L. Lin and F. Shan, Single machine group scheduling problems with deteriorating jobs. Int. J. Adv. Manuf.
Technol. 39 (2008) 808–812.

[25] J.-B. Wang, Single machine scheduling with a time-dependent learning effect and deteriorating jobs. J. Oper. Res. Soc. 60
(2009) 583–586.

[26] J.-B. Wang, W.-J. Gao, L.-Y. Wang and D. Wang, Single machine group scheduling with general linear deterioration to
minimize the makespan. Int. J. Adv. Manuf. Technol. 43 (2009) 146–150.

[27] J.-B. Wang, X. Huang, X.Y. Wang, N. Yin and L.Y. Wang, Learning effect and deteriorating jobs in the single machine
scheduling problems. Appl. Math. Model. 33 (2009) 3848–3853.

[28] J.B. Wang, L. Lin and F. Shan, Single-machine group scheduling problems with deteriorating jobs. Int. J. Adv. Manuf. Technol.
39 (2008) 7–8.

[29] C.-C. Wu and W.-C. Lee, Single-machine group-scheduling problems with deteriorating setup times and job-processing times.
Int. J. Prod. Econ. 115 (2008) 128–133.

[30] C.-C. Wu, Y.-R. Shiau and W.-C. Lee, Single-machine group scheduling problems with deterioration consideration. Comput.
Oper. Res. 35 (2008) 1652–1659.

[31] C.C. Wu and W.C. Lee, Single-machine group scheduling problems with deteriorating setup times and job processing times.
Int. J. Prod. Econ. 115 (2008) 128–133.

[32] C.C. Wu, Y.R. Shiau and W.C. Lee, Single-machine group scheduling problems with deterioration consideration. Comput.
Oper. Res. 35 (2008) 1652–1659.



A BRANCH AND BOUND ALGORITHM FOR MAXIMUM TARDINESS PROBLEM UNDER SOME EFFECTS 219

[33] Z. Xingong and Y. Guangle, Single machine scheduling problems with deteriorated and learning effect. Appl. Math. Comput.
216 (2010) 1259–1266.

[34] S.-J. Yang, Single-machine scheduling problems with both start-time dependent learning and position dependent aging effects
under deteriorating maintenance consideration. Appl. Math. Comput. 217 (2011) 3321–3329.

[35] S.-H. Yang and J.-B. Wang, Minimizing total weighted completion time in a two-machine flow shop scheduling under simple
linear deterioration. Appl. Math. Comput. 217 (2011) 4819–4826.

[36] W.H. Yang and S. Chand, Learning and forgetting effects on a group scheduling problem. Eur. J. Oper. Res. 187 (2008)
1033–1044.

[37] V.C.Y. Zhu, L. Sun, L. Sun and X. Li, Single machine scheduling time-dependent jobs with resource-dependent ready times.
Comput. Ind. Eng. 58 (2010) 84–87.


	Introduction
	Problem formulation
	A branch and bound algorithm
	Dominance properties
	A lower bound
	The branch and bound algorithm

	Computational experiments
	Conclusions
	References

