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A NOVEL ANALYTICAL INTEGER OPTIMIZATION METHOD FOR WAVELET
BASED SUBBAND CODING
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Abstract. In subband coding (SBC), the original signal is decomposed into some frequency subbands
and then the total available number of bits is divided between different subbands of the signal. In the
most of existing SBC methods, the number of allocated bits can be real and negative, while in practice
the number of bits must be integer and nonnegative. In this paper an analytical solution is derived
for subband coding with optimum nonnegative integer bit allocation and multi-resolution filter bank
(including wavelet filter bank). The analytical solution is applicable for either non-uniform or uniform
SBC. A modified discrete bisection algorithm is also proposed which can reduce the computational
complexity of searching in a group of discrete functions. The computational complexity of proposed
method is lower than the complexity of integer optimization algorithms which are applicable to SBC.
Compared to the common SBC algorithms with real-valued bit allocation (in which the number of bits
should be rounded), the proposed method has much less quantization error.
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1. Introduction

A common data compression approach is to decompose the signal by means of a filter bank and then using
the optimal bit allocation, minimize the total quantization mean square error (MSE) under a fixed total bit rate
constraint. This approach is known as subband coding (SBC) [1, 2, 4, 6, 10, 12, 19, 21, 22, 24, 25]. SBC is widely
used for compression and coding of all types of signal such as speech, image and video. SBC can be implemented
using any type of filter bank including wavelet filter bank. In the most SBC approaches the bandwidths of
subbands are assumed equal (uniform SBC) [1,19,21] while in few approaches the bandwidths of subbands can
be different (non-uniform SBC) [4,25]. Since in multi-resolution wavelet transforms bandwidths of subbands are
different, only in the second type of SBC approaches multi-resolution wavelet transform can be used.

In many SBC references, direct form relations are derived for the optimal number of bits of each subband
in terms of the variance of signal in different subbands [1, 4, 19, 25]. However, in these direct form relations the
number of bits can be real and negative, while in practice the number of bits must be integer and nonnegative.
Thus, integer optimization techniques should be used for solving the problem of optimal bit allocation in

Keywords. Wavelet filter bank, subband coding, data compression, integer optimization.

1 Dept. of Communications and Electronics, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
masnadi@shirazu.ac.ir

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2016

http://dx.doi.org/10.1051/ro/2015025
http://www.rairo-ro.org
http://www.edpsciences.org


190 M. HATAM AND M.A. MASNADI-SHIRAZI

SBC [5, 8, 15, 17, 20, 23]. This is a serious problem which is addressed by many SBC references. For example
in [18] Ma and Rajala point out that:

“Direct forms provide theoretical results but are often limited by practical issues such as non-integer
arithmetic, negativity, and/or mismatched bit assignment. The mismatch implies that the calculated
results using the direct form, which could be negative, are different from the quantizers bit rate, which
are always positive . . . ”

In another reference, Aas and Mullis state that [1]:
“The optimal word length (OWL) (9) [direct form relation ] will, in general, not give integer values

for the bits, but approximating these values by integers is a standard procedure which usually gives
satisfactory results [4]. More seriously, channels for which the product KiiWii is relatively small may
be assigned a negative number of bits, which violates the modeling assumptions . . . ”

Among the existing integer optimization approaches, the algorithm proposed by Fox in [9] can be used for
non-uniform and uniform SBC but this algorithm has relatively high computational complexity for SBC and its
complexity grows with the total bit rate. Obtaining the integer bit allocation by rounding the real valued direct
form solution needs lower computational complexity compared to Fox algorithm but this procedure is heuristic
and does not essentially lead to the optimal solution [11].

In this paper at first, using an analytical discrete optimization approach the solution of SBC problem is
derived in terms of the Lagrange multiplier, λ. Then, by applying the constraint of problem, the Lagrange
multiplier is removed and an analytical solution is derived for SBC with nonnegative integer bit allocation. The
solution is valid for both uniform and non-uniform filter banks including multi-resolution wavelet filter banks.

The computational complexity of proposed method is lower than Fox algorithm. Furthermore, unlike the Fox
algorithm, the complexity of the proposed method does not grow as the total number of bits increases.

Using computer simulation, the performance of proposed method is compared to the direct form solution
(with rounding). The results show that the proposed method is superior. However, the order of computational
complexity of proposed method is not increased compared to the direct form solution. Another computer
simulation is carried out to compare the running time of proposed method with that of Fox algorithm. The
simulation results confirm that the proposed method is faster and its complexity does not depend on the total
number of bits.

The proofs of theorems, lemmas and the computational complexity of algorithms are brought in Appendix A.

2. Problem formulation

Assume that using a filter bank, the original signal is decomposed to p subbands and the signal of ith subband
is quantized with bi bits per sample. In SBC, the aim is to find the optimal number of bits per sample for each
subband under a maximum bit rate constraint. The total quantization MSE is obtained from [4,25]

MSE =
p∑

i=1

εiσ
2
i

τimi
4−bi , (2.1)

where τi is the masking threshold coefficient of ith subband, mi is the decimation factor of ith subband, σ2
i is

the variance of signal in ith subband and εi is a constant depending on the statistical properties of the signal
of ith subband. The problem constraint is

p∑
i=1

bi

mi
≤ R,

where R is the maximum allowable value of average number of bits per sample. Similar to wavelet and wavelet
packet filter banks, we assume that bandwidths of all subbands are integer multiples of the minimum bandwidth
of subbands. On the other hand the decimation factor is proportional to the inverse of bandwidth i.e. mi ∝ 1/Δi
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where Δi is the bandwidth of ith subband. Thus, the constraint can be written as

p∑
i=1

(Δi/Δmin)
bi

mmax
≤ R,

p∑
i=1

kibi ≤ Rmmax,

where Δmin = min
i

{Δi}, mmax is the decimation factor of the subband with bandwidth Δmin and ki = Δi/Δmin

is an integer number. Since kis and bis are integer, the constraint can be modified as
∑p

i=1 kibi ≤ B and the
optimization problem is formulated as

Minimize
{b1,b2,...,bp}

p∑
i=1

εiσ
2
i

τimi
4−bi Subject to:

p∑
i=1

kibi ≤ B, (2.2)

where B � �Rmmax� is an integer value.
In the common SBC direct form relations, the optimal real-valued number of bits of ith subband is obtained

from the following relation [4, 25]

bi = R +
1
2
log4

εiσ
2
i / (τimi)

p∏
j=1

(
εjσ2

j / (τjmj)
)1/mj

· (2.3)

In practice, the number of bits cannot be non-integer and the above value should be replaced by an integer
near it. Rounding the value obtained from (2.3) to the nearest integer value may cause exceeding the maximum
bit rate, R. Thus, to implement the common direct form relations, one should round the value obtained from
direct form relation to the nearest integer value smaller than it.

3. Optimization tools

3.1. Analytical discrete optimization approach

Here, we introduce an analytical approach for finding the local minima and maxima of discrete functions. We
have presented the general approach in [14] but here we bring a part of this approach which is for one-dimensional
discrete functions.

Some Definitions:
Assume that f [n] is a discrete function defined on D ⊂ Z.

Define n∗ as a local minimum of the discrete function f [n] if n∗, n∗ − 1 and n∗ + 1 are in D and we have
f [n∗] ≤ f [n∗ − 1] and f [n∗] ≤ f [n∗ + 1].

Define n∗ as a local maximum for the discrete function f [n] if n∗, n∗ − 1 and n∗ + 1 are in D and we have
f [n∗] ≥ f [n∗ − 1] and f [n∗] ≥ f [n∗ + 1].

Denote the floor of real number x by �x� which is defined as the largest integer less than or equal to x.

Theorem 3.1. Assume that f [n] is a discrete function defined on the integer interval I ⊂ Z and fr(x) is a
continuous function defined on the connected interval Ir ⊂ R so that I ⊂ Ir and at each integer point in Ir such
as n′ we have fr(n′) = f [n′]. Let x1, x2, . . . , xm be all the solutions of the equation fr(x) − fr(x − 1) = 0. The
set A consisting of the floors of all xis (i = 1, 2, . . . , m) plus integer (xi − 1)s (if any) contains all the local
minima and maxima of f [n]. ‖
The proof of Theorem 3.1 can be found in Appendix A.1



192 M. HATAM AND M.A. MASNADI-SHIRAZI

Remark 3.2. In Theorem 3.1 if some of xis are integer we have

fr(xi) = fr(xi − 1)

f [xi] = f [xi − 1].

Thus, in this case if xi is a local maximum (minimum) of f [n], then xi − 1 is another local maximum
(minimum) of f [n] with the same value.‖

3.2. Lagrange analysis for SBC

Lagrange multiplier technique can be used for integer optimization problems, but there is more limited
conditions for optimality of this technique in integer optimization compared to continuous optimization prob-
lems [7, 13]. Theorem 3.3 introduces a sufficient condition for optimality of Lagrange multiplier approach.

Theorem 3.3 (from [7]). Consider the optimization problem:

Minimize
x∈D

{G(x) } (3.1)

Subject to : C(x) ≤ c,

where x is a d-element vector and G(x) and C(x) are real valued functions defined on D. Assume that x∗(λ) is
the solution of the problem

Minimize
x∈D

{G(x) + λC(x).}

If a λ∗ ≥ 0 is found that satisfies the equality C(x∗(λ∗)) = c then x∗(λ∗) is the solution of the problem (3.1)
(see the proof in [7]).‖

According to Theorem 3.3, to solve the SBC problem (2.2), at first we should find

min
b1,b2,...,bp

{
p∑

i=1

εiσ
2
i

τimi
4−bi + λ

p∑
i=1

kibi

}
. (3.2)

bi ∈ D, i = 1, . . . , p

Denote the optimum value of bi in (3.2) by the set function {b∗i (λ)} which is related to the bits of ith subband.
The reason of defining {b∗i (λ)} as a set function is the fact that the problem (3.2) may have more than one
solution at each λ (see Rem. 3.2).

When D ⊂ Z, depending on the values of kis, in some cases the relation
∑p

i=1 kibi = B cannot be satisfied.
Let B1 be the maximum integer value smaller than or equal to B for which the relation

∑p
i=1 kibi = B1 can be

satisfied. Since B1 is the maximum accessible number of bits, the constraint
∑p

i=1 kibi ≤ B can be changed as∑p
i=1 kibi ≤ B1 and hence according to Theorem 3.3, λ∗ can be obtained from

p∑
i=1

ki {b∗i (λ∗)} = B1.

In [9], Fox showed that the solution obtained from his algorithm is equal to the solution of Lagrange uncon-
strained problem ({b∗i (λ)}s) for some λ. He also showed that {b∗i (λ)}s are efficient solution of the main problem
which means that {b∗i (λ)}s are optimal solution of main problem for B =

∑p
i=1 ki {b∗i (λ)}. Furthermore, he

showed that in the case k1 = k2 = . . . = kp (uniform SBC in our application) {b∗i (λ∗)}s are essentially the
optimal solution of main problem.
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3.3. Selection algorithm

Selection is the algorithm of finding the member with rank i in a set of N numbers. Best selection algorithms
are O(N) [3, 16]. Using the selection algorithm we can also find the subset of i largest (or smallest) members
of a set of N numbers with the complexity O(N) (for example by comparing all members to the member with
rank i).

Some Definitions :
Define Ψ(i , T) as the member with rank i (ith large number) in the set T.
Define Φ(i , T) as the subset of i largest members of the set T and define Φ′(i , T) as the subset of i smallest

members of the set T.
Define Φ̄(i1, i2,T) as the set of members with ranks between i1 to i2 in the set T. We have:

Φ̄(i1, i2,T) = Φ(i2,T) − Φ(i1 − 1,T) , i2 > i1

Define R(x , T) as the rank of the number x in the set T (in descending order).
Denote the number of members of any set like T by |T|.

3.4. Discrete bisection algorithm

Bisection algorithm is a well-known algorithm for finding the roots of continuous functions. Here we present a
discrete version of this algorithm. Consider the non-increasing discrete function f [n] and assume that f [n1] > 0
and f [n2] ≤ 0 where n2 − n1 = N > 0. In the discrete bisection algorithm our aim is to find n∗ such that

f [n∗] > 0 and f [n∗ + 1] ≤ 0. (3.3)

Algorithm 3.4. Discrete bisection algorithm

Step 1: Set n1 = 1 and n2 = N .
Step 2: Set n̄ = �(n1 + n2)/2�.
Step 3: If (3.3) is satisfied at n∗ = n̄, then stop the algorithm; n∗ = n̄ is the solution. Otherwise:

If f [n̄] > 0 set n1 = n̄ + 1 and go to Step 2.
If f [n̄] < 0 set n2 = n̄ − 1 and go to Step 2.

Stop.

This algorithm has at most �log2(N)� + 1 iterations and is O(N) (see the proof in Appendix A.2). For
non-decreasing discrete functions directions of inequalities in the above algorithm should be reversed.

Sometimes we encounter the problem of searching the condition (3.3) in discrete functions of type f [n] =
g (Ψ(n,T),Φ(n,T)), where T is an arbitrary set with N members (|T| = N), g(α,U) is a function of the scalar
α and the set U with arbitrary number of members and we have

g(α,U) = ḡ(α,h(U)),

where h(U) = [h1(U), h2(U), . . . , hq(U)] is a vector of q functions of the set U (in this paper we assume that
q ≤ 2) and ḡ(α,h) is a function of the scalar α and the vector h and we have

h(U1 ∪ U2) = h(U1) + h(U2) − h(U1 ∩ U2), (3.4a)

h({}) = 0, (3.4b)

where {} denotes the empty set.
Since the complexity of finding Ψ(n̄, T) and Φ(n̄, T) is O (N), the total complexity of Algorithm 3.4 for the

function f [n] = g (Ψ(n, T),Φ(n,T)) will be O (N log2(N)). But by some modifications, the complexity can be
reduced to O (N).
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First, since at each step of Algorithm 3.4 we have n̄ ∈ [n1, n2], to reduce the complexity of finding Φ(n, T),
at each iteration we can limit the set T as T̃ = Φ̄(n1, n2,T) and use the relation

Φ(n̄, T) = Φ(n1, T) ∪Φ(n̄ − n1 + 1, T̃).

Similarly we have
Ψ(n̄,T) = Ψ(n̄ − n1 + 1, T̃).

Define T0 � Φ(n1, T). Since T̃ ∩ T0 = {} according to (3.4) we would have

f [n̄] = g
(
Ψ(n̄,T),h(T0) + h(Φ(n̄ − n1 + 1, T̃))

)
.

Second, since during the bisection algorithm n1 and n2 are closing together, the set T̃ will be a subset of T̃
at the previous iteration, and hence T̃ can be found from the recursive relation:

T̃(i+1) =

{
Φ′(n2

(i) − n̄(i), T̃(i)) , if f [n̄(i)] > 0
Φ(n̄(i) − n1

(i), T̃(i)) , otherwise,

where the superscript (i) denotes the iteration number.
Third, when n1 is changed to n̄ + 1, the value of T0 = Φ(n1, T) should be updated and the members of T

with ranks n1 to n̄ (i.e. Φ̄(n1, n̄, T) = Φ(n̄−n1 + 1 , T̃)) should be added to T0. Thus, T0 can be recursively
obtained as:

T0
(i+1) =

{
T0

(i) ∪ Φ(n̄(i) − n1
(i) + 1 , T̃(i)) , if f [n̄(i)] > 0

T0
(i) (no change) , otherwise.

Similarly, the value of h0 � h(T0) can be recursively updated as

h0
(i+1) =

{
h0

(i) + h(Φ(n̄(i) − n1
(i) + 1, T̃(i))) , if f [n̄(i)] > 0

h0
(i) (no change) , otherwise.

Based on the above modifications, we come to the following algorithm.

Algorithm 3.5. Modified Discrete Bisection Algorithm for discrete functions of type f [n]=g(Ψ(n,T),Φ(n,T))

Step 1: Set n1 = 1, n2 = N , T0 = {} (empty set), h0 = 0, and T̃ = T.

Step 2: Set n̄ = �(n1 + n2)/2� and find f [n̄] = ḡ
(
Ψ(n̄ − n1 + 1, T̃),h0 + h(Φ(n̄ − n1 + 1, T̃))

)
and

f [n̄ + 1] = ḡ
(
Ψ(n̄ − n1 + 2, T̃),h0 + h(Φ(n̄ − n1 + 2, T̃))

)
.

Step 3: If (3.3) is satisfied at n∗ = n̄, then stop the algorithm; n∗ = n̄ is the solution. Otherwise:
If f [n̄] > 0 set T0 = T0 ∪Φ(n̄− n1 + 1, T̃), h0 = h0 + h(Φ(n̄ − n1 + 1, T̃)) and n1 = n̄ + 1, then set
T̃ = Φ′(n2 − n̄, T̃) and go to Step 2.
If f [n̄] < 0 set n2 = n̄ − 1 and then set T̃ = Φ(n̄ − n1, T̃) and go to Step 2.

Stop.

The total complexity of this algorithm is O (N) (see the proof in Appendix A.3).
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4. Solving the problem

In this section we solve the SBC problem (2.2) for two cases:

(1) The values of bits are constrained to be integer, i.e. bi ∈ Z, ∀i. In this case we call the problem as integer
SBC (ISBC).

(2) The values of bits are constrained to be nonnegative and integer, i.e. bi ∈ Z
+, ∀i. In this case we call the

problem as nonnegative integer SBC (NISBC).

In the unconstrained problem (3.2), the ith term of each summation only depends on bi and {b∗i (λ)} in ISBC
problem can be obtained from

{b∗i (λ)} = arg min
bi∈Z

{J(bi, λ)},

where

J(bi, λ) =
εiσ

2
i

τimi
4−bi + λbi , i = 1, . . . , p

Define the continuous function

J(b̂i , λ) =
εiσ

2
i

τimi
4−b̂i + λb̂i,

where b̂i is a real variable. For convenience define

Ci � εiσ
2
i

τimi
·

To find {b∗i (λ)} based on Theorem 3.1, we should solve

J(b̂i , λ) − J(b̂i − 1 , λ) = 0

Ci4−b̂i + λb̂i − (Ci4−b̂i+1 + λ(b̂i − 1)) = 0

3Ci4−b̂i = −λ

b̂i(λ) = log4(3Ci) − log4(λ), λ ≥ 0 (4.1)

According to Theorem 3.1, {b∗i (λ)} which is the minimum of the discrete function J(bi , λ) is obtained from

{b∗i (λ)} =

{ ⌊
b̂i(λ)

⌋
if b̂i(λ) is not integer

b̂i(λ) or b̂i(λ) − 1 if b̂i(λ) is integer,
(4.2)

where b̂i(λ) is given in (4.1). It should be noted that since the J(bi , λ) has only one local minimum as (4.2), it
is the global minimum of the J(bi, λ) in Z for λ ≥ 0 (According to Thm. 3.3, we only consider the problem for
λ ≥ 0).

In the case of NISBC problem in which bis should be nonnegative, since J(bi , λ) is a unimodal function of bi,
if the minimum of J(bi , λ) in Z is negative, since the unimodal function J(bi , λ) at the right hand side of its
minimum is increasing, its minimum in Z

+ will be zero. Thus, in NISBC we have

{b∗i (λ)} =

⎧⎪⎨
⎪⎩

⌊
b̂i(λ)

⌋
u(b̂i(λ)) if b̂i(λ) is not integer

b̂i(λ)u(b̂i(λ)) or
(b̂i(λ) − 1)u(b̂i(λ) − 1) if b̂i(λ) is integer,

(4.3)
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Figure 1. Typical diagram of {b∗i (λ)} (solid) and b̂i(λ) (dashed) versus λ.

where, u(.) denotes the unit step function:

u(x) =

{
1 x ≥ 0
0 x < 0.

Define

{B∗(λ)} �
p∑

i=1

kj {b∗i (λ)} . (4.4)

Typical plots of {b∗i (λ)} and {B∗(λ)} are shown in Figures 1 and 2, respectively. The optimum λ can be
found by solving {B∗(λ)} = B1 (B1 is defined in Sect. 3.2).

Some Definitions:
Define λc as a critical λ of {b∗i (λ)} if {b∗i (λ)} has a jump and has two different values at λc. According to (4.2)

and (4.3) at critical λs b̂i(λ) is integer. For distinguishing the two values of {b∗i (λ)} at λc define

b∗i (λ
c)L = lower value of {b∗i (λ)} at λc, (4.5)

b∗i (λ
c)H = higher value of {b∗i (λ)} at λc. (4.6)

According to (4.4), at each critical λ of {b∗i (λ)}s, {B∗(λ)} also has a jump. Since some of {b∗i (λ)}s may have
common critical λs, {B∗(λ)} may have more than two values at critical λs. Define

B∗(λc)L =
k∑

i=1

b∗i (λ
c)L = lowest value of {B∗(λ)} at λc,

B∗(λc)H =
k∑

i=1

b∗i (λ
c)H = highest value of {B∗(λ)} at λc.
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Figure 2. Typical diagram of {B∗(λ)} versus λ.

Define λc
i,j as a critical λ of {b∗i (λ)} at which b∗i (λ

c
i,j)L

= j − 1 and b∗i (λ
c
i,j)H

= j where i and j are integer
numbers. According to (4.1)−(4.3) critical λs can be obtained from

log4(3Ci) − log4(λ) = j,

λc
i,j = 3Ci4−j . (4.7)

Define the interval of λ at which the diagram {B∗(λ)} is constant as a step. A step of {B∗(λ)} may be a
singular point or a nonsingular step as illustrated in Figures 3 and 4 (see also Lem. 4.1).

Define S = {1, 2, . . . , p} as the set of all subbands.
Denote the number of members of any set like T by |T|.
Denote the set of subbands with positive (nonzero) optimal number of bits by S+ and define p+ = |S+|.

Lemma 4.1. ISBC and NISBC problems have the following properties:
If the problem has more than one optimal solution, all the solutions occur at a unique critical λ as λs and the
number of solutions is

(
m
l

)
, where m is the number of {b∗i (λ)}s that have jump at λs and l = B − B∗(λs)L. If

the problem has a unique solution, the solution occurs at a nonsingular step of {B∗(λ)} (see Fig. 3).

The proof of Lemma 4.1 can be found in Appendix A.4.

Lemma 4.2.

(a) The NISBC problem is an ISBC problem for the subbands in S+. In other words, the solution of NISBC
problem can be found by solving the problem:

Minimize
bi∈Z

{ ∑
i∈S+

Ci4−bi

}
Subject to:

∑
i∈S+

bi

mi
≤ R.
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Figure 3. Intersection of {B∗(λ)} with the horizontal line f(λ) = B. (a) In multi solution case
the intersection is a singular point. (b) In unique solution case the intersection is a nonsingular
step.

Figure 4. Diagram of {B∗(λ)} about the critical point λs when m number of {b∗i (λ)}s (m ≥ 2)
have two values at λs.

(b) Let Sn be an arbitrary subset of (S − S+) and Sc = Sn ∪ S+. Then, in the ISBC problem for the subbands
in Sc, i.e., in the following problem:

Minimize
bi∈Z

{∑
i∈Sc

Ci4−bi

}
Subject to:

∑
i∈Sc

bi

mi
≤ R

we have b∗i ≤ 0, ∀i ∈ Sn, where b∗i is the optimal value of bi in the above problem.

The proof of Lemma 4.2 can be found in Appendix A.5.
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Remark 4.3. According to (4.2)−(4.4), {b∗i (λ)}s and {B∗(λ)} are non-increasing as λ increases.

Here, we first solve the ISBC problem and then modify the solution for NISBC. Let λ∗ be an optimum λ and b∗i
be an optimum value of bi related to λ∗ in the ISBC problem. Then, we have λc

i,b∗i +1 ≤ λ∗ ≤ λc
i,b∗i

because outside
this interval we have {b∗i (λ)} = b∗i . First, we assume that the solution of ISBC problem occurs at a nonsingular
step and all the bis have a unique optimal value. In this case, since {B∗(λ∗)} = B1 ≤ B, λc

i,b∗i +1 ≤ λ∗ ≤ λc
i,b∗i

and {B∗(λ)} is non-increasing with λ, we have B∗(λc
i,b∗i

)
H

≤ B. Also {B∗(λ)} has a jump at λc
i,b∗i +1 and

B∗(λc
i,b∗i +1)H

> B. Consequently, b∗i is the largest integer number as j for which B∗(λc
i,j)H

≤ B. i.e.

b∗i = max

{
j : B(λc

i,j)H
=

p∑
n=1

knb∗n(λc
i,j)H

≤ B and j ∈ Z

}
. (4.8)

Substituting (4.1), (4.2) and (4.7) in (4.8) yields

b∗i = max

{
j :

p∑
n=1

kn �log4(Cn) − log4(Ci) + j� ≤ B and j ∈ Z

}
. (4.9)

Defining k �
p∑

n=1
kn we obtain

b∗i = max

{
j : kj +

p∑
n=1

kn �log4(Cn) − log4(Ci)� ≤ B and j ∈ Z

}

= max

{
j : j ≤ B

k
− 1

k

p∑
n=1

kn �log4(Cn) − log4(Ci)� and j ∈ Z

}
. (4.10)

According to definition of floor we have

b∗i =

⌊
B

k
− 1

k

p∑
n=1

kn �log4(Cn) − log4(Ci)�
⌋

. (4.11)

In the case that λ∗ is critical, the problem has more than one optimal solution. Moreover, (4.11) can be
expressed in another form with lower computational complexity, as declared in Theorem 4.4.

Theorem 4.4. The optimal solution of ISBC problem can be found from

b∗i =

{
b̃ + �log4(Ci)� + 1 if ρi ≥ ρ̃

b̃ + �log4(Ci)� otherwise
(4.12)

where

b̃ =
⌊

B − B0

k

⌋
, ρi = log4(Ci) − �log4(Ci)� ,

B0 =
p∑

i=1

ki �log4(Ci)�, B̃ = B − B0 − kb̃,

k̃ρ = −
p∑

i=1

ki �ρi − ρ� =
∑

i∈{j:ρj≤ρ}
ki , ∀ρ ∈ [0, 1),

ρ̃ = min
{
ρn : k̃ρn ≥ k − B̃

}
.
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The value of ρ̃ can be obtained using Algorithm 3.5 with f [n] = g(Φ(n, Γ)) =
(∑

i∈{j:ρj∈Φ(n, Γ)} ki

)
−

(
k − B̃

)
and setting ρ̃ = Ψ(n∗, Γ), where Γ � {ρi}p

i=1 . In the case that some of bis have two optimal values, the
corresponding ρis are equal. In this case, the problem has

(
m
l

)
solutions where m is the number of bis that have

two optimal values (have equal ρis) and l = B −
(∑p

i=1 ki

(
b̃ + �log4(Ci)�

))
.

The proof of Theorem 4.4 can be found in Appendix A.6.
Now, we modify the solution for NISBC problem. Define

C = {Ci}p
i=1 , S̄(n) = {i ∈ S : Ci ∈ Φ(n,C)},

B̄0(n) =
∑

i∈S̄(n)

ki �log4(Ci)�, k̄(n) =
∑

i∈S̄(n)

ki

and
¯̃
b(n) =

⌊
B − B̄0(n)

k̄(n)

⌋
·

Define b̄∗i (n) as the upper value of b∗i in (4.12) with b̃ = ¯̃
b(n), i.e.:

b̄∗i (n) = ¯̃b(n) + �log4(Ci)� + 1.

According to part (a) of Lemma 4.2, to solve the NISBC problem, one can find the subbands with positive
number of bits (S+) and then find the ISBC for those subbands. According to (4.12), b∗i is non-decreasing with
Ci and the subbands in S+ have larger values of Ci compared to those in (S− S+). Thus, S+ can be found as

S+ =
{
i : Ci ∈ Φ (p+, C)

}
. (4.13)

But p+ should be found. Define in as the index of the subband for which

Cin = Ψ(n,C).

At first, we assume that the upper value of b∗i in (4.12) is the optimal value of bi (we call this assumption as
assumption (*)) and then we check the lower value.

According to (4.13), we have S̄(p+) = S+ and S̄(p+ + 1) = S+ ∪ {
ip++1

}
where it is clear from (4.13) that

ip++1 ∈ (S − S+). Thus, in the case of assumption (*), according to part (b) of Lemma 4.2 we have b̄∗ip+
(p+) > 0

and b̄∗ip++1
(p+ + 1) ≤ 0. Therefore, p+ can be found using Algorithm 3.5 with f [n] = b̄∗in

(n).

It should be noted that b̄∗in
(n) is a function of Cin = Ψ(n,C) and S̄(n) = {i ∈ S : Ci ∈ Φ(n,C)} and hence

b̄∗in
(n) is in the form of g(Ψ(n,C),Φ (n, C)) where

g(α,U) = ḡ(α,h(U)) =
⌊

B − h1(U)
h2(U)

⌋
+ �log4(α)� + 1,

h(U) = [h1(U) = B̄0(U), h2(U) = k̄(U)],

B̄0(U) =
∑

i∈S̄(U)
ki �log4(Ci)�, k̄(U) =

∑
i∈S̄(U)

ki

and
S̄(U) = {i ∈ S : Ci ∈ U}.

According to the above relations, we have h(U1 ∪U2) = h(U1)+h(U2)−h(U1 ∩U2) and the condition (3.4)
is satisfied.

At the next step, to obtain the optimal solution in general case without assumption (*), we should check the
lower value in (4.12) (See Step 2 of Algorithm 4.5 below).
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Algorithm 4.5. Finding p+ and S+

Step 1: Find p+ in the case of assumption (*) using Algorithm 3.5 with f [n] = b̄∗in
(n). Then, set p+ = n∗ and

S+ = {i : Ci ∈ Φ (p+, C )}.
Step 2: For each n ∈ S+ check if ρn < ρ̃ and b∗n(p+) − 1 ≤ 0 remove the subband n from S+. Then, set

p+ = |S+|.
Stop.

Obviously, similar to Algorithm 3.5, the complexity of Algorithm 4.5 is O(p).
According to Lemma 4.2 and (4.12), the solution of the NISBC problem is obtained as

b∗i =

⎧⎪⎨
⎪⎩

0 if i /∈ S+

b̃+ + �log4(Ci)� + 1 if i ∈ S+ and ρi ≥ ρ̃+

b̃+ + �log4(Ci)� otherwise.
(4.14)

where

B+
0 =

∑
n∈S+

kn �log4(Cn)�, k+ =
∑

n∈S+

kn,

b̃+ =
⌊

B − B+
0

k+

⌋
, B̃+ = B − B+

0 − k+b̃+,

k̃+
ρ = −

p∑
i∈S+

ki �ρi − ρ� =
∑

i∈{j∈S+:ρj≤ρ}
ki , ∀ρ ∈ [0, 1),

ρ̃+ = min
{
ρn ∈ S+ : k̃+

ρn
≥ k − B̃

}
.

Since the complexity of Algorithm 4.5 for finding p+ and S+ is O(p), the total complexity of computing the
analytical solution of NISBC from (4.14) is also O(p). The complexity is considerably lower than Fox algorithm
which is O ((p + B) log2p) (it should be noted that the complexity of Fox algorithm is O(Bp) but, as explained
in footnote of [9], by using binary insertion, the complexity can be reduced to O ((p + B) log2p)). Furthermore,
unlike the Fox algorithm, the complexity of the proposed method does not depend on the total number of
bits, B.

Compared to the method of rounding down the real valued solution (2.3), the proposed method leads to lower
quantization MSE and is superior (see the next section). However, the order of computational complexity of
proposed method is not more than the method of rounding down the real valued solution and the both methods
are O(p).

5. Simulation results

A computer simulation is performed for evaluating the performance of SBC algorithm. A sinusoidal signal
with amplitude 1 in a zero mean white Gaussian noise with variance 1 is generated 10 000 times. The generated
signal is quantized with the average rate of 3 bits/sample using the following methods:

(1) Proposed SBC method with Haar discrete wavelet transform (DWT).
(2) Method of rounding down the real valued solution (2.3) (common SBC method) with Haar DWT.
(3) Quantizing all samples with equal number of bits (3 bits) in time domain (Pulse Code Modulation (PCM)

method).
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Figure 5. Quantization MSE for PCM, proposed SBC and common SBC methods for all time
samples with the average bitrate of 3 bits per sample.

Table 1. Average quantization MSE for PCM, proposed SBC and common SBC methods
using Haar DWT.

Method Average Quantization MSE (dB)

PCM −17.71

Common SBC −19.89

Proposed SBC −21.74

The other SBC parameters for the methods 1 and 2 are: p = 6, signal length= 64 samples, k1 = k2 = 2, k3 = 4,
k4 = 8, k5 = 16 , k6 = 32 and B = 192 (3 bits/sample).

The quantization MSE is estimated by averaging over squared errors in 10 000 runs. The results for all samples
in time domain is shown in Figure 5. The superiority of the proposed SBC method is obvious in Figure 5. The
average MSEs over all the samples for the above three methods are shown in Table 1. According to Table 1, the
average MSE for the proposed SBC method is about 1.85 dB lower than the common SBC method and 4.03 dB
lower than PCM method.

Another computer simulation is carried out to compare the running time needed for computing the analytical
solution (4.14) with the running time of Fox algorithm (with binary insertion). Each program is runned 100
times for each p and the average running time over all runs is obtained (the specifications of the computer used
for running all programs are: CPU: Intel B970, dual core, 2.3 GHz, RAM: 4 GB, OS: Windows 7, 64-bit). The
results for p = 2 to 64 with random values of Cis and B = 3p and B = 6p are shown in Figures 6 and 7,
respectively. The results confirm that the proposed method is faster than Fox algorithm.

Furthermore, comparing Figure 6 with Figure 7, since in Figure 7 the value of B is two times larger, it can
be concluded that the complexity of Fox algorithm grow with total number of bits, B, but the complexity of
proposed method does not grow as the total number of bits increases.
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Figure 6. Average running time of proposed method and Fox algorithm for random values of
Cis, p = 2 to 64 and B = 3p.
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Figure 7. Average running time of proposed method and Fox algorithm for random values of
Cis, p = 2 to 64 and B = 6p.

6. Conclusion

In this paper using an analytical discrete optimization approach, an analytical solution obtained for SBC
with nonnegative integer bit allocation. The solution is valid for both uniform and multi-resolution filter banks
(including wavelet). The complexity of computing the proposed analytical solution of NISBC is O(p). The
complexity is considerably lower than Fox algorithm which is O ((p + B) log2p). Compared to the method of
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rounding down the real valued solution, the proposed method leads to lower quantization MSE and is superior
(see the next section). However, the order of computational complexity of proposed method is not more than
the method of rounding down the real valued solution (2.3) and the both methods are O(p).

Using computer simulation the performance of proposed SBC method was compared to the common SBC
method (rounding the real valued solution) and PCM method. The results showed that the proposed method is
superior. Moreover, the order of computational complexity of proposed SBC method is not increased compared
to the common SBC method.

Appendix A. Proofs of theorems, lemmas and the computational complexity

of algorithms

A.1. Proof of Theorem 3.1

Assume that n∗ is a local minimum of f [n]. We have

f [n∗] ≤ f [n∗ − 1] ⇒ fr(n∗) ≤ fr(n∗ − 1)

⇒ fr(n∗) − fr(n∗ − 1) ≤ 0. (A.1)

Also we have
f [n∗] ≤ f [n∗ + 1] ⇒ fr(n∗) ≤ fr(n∗ + 1)

⇒ fr(n∗ + 1) − fr(n∗) ≥ 0. (A.2)

Since fr(x) is a continuous function on the interval Ir = [a, b], fr(x − 1) is also a continuous function
on the interval [a + 1, b + 1] and therefore g(x) = fr(x) − fr(x − 1) is a continuous function on [a + 1, b].
Assume that I = {n1, n1 + 1, . . . , n2} ⊂ Ir. According to definition of local minima (Sect. 3.1) we have n∗ ∈
{n1 + 1, n1 + 1, . . . , n2 − 1} ⊂ [a + 1, b − 1] and consequently [n∗, n∗ + 1] ⊂ [a + 1, b]. According to (A.1)
and (A.2) we have g(n∗) ≤ 0 and g(n∗ + 1) ≥ 0 and since g(x) is a continuous function, according to Bolzano’s
theorem it has at least one root in the interval [n∗, n∗ + 1]. Thus, the equation fr(x) − fr(x − 1) = 0 has at
least one solution in the interval [n∗, n∗ + 1]. If the solution(s) are in the interval [n∗, n∗ + 1), the floor of the
solution(s) would be n∗. If the solution is equal to n∗ + 1, since n∗ + 1 is integer, n∗ + 1 and (n∗ + 1) − 1 = n∗

would be in the set A. Thus, in either case the set A contains the local minimum n∗. Similarly, it can be shown
that if n∗ is a local maximum of f [n], the set A contains n∗ [14].

A.2. Computational complexity of Algorithm 3.4

In Step 2 of Algorithm 3.4 if f [n̄] > 0 the value n1 is set to n̄ + 1 and if f [n̄] < 0 the value n2 is set to n̄− 1.
Thus, in ith iteration we would have

Ni ≤ Ni−1

2
≤ N

2i
,

where Ni denotes the value of n2 − n1 at ith iteration. Let I be the total number of iterations then

N

2I
≤ 1

I = �log2 N� + 1,

Thus, the maximum number of iterations is �log2 N� + 1 and the algorithm is O(log2 N).
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A.3. Computational complexity of Algorithm 3.5

Similar to Algorithm 3.4, this algorithm has at most �log2(N)�+ 1 iterations. At each iteration the sets T̃ is
bisected. Thus, the complexity of computing f [n̄], f [n̄ + 1], T̃, T0, h and h0 at the lth iteration using selection
algorithm is O (N/2l) (it should be noted that q is a fixed number and in this paper we have q ≤ 2). The order
of total complexity of algorithm will be

�log2(N)�+1∑
l=0

N

2l
= N

1 − (1/2)�log2 N�+2

1 − (1/2)
≤ 2N.

A.4. Proof of Lemma 4.1

To find the solution(s) of the NISBC problem we should find the intersection of the diagram {B∗(λ)} with
the horizontal line f(λ) = B. Since {B∗(λ)} is non-increasing with λ, we may encounter the following two cases.
In the first case, the intersection of the diagram {B∗(λ)} with the line f(λ) = B is a singular point. In this case
the solutions occur at a critical λ as λs. In the case that {B∗(λ)} has a singular point at λs, two or more {b∗i (λ)}
are discontinuous and have two values at λs. Assume that m number of {b∗i (λ)}s have two values at λs(m ≥ 2)
and let l = B − B∗(λs)L. Then, in order to have {B∗(λ)} = B, for l number of {b∗i (λ)}s which have two values
at λs we must select the higher values and for the remaining {b∗i (λ)}s select the lower values. Thus, in this case
we have

(
m
l

)
solutions for NISBC problem. Also {B∗(λ)} would have m − 1 singular points (corresponding to

1 ≤ l ≤ m − 1) and two nonsingular steps (corresponding to l = 0 and l = m) at λs (see Fig. 4).
In the second case, the intersection of the diagram {B∗(λ)} with the line f(λ) = B is a nonsingular step that

contains infinite values of λ. Since we have no discontinuity at a nonsingular step, the values of {b∗i (λ)}s are
constant at a nonsingular step. Thus, in this case the NISBC problem has a unique solution.

A.5. Proof of Lemma 4.2

(a) Here for distinguishing ISBC and NISBC problems denote the optimum number of bits of ith subband
in NISBC by b∗+i . In the NISBC problem a λ should be found that

p∑
i=1

ki

{
b∗+i (λ)

}
= B1,

∑
i:{b∗+

i (λ)}>0

ki

{
b∗+i (λ)

}
+

∑
i:{b∗+

i (λ)}=0

ki

{
b∗+i (λ)

}
︸ ︷︷ ︸

=0

= B1.

According to (4.2) and (4.3) we have
{
b∗+i (λ)

}
= {b∗i (λ)} u({b∗i (λ)}). Then, we obtain∑

i: b∗+
i (λ)>0

ki {b∗i (λ)} u({b∗i (λ)}) = B1. (A.3)

In order to have {
b∗+i (λ)

}
= {b∗i (λ)} u({b∗i (λ)}) > 0

we should have u({b∗i (λ)}) = 1. Then (A.3) yields∑
i:{b∗+

i (λ)}>0

ki {b∗i (λ)} = B1.

A λ should be found that satisfies the above relation. Thus the NISBC problem is an ISBC problem for the
subbands that have positive optimal number of bits.
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(b) Let λ∗
1 be an optimum λ of the ISBC problem for the subbands S and λ∗

2 be an optimum λ of the ISBC
problem for the subbands Sc = Sn ∪ S+. For the first problem we have∑

i∈S

ki {b∗i (λ∗
1)} = B1,

∑
i:{b∗i (λ∗

1})>0

ki {b∗i (λ∗
1)} +

∑
i:{b∗i (λ∗

1)}≤0

ki {b∗i (λ∗
1)} = B1.

According to part (a) we have
Sn ⊂ {i : b∗i (λ

∗
1) ≤ 0}

and therefore ∑
i:{b∗i (λ)}>0

ki {b∗i (λ∗
1)} +

∑
i∈Sn

ki {b∗i (λ∗
1)} ≥ B1.

For the second ISBC problem we have∑
i:{b∗i (λ)}>0

ki {b∗i (λ∗
2)} +

∑
i∈Sn

ki {b∗i (λ∗
2)} = B1.

Since {b∗i (λ)}s are non-increasing with λ, comparing the two last relations we deduce

λ∗
2 ≥ λ∗

1,

∀i ∈ Sn : {b∗i (λ∗
2)} ≤ {b∗i (λ∗

1)} ,

∀i ∈ Sn : {b∗i (λ∗
2)} ≤ 0.

A.6. Proof of Theorem 4.4

Rewrite b∗i in (4.11) as

b∗i =

⌊
B

k
− 1

k

p∑
n=1

kn �log4(Cn) − log4(Ci)�
⌋

b∗i =

⌊
B

k
− 1

k

p∑
n=1

kn �log4(Cn)� +
1
k
�log4(Ci)�

p∑
n=1

kn − 1
k

p∑
n=1

kn �ρn − ρi�
⌋

b∗i =

⌊
B

k
− B0

k
+ �log4(Ci)� − 1

k

p∑
n=1

kn �ρn − ρi�
⌋

, (A.4)

where

B0 =
p∑

n=1

kn �log4(Cn)�,

ρn = log4(Cn) − �log4(Cn)� , n = 1, 2, . . . , k.

Since ρn ∈ [0 , 1) then we have (ρn − ρi) ∈ (−1 , 1) and hence �ρn − ρi� ∈ {−1 , 0}. Consequently we have

0 ≤ −
p∑

n=1

kn �ρn − ρi� <

p∑
n=1

kn = k,

0 ≤ −1
k

p∑
n=1

kn �ρn − ρi� < 1.
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Define

k̃ρ = −
p∑

i=1

ki �ρi − ρ� =
∑

i∈{j:ρj≤ρ}
ki , ∀ρ ∈ [0, 1), (A.5)

b̃ =
⌊

B − B0

k

⌋
, (A.6)

B̃ = B − B0 − kb̃. (A.7)

Substituting (A.5) and (A.6) in (A.4) we obtain

b∗i =
⌊
b̃ +

(
B̃ + k̃ρi

)
/k + �log4(Ci)�

⌋
= b̃ +

⌊(
B̃ + k̃ρi

)
/k

⌋
+ �log4(Ci)� . (A.8)

According to (A.7) B̃ is the reminder of dividing B − B0 to k and we have 0 ≤ B̃ < k. Moreover, we have
0 ≤ k̃ρi < k and consequently

0 ≤ B̃ + k̃ρi

k
< 2. (A.9)

According to (A.8) and (A.9) we conclude

b∗i =

{
b̃ + �log4(Ci)� + 1 if k̃ρi ≥ k − B̃,

b̃ + �log4(Ci)� otherwise.
(A.10)

Define
ρ̃ = min

{
ρn : k̃ρn ≥ k − B̃

}
. (A.11)

Then we have
k̃ρi ≥ k − B̃ ⇔ k̃ρi ≥ k̃ρ̃.

According to (A.5) k̃ρi is non-decreasing with ρi, therefore

k̃ρi ≥ k̃ρ̃ ⇔ ρi ≥ ρ̃.

Consequently (A.10) can be written as

b∗i =

{
b̃ + �log4(Ci)� + 1 if ρi ≥ ρ̃,

b̃ + �log4(Ci)� otherwise.
(A.12)

According to (A.11) and (A.5), ρ̃ can be obtained by applying Algorithm 3.5 to the discrete function f [n] =
k̃Ψ(n, Γ) −

(
k − B̃

)
=

(∑
i∈{j:ρj∈Φ(n, Γ)} ki

)
−

(
k − B̃

)
and setting ρ̃ = Ψ(n∗, Γ), where Γ � {ρi}p

i=1 . It should
be noted that f [n] is in the form of g(Φ(n, Γ)), where

g(U) = ḡ(h(U)) = h(U) − (k − B̃),

h(U) =
∑

i∈{j:ρj∈U} ki.

According to the above relations, we have h(U1 ∪U2) = h(U1) + h(U2)− h(U1 ∩U2) and the condition (3.4)
is satisfied.
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When some of bis have two optimal values, according to Lemma 4.1 some of b∗i (λ)s have common critical λs
which are equal to the optimal λ. Assume that bi and bk have two optimal values then

λc
i,b∗i

= λc
k,b∗k

,

Ci4−b∗i = Ck4−b∗k .

By taking log4 we obtain
log4 (Ci) − b∗i = log4 (Ck) − b∗k.

Substituting b∗i and b∗k from (A.12) yields

log4 (Ci) − �log4 (Ci)� = log4 (Ck) − �log4 (Ck)� or
log4 (Ci) − �log4 (Ci)� = log4 (Ck) − �log4 (Ck)� + 1 or

log4 (Ci) − �log4 (Ci)� = log4 (Ck) − �log4 (Ck)� − 1.

⇒ ρi = ρk or ρi = ρk + 1 or ρi = ρk − 1.

Since ρn ∈ [0 , 1), ∀n only the first equation is true and we have ρi = ρk. According to Lemma 4.1 we have(
m
l

)
solutions for the problem where m is the number of bis that have two optimal values (have equal ρis) and

l = B − B∗
L(λ∗)

= B −
p∑

i=1

ki

(
b̃ + �log4(Ci)�

)
.

Since ρ̃ and b̃ are independent of i, the total computational complexity of finding all b∗i s from (A.12) is O (p).
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