
RAIRO-Oper. Res. 50 (2016) 315–325 RAIRO Operations Research
DOI: 10.1051/ro/2015024 www.rairo-ro.org

LINEAR TIME ALGORITHMS TO SOLVE THE LINEAR
ORDERING PROBLEM FOR ORIENTED TREE BASED GRAPHS

Alain Quilliot
1

and Djamal Rebaine
2

Abstract. We present in this paper two simple linear algorithms that solve to optimality the linear
ordering problem for unweighted tree based graphs viz. the oriented trees and the oriented divide-and-
conquer graphs.

Mathematics Subject Classification. 9008.

Received May 18, 2015. Accepted June 1, 2015.

1. Introduction

Let G = (V, E) be a graph, where V and E denote respectively the set of vertices and the set of arcs. The
linear ordering problem for G consists of finding a one-to-one mapping σ from V to {1, . . . , |V |} that minimizes
the following cost function

f(G, σ) =
∑

(x,y)∈E

|σ(y) − σ(x)|. (1.1)

The corresponding decision problem was first shown to be NP-complete for arbitrary graphs [9]. This problem
was also shown to remain NP-hard even for some restricted classes of graphs such as interval graphs [5], and
bipartite graphs [9]. However, polynomial time algorithms were also developed for other restricted graph classes
such as trees [4], unit interval graphs [6], paths, cycles, complete graphs, complete bipartite graphs, and grid
graphs [10]. A general survey on linear ordering problems is given in [3, 8, 10].

When the graphs are oriented, we first observe that the linear ordering σ to seek is such that if (x, y) ∈ E
then σ(x) < σ(y). Moreover, cost function (1.1) simplifies into

f(G, σ) =
∑

(x,y)∈E

σ(y) − σ(x). (1.2)

The complexity status of the corresponding decision problem may be resumed as follows. It remains NP-hard
for the directed acyclic graphs as shown in [9]. The time complexity status gets however better for oriented trees

Keywords. Linear ordering, linear time algorithms, divide-and-conquer graphs, directed tree.

1 Université Blaise Pascal, LIMOS, UMR CNRS 6158, BP 10125 Campus des Cézeaux, 63173 Aubière, France.
alain.quilliot@isima.fr
2 Université du Québec à Chicoutimi, Département d’informatique et mathématique, 555, Bld. de l’Université, Saguenay,
Québec, Canada. djamal rebaine@uqac.ca

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2016

http://dx.doi.org/10.1051/ro/2015024
http://www.rairo-ro.org
http://www.edpsciences.org

316 A. QUILLIOT AND D. REBAINE

�
�

�
�

�
�

�
�

�
�

�� DC1 DC2 DC3

DCk
�

�
�

�
�

�

�
�

�
�

��

· · · · · · · · ·

�
�

�
�

�

�������� �

�
�

�
�

�

������������������

��
��
s

�������� �

	
	

	
	

	

t��

�
�

�
�� �

�
�

��

�
�

���

�
�

�
�

�

�
�

�
�� �

�
�

��

�
�

���

�
�

�
��

�
�
��� �

�
�
�

�
�

��

Figure 1. The structure of a divide-and-conquer graph.

as the corresponding problem was shown in [2] to be solvable in O(n log n), or for a subclass of serie-parallel
graphs as the corresponding problem was shown in [1] to be solvable in O(n2).

In the present study we focus on two oriented special graphs connected to trees. The first one is simply
the oriented tree for which we develop another optimal solution. By doing so, we achieve two goals. First, this
solution is simple to understand and straightforward to implement. Second, the time complexity of the derived
algorithm is linear thus optimal and improving by the same way the existing O(n log n)-time algorithm. Let us,
however, point out that the O(n log n) algorithm presented in [2] solves the weighted version of the problem we
are considering here, that is to say the cost function to minimize is now

∑
(x,y)∈E ω(x, y) (σ(y) − σ(x)), where

ω(x, y) is the weight associated with arc (x, y). In our case, we assume that the weights associated with each
arc are of unit length.

The second special graph we consider is the so called divide-and-conquer graph for which we develop a
linear algorithm that solves the linear ordering problem. Let us mention that these graphs were introduced by
Rayward-Smith and Clark [12] within the framework of scheduling theory. As pointed out in the literature,
divide-and-conquer graphs naturally model the execution of the recursive control abstraction of divide-and-
conquer algorithms. A great number of problems lend themselves to the divide-and-conquer strategy. These
include binary search, minimum and maximum finding, quicksort and mergesort, the fast Fourier transform,
and more (see for e.g. [7]. A divide-and-conquer graph can be defined recursively as follows3. A single node is
a divide-and-conquer graph. Otherwise, let s and t be two distinct single nodes and DC1, . . . , DCk, for some
k ≥ 1, disjoint divide-and-conquer graphs. Then, the graph denoted by DC = (s, DC1, . . . , DCk, t) in which
node s precedes all DC1, . . . , DCk and node t is preceded by all DC1, . . . , DCk, is also a divide-and-conquer
graph. This type of graph is pictured by Figure 1.

The study of the complexity status of the linear ordering problem for divide-and-conquer graphs is motivated
as follows. As we can see from Figure 1, a divide-and-conquer graph is nothing else than two oriented trees (an
in-tree and an out-tree) that are somehow “glued” together correspondingly from their terminal nodes. Indeed,
if we bend a DC-graph along the nodes which are located in the middle of the paths joining the two roots, s
and t, then there is a one to one matching between the vertices of the two trees that form this DC-graph (this
is the reason why these graphs are sometimes called mirror trees). Since the complexity status is known for
oriented trees, then it seems natural to look at the complexity status of the combination of two trees as it is
the case for DC-graphs.

This paper is organized as follows. In Section 2, after presenting notations and definitions for the forthcoming
sections, we reformulate the cost function of (1.2) to suit our proof needs. In Section 3, we discuss the case of
oriented trees. Section 4 is devoted to the case of divide-and-conquer graphs. Section 5 is our conclusion.

3This recursive definition is borrowed to Kubiak Potts [11].

ALGORITHMS FOR THE LINEAR ORDERING PROBLEM 317

2. Break reformulation of the linear ordering problem

In this section, we present basic notations and definitions that will be used in the remaining sections. Then,
in order to meet some needs in the proof of Theorems 3.1 and 4.1, we reformulate the definition of the cost
function (1.2) that is traditionally associated with the linear ordering problem.

Definition 2.1. If (x, y) is an arc of a graph, then y is the successor of x, denoted by succ(x), and x is a
predecessor of y, denoted by pred(y).

Definition 2.2. Two vertices of a graph are considered as siblings if, and only if, they have the same predecessor.

Definition 2.3. If x is a vertex of V in a given graph G, then the set of successors of x is Γ+
DC(x) = {y ∈

V | (x, y) ∈ E}, and the set of predecessors of x is Γ−
DC(x) = {y ∈ V | (y, x) ∈ E}.

Definition 2.4. A linear ordering on a set V is a binary order relation σ (non reflexive and transitive) such
that, for any couple (x, y) in V , x �= y, we either have x σ y or y σ x. If A ⊂ V , and σ is a linear ordering on V ,
then min(A, σ) and max(A, σ) denote the unique element x0 of A such that for x �= x0 in A, we have x0 σ x
and x σ x0, respectively.

Clearly, such a linear ordering σ may be identified with the list obtained by sorting the vertices in increasing
order according to σ. This makes possible to apply to linear orderings the standard algorithmic operators usually
related to lists such as HEAD, TAIL, CONCAT (for concatenation), and the CONS operator which builds a
list from its head and tail. When referring to a linear ordering, we indistinctly see it in the following sections as
either a binary relation or a list.

We now introduce another way of formulating the cost function (1.2) associated traditionally with the linear
ordering problem. Doing so makes it possible to use some counting arguments in the derivation of the optimality
of the solution we are presenting in the next section.

Let σ be a linear ordering on vertex set V of G = (V, E). We say that σ is compatible with G if for any arc
e = (x, y) in E we have x σ y. If σ is such a compatible linear ordering on V , then, for any arc e = (x, y) and
any vertex z ∈ V , we set BE(e, z, σ) = 1 if x σ z σ y, and BE(e, z, σ) = 0 otherwise. We say that BE(e, z, σ)
is the elementary break value of arc e by vertex z according to σ.

Let us note that it is straightforward to see that solving the Linear Ordering Problem on V is equivalent to
seek a linear ordering σ, compatible with G = (V, E), which minimizes

BG(G, σ) =
∑

(x,y)∈E

|{z ∈ V | x σ z σ y}| . (2.1)

Observe that the cost functions defined in (1.2) and (2.1) are equivalent since they only differ by |E|.

Definition 2.5. The global break of G according to σ is BG(G, σ), and the break of arc e according to σ is
B(e, σ) =

∑
z∈V BE(e, z, σ).

The arguments we are going to develop, in the next sections to get the minimum value of (2.1), are related
to the way the elementary break and break quantities are counted according to some compatible linear ordering
for a given oriented graph. In addition, when it comes to algorithms, we will be using the fact that a linear
ordering may also be viewed as a list. Therefore, in the following, we are going to deal with the Linear Ordering
Problem on an oriented graph G = (V, E), by considering that solving this problem corresponds to the problem
of seeking a linear ordering σ on V , compatible with G, for which the value of BG(G, σ) is as small as possible.
The minimum value is denoted by OPB(G). In our case, G stands for either an oriented tree or an oriented
divide-and-conquer graph.

318 A. QUILLIOT AND D. REBAINE

3. Linear ordering for oriented trees

In this section we discuss the oriented trees case. We first present a structural result, then an optimal algorithm
along with its proof, and finally we discuss the implementation issues of this algorithm.

3.1. A structural result

Let us consider an oriented tree T = (V, r, F) with arc set E, n = N(r) the cardinality of V , r the root vertex,
and {x1, . . . , xs} the sons of r. For any vertex xi we denote by ni = N(xi) the cardinality of A(xi), the subtree
of T rooted at node xi. We suppose that {x1, . . . , xs} are indexed in such a way that the sequence (n1, . . . , ns)
is in non-decreasing order. The following is a recursive lower bound on the optimal global break value OPB(T).

Theorem 3.1. If T is an oriented tree T , then

OPB(T) =

⎧⎪⎨
⎪⎩

0 if T is reduced to its root,
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni otherwise.

Proof. Before proceeding any further, let us explain the idea behind the proof. Given a tree T , we are first going
to make appear the existence of a linear ordering σ, compatible with T , such that

BG(T, σ) =
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni.

This obviously implies

OPB(T) ≤
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni. (3.1)

Next, we consider an arbitrary linear ordering τ , compatible with T , and then prove

BG(T, τ) ≥
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni. (3.2)

The result we are seeking then follows once inequalities (3.1) and (3.2) are both established.

In order to prove (3.2), we shall count the values BE(e, z, τ), e ∈ E, z ∈ V , of T , while distinguishing between
two kinds of couples (e, z) as follows:

(L1): the two vertices of e and vertex z belong to the same set r ∪ A(xi).
(L2): the two vertices of e belong to some set r ∪ A(xi), and z belong to A(xj) with i �= j.

Clearly, for a given index value i, and since we must have r τ xi τ x for any linear ordering τ and any vertex x
in A(xi) − {xi}, the number of couples (e, z) such that BE(e, z, τ) = 1, related to (L1), cannot be larger than
the optimal value OPB(A(xi)) of the Linear Ordering Problem restricted to A(xi). So, in order to prove

BG(T, τ) ≥
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni,

we shall show that
∑s

i=1(s − i)ni is indeed a lower bound on the number of couples (e, z) related to (L1) such
that BE(e, z, τ) = 1.

ALGORITHMS FOR THE LINEAR ORDERING PROBLEM 319

We now go into the details of the proof. In order to do so, we first introduce some additional notations,
related to a given linear ordering τ on the vertices of T , and we assume it is compatible with T . For i and j in
{1, . . . , s}, we set

BG1(i, j, τ) =
∑

(x,y)∈A(xi)

∑
z∈A(xj)

BE((x, y), z, τ). (3.3)

BG2(i, j, τ) =
∑

z∈A(xj)

BE((r, xi), z, τ). (3.4)

BG3(i, j, τ) = BG1(i, j, τ) + BG2(i, j, τ).

Let us observe that if i = j, then BG2(i, j, τ) = 0, and BG1(i, j, τ) ≥ OPB(A(xi)). In addition,

BG(T, τ) =
∑
i,j

BG3(i, j, τ)

=
∑
i�=j

BG3(i, j, τ) +
∑

i

BG3(i, i, τ)

≥
∑
i�=j

BG3(i, j, τ) +
∑

i

OPB(A(xi)). (3.5)

Clearly, from (3.3), (3.4) and (3.5), we may distinguish between the elementary break values BE(e, z, τ),
e ∈ E, z ∈ V , according to the idea outlined in (L1) and (L2). Let us first prove

OPB(T) ≤
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni.

In order to do so, we may assume that tree T is not reduced to its root, otherwise the result is trivial.
Let us consider an optimal linear ordering σi for A(xi) for i = 1, . . . , s. Note that this part of the proof is not
constructive and that we do not know here anything about the structure of those linear orderings σi, i = 1, . . . , s.
However, the existence of i leads to the existence of a linear ordering σ for T derived from the concatenation of
the linear orderings σi, i = 1, . . . , s, that is σ = CONCAT(r, σ1, . . . , σs). Linear ordering σ is clearly compatible
with T . First, note that

BG1(i, i, σ) = OPB(A(xi)), for i = 1, . . . , s.

We also have, for i, j = 1, . . . , s, i < j, BG1(i, j, σ) = 0, BG2(j, i, σ) = 0, and BG2(i, j, σ) = ni. Then, from (3.5),
we may derive

BG(T, σ) =
∑
i,j

BG3(i, j, σ)

=
∑
i�=j

BG3(i, j, σ) +
∑

i

BG3(i, i, σ)

=
∑
j<i

BG3(i, j, σ) +
∑

i

BG3(i, i, σ)

=
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni.

Thus, the result follows.

320 A. QUILLIOT AND D. REBAINE

Let us now prove that

OPB(T) ≥
s∑

i=1

OPB(A(xi)) +
s∑

i=1

(s − i)ni.

To do so, we consider an arbitrary linear ordering τ for T , compatible with T , and i, j, i �= j in {1, . . . , s}. The
goal here is to find a lower bound for BG3(i, j, τ) + BG3(j, i, τ). We may assume that i < j, which also means
ni ≤ nj . Let zi = max(A(xi), τ) be the largest vertex according to τ for A(xi), and distinguish between the
following two cases.

Case 1. zj τ zi: Then, for any vertex z of A(xj), there exists at least one arc e = (x, y) such that e is either
(r, xi) or an arc of A(xi), and x τ z τ y. Therefore,

BG3(i, j, τ) + BG3(j, i, τ) ≥ BG3(i, j, τ) ≥ |A(xj)|.

Case 2. zi τ zj : Proceeding as above we get

BG3(i, j, τ) + BG3(j, i, τ) ≥ BG3(i, j, τ) ≥ |A(xi)|.

In any case, we have

BG3(i, j, τ) + BG3(j, i, τ) ≥ inf(|A(xi)|, |A(xj)|)
≥ min(ni, nj) = ni. (3.6)

Taking into account the fact that the sequence (n1, . . . , ni, . . . , ns) is in non-decreasing order, we derive from (3.6)
that

∑
i�=j

BG3(i, j, τ) =
∑
i<j

(BG3(i, j, τ) + BG3(j, i, τ))

≥
s∑

i=1

(s − i)ni.

If we combine (3.6) with (3.5) we get

BG(T, τ) =
∑
i,j

BG3(i, j, τ)

=
∑
i�=j

BG3(i, j, τ) +
∑

i

BG3(i, i, τ)

≥
s∑

i=1

(s − i)ni +
s∑

i=1

OPB(A(xi)).

Therefore, the result of the converse inequality follows. This completes the proof of the theorem. �

3.2. A linear time algorithm

In this section, we transform the above structural result into an efficient algorithm that solves the Linear
Ordering Problem for an oriented tree T . Clearly, the first part of the proof of Theorem 3.1 gives rise to the
recursive algorithmic scheme Tree-Linear-Ordering function that generates an optimal linear ordering σ for T .
We assume {x1, . . . , xs} the sons of root r are such that |A(x1)| ≤ · · · ≤ |A(xs)|.

ALGORITHMS FOR THE LINEAR ORDERING PROBLEM 321

function Tree-Linear-Ordering (T, r)
{

if (r is a leaf)
Tree-Linear-Ordering ={r};

else {
Let (x1, . . . , xs) be the sons of root r such that |A(x1)| ≤ · · · ≤ |A(xs)|;
for i = 1 to s do

σi = Tree-Linear-Ordering(A(xi), xi);
} //end of if

Tree-Linear-Ordering = CONCAT(r, σ1, σ2, . . . , σs);
} // end of function

Corollary 3.2. The Tree-Linear-Ordering function generates an optimal solution for the oriented tree T .

Proof. The proof is derived through induction in an immediate way. Indeed, if we assume that the linear ordering
σi = Tree-Linear-Ordering (A(xi)) is optimal for A(xi), i = 1, . . . , s, then the value associated with the linear
ordering produced by Tree-Linear Ordering (T) is nothing else than the lower bound of Theorem 3.1. Thus, the
result follows. �

Example 1. Let T be an oriented tree as shown in Figure 2. Function Tree-Linear-Ordering (T) generates the
ordering σ = {1, 13, 12, 3, 9, 10, 11, 2, 8, 4, 5, 6, 7} with BG(T, σ) = 16, while we have f(T, σ) = 28 as defined
in (1.2).

��
��

1

	
	

	

��
��

2

�

��
��

8

	
	

	
��
��

4

	
	

	

��
��

5

�

��
��

6

�
�

�

��
��

7

�

��
��

3

10��
���

�
�

�
�

���

��
��

9

�

��
��
11

�
�

�
�

�
�

�
�

��
��
12 13��

��

�
�

�
�

�
�

�
�

�
�

Figure 2. An oriented tree.

The remainder of this section is devoted to the implementation issues of the above recursive function, and
we shall indeed show that it can be implemented to run in linear time.

3.3. Encoding the tree-linear-ordering function

In this section we discuss implementation issues of the above algorithm. As we will see it shortly, we show
that this algorithm can be implemented to run in linear time. Tree T is encoded with two vectors FATHER and
SONS indexed on the vertices of T in such a way that

− For vertex x of T , FATHER(x) denotes the father vertex of x.
− For vertex x of T , SONS(x) denotes the list of sons of x.

Let us first recall that a Depth First Search (DFS) process works by performing two classes of moves: PUSH
and POP.

− PUSH moves: one arrives at vertex y while coming from its father x = FATHER[y]. We say that y is then
visited. Such a move is performed exactly once for a given vertex y distinct from root r. When vertex y is

322 A. QUILLIOT AND D. REBAINE

visited this way, all vertices z of SONS[x] located before y in the list SONS[x] have already been visited, as
well as their heirs.

− POP moves: one starts from some vertex y, different from root r, and comes back to the father
x = FATHER[y]. At this time, all heirs of y have already been visited.

The initialization of such a DFS process consists in a PUSH move which makes that root r is visited. The process
ends up when root r is popped out. In the case when the number of operations, performed every time one arrives
at some vertex (through either a PUSH or a POP move) is bounded by a constant, then the corresponding DFS
process is clearly of linear time.

The following is the description in three steps of the implementation of Tree-Linear-Ordering function.
Three-Step Implementation

1. The first step builds, while exploring tree T through a DFS process, a vector VECT such that for any number
p = 1, . . . , n, VECT[p] is the list of vertices x of T such that N(x) = p. An auxiliary vector COUNTER is
involved, with indexation on the vertex set V with values in {1, . . . , n}. At each step of the DFS process, we
need to consider two cases:
(a) one arrives at y from x = FATHER[y] through a PUSH move. Then, COUNTER[y] = 1.
(b) one arrives from y at x = FATHER[y] through a POP move. Then,

(i) COUNTER[x] is incremented by COUNTER[y]: COUNTER[x] = COUNTER[x] + COUNTER[y];
(ii) y is inserted at the head of VECT[COUNTER[y]]: VECT[COUNTER[x]] = CONS(y,

VECT[COUNTER[y]]).
2. In the second step we derive from vector VECT another vector ORDER-SONS, which provides, for any

vertex x, the list, ORDER-SONS[x], of the sons y of x, ordered in non-decreasing values of N(y). ORDER-
SONS[x] is initialized to NIL for every vertex x. We use a vector LAST, which provides, for any vertex x,
a direct access to the last element of ORDER-SONS[x]. Note that LAST[x] is initialized, for any x, with a
NIL value. This process is resumed as follows:

for p = 1 to n do
for y in VECT[p]
{

x = FATHER[y];
insert y at the end of list ORDER-SONS[x];
update LAST[x];

}
3. What we get at the end of the second step is another representation of T , through vector ORDER-SONS,

which provides, for any vertex x, the list ORDER-SONS[x] of the sons y of x, ordered in non-decreasing
values of N(y). Then, as a third step, we apply the DFS process to T by using the ORDER-SONS vector
instead of the SONS vector.

Theorem 3.3. The Three-Step Implementation generates an optimal linear ordering for the oriented tree T in
linear time.

Proof. Step 1 and step 2 of the above Three-Step Implementation provides a representation of T through vector
ORDER-SONS, containing, for any vertex x, the list ORDER-SONS[x] of the sons y of x. Clearly, the order in
which the vertices of T are visited if we perform a DFS process, while using the ORDER-SONS vector instead
of the SONS vector, corresponds to the linear ordering produced by the Tree-Linear-Ordering function.

The first and third steps of the above implementation are DFS processes. The number of elementary operations
performed every time one arrives at some vertex is therefore bounded by a constant. It then follows that the two
steps work in linear time. The second step also works in linear time since it scans once vertex set V , and, every
time it deals with some vertex x, it performs a number of operations bounded by a constant. Observe that since
we are using vector LAST, inserting y at the end of the current list ORDER-SONS[x] does not require scanning
the list ORDER-SONS[x]. Therefore, the linearity of the time complexity of the implementation follows. �

ALGORITHMS FOR THE LINEAR ORDERING PROBLEM 323

4. The linear ordering for the divide-and-Conquer graph

In this section, the precedence graph we are considering is an oriented divide-and-conquer graph DC =
(s, DC1, . . . , DCk, t) with arc set E, n = |V | the number of vertices of graph DC. Subgraphs {DC1, . . . , DCk}
denote the set of k components of graph DC, and si and ti denotes the top node and the bottom node of
component DCi. In this section we prove that the following recursive algorithm generates an optimal linear
ordering for graph DC. The idea of this algorithm is to put the top node and bottom node of the corresponding
DC-graph in the first and last position, respectively. Then, in any order, the algorithm repeats recursively the
same process for each of the different components composing the DC-graph.

function DC-Linear-Ordering (DC, s, t)
{

if (s == t)
return (s);

else for (i = 1 to k)
{

Let Γ+(s) = {s1, . . . , sk};
Let Γ−(t) = {t1, . . . , tk};
σi = DC-Linear-Ordering(DCi, si, ti);

} // end of for
σ = CONCAT(s, σ1, σ2, . . . , σk, t);
return (σ);

} // end of function

Example 2. Let DC be an oriented divide-and-conquer graph as shown in Figure 3. As long as we do not jump
to another component if the previous one is not completed, while building the ordering, Function DC-Linear-
Ordering (DC, 1,18) generates an optimal layout regardless of how the order of the components is handled. So,
σ = {1, 3, 9, 10, 1, 17, 12, 13, 14, 2, 8, 4, 5, 6, 7, 15, 16, 18} is one of the optimal ordering that can be generated by
the above function. Its global breaking is BG(T, σ) = 73, while f(DC, σ) = 99 as defined in (1.2).

��
��

1

	
	

	

��
��

2

�

��
��

8

	
	

	
��
��

4

	
	

	

��
��

5

�
�

� �

	
	

	

��
��
15

�
�

�

�
�
�
�
�

��
��
16 ��

��
17

�
�
�
�
�

�
�
�
�
�

��
��
18

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�

��
��

6

�
�

�

��
��

7

�

��
��

3

10��
��

�

�

�
�

�
�

���

��
��

9

�

��
��
11

�
�

�
�

�
�

�
�

��
��
12 14��

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

13��
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Figure 3. An example of a divide-and-conquer graph.

324 A. QUILLIOT AND D. REBAINE

Theorem 4.1. DC-Linear-Ordering function generates an optimal linear ordering for the divide-and conquer
graph DC = (s, DC1, . . . , DCk, t).

Proof. The idea behind the proof is to first establish a formula of the value of the layout generated by the above
function. Then, we prove that this formula is nothing else than a lower bound on the value of the generated
layout. The optimality of this layout thus follows immediately.

Let σ and σi, i = 1, . . . , k be respectively the global linear ordering and the partial linear orderings generated
by the above function at each of its recursive calls. It is clear that they are all compatible with the DC-graph and
within the components DCi. Now, if we proceed by induction, then it is easy to get BG(DCi, σi) = OPB(DCi).
Then the linear orderings we get from the recursive calls lead to the following

BG(DC, σ) =
k∑

i=1

OPB(DCi)) + (k − 1)
k∑

i=1

|DCi|. (4.1)

It is interesting to note that (4.1) does not depend on the ordering of the DCi components as the expression
(k − 1)

∑k
i=1 |DCi| is a constant.

We now prove that (4.1) is indeed a lower bound on any linear ordering for DC-graphs. To do so, we introduce
additional notations, related to a given compatible linear ordering, say τ , on the vertices of the DC-graph. For
i and j in {1, . . . , k}, we set

BG1(i, j, τ) =
∑

(x,y)∈DCi

∑
z∈DCj

BE((x, y), z, τ). (4.2)

BG2(i, j, τ) =
∑

z∈DCj

BE((s, si), z, τ). (4.3)

BG3(i, j), τ) =
∑

z∈DCj

BE((ti, t), z, τ). (4.4)

BG4(i, j, τ) = BG1(i, j, τ) + BG2(i, j, τ).

Let us observe that if i = j, then BG2(i, j, τ) = 0, BG3(i, j, τ) = 0, BG1(i, j, τ) ≥ OPB(A(xi)). In addition,

BG(DC, τ) =
∑
i,j

BG3(i, j, τ)

=
∑
i�=j

BG3(i, j, τ) +
∑

i

BG3(i, i, τ)

≥
∑
i�=j

BG3(i, j, τ) +
∑

i

OPB(DCi). (4.5)

Let us now consider two indices i and j, i �= j, and set α = |DCj | − BG2(i, j, τ) − BG3(i, j, τ). Every node
z ∈ DCj , with ti τ z τ si, is such that there exists at least one arc (x, y) ∈ DCj with x τ z τ y. It then follows
that each node z ∈ DCj , with ti τ z τ si, intervenes at least once in

∑
z∈DCj BE((x, y), z, τ). Therefore we get

BG1(i, j, τ) ≥ α. It follows

BG4(DC, σ) = BG1(i, j, τ) + BG2(i, j, τ) + BG3(i, j)
= α.

We then derive
∑
i�=j

BG4(i, j, τ) ≥
k∑

i=1

∑
i�=j

|DCj | ≥ (k − 1)
k∑

i=1

|DCi|.

ALGORITHMS FOR THE LINEAR ORDERING PROBLEM 325

Then we can conclude from (4.1) that

BG(DC, τ) ≥ BG(DC, σ).

This completes the proof. �

Regarding the time complexity of the above function, a simple Depth First Search strategy might be used to
visit the DC-graph to generate a compatible linear ordering. Therefore, the linear time complexity of the above
DC-Linear-Ordering function follows.

5. Conclusion

In this paper we presented two new optimal algorithms to solve the linear ordering problem for two special
oriented graphs. Indeed, we first developed a simple optimal solution with an improved time complexity running
in linear time for the oriented tree. Then, we developed a linear-time algorithm for divide-and-conquer graphs.
We achieved these two results by introducing a new way of formulating the cost associated with such graphs.
Doing so made it possible to use some counting arguments in the derivation of the optimality of the solutions
we proposed. We believe that this approach may lead to new results on other restricted graphs such as the
non-oriented divide-and-conquer graphs, and the generalization to the oriented divide-and-graph with weighted
arcs.

Acknowledgements. This research was partially financed, for Djamal Rebaine, by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the Ministère des Relations Internationales du Québec (MRI), the Consulat de
France à Montréal, and the Université Blaise Pascal at Clermont-Ferrand (France).

References

[1] S. Achouri, T. Bossart and A. Munier-Kordon, A polynomial algorithm for MINDSC on a subclass of serie parallel graphs.
RAIRO: OR (2009) 145–156.

[2] D. Adolphson and T.C. Hu, Optimal Linear ordering. SIAM J. Appl. Math. 25 (1973) 403-423.

[3] I. Charon and O. Hudry, An updated survey on the linear ordering problem for weighted or unweighted tournaments. Ann.
Oper. Res. 175 (2010) 107–158.

[4] F.R.K. Chung, On optimal linear arrangements of trees. Comput. Math. Appl. 10 (1984) 43–60.

[5] J. Cohen, F. Fomin, P. Heggernes, D. Kratsch and G. Kucherov, Optimal Linear Arrangement of Interval Graphs, Proc. of
MFCS’06 Proceedings of the 31st International Conference on Mathematical Foundations of Computer Science. Springer-
Verlag, Berlin, Heidelberg (2006) 267–279.

[6] D.G. Corneil, H. Kim, S. Natarajan, S. Olariu and A.P. Sprague, A simple linear time algorithm of unit interval graphs. Inf.
Process. Lett. 55 (1995) 99–104.

[7] S. Dasgupta, Ch. Papadimitriou and U.V. Vazirani, Algorithms. McGrawHill (2006).

[8] J. Diaz, J. Petit and M. Serna, A survey of graph layout problems. J. ACM Comput. Surveys 349 (2002) 313–356.

[9] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-Completeness. Computer Press
(1979).

[10] S.B. Horton, The optimal linear arrangement problem: algorithms ans approximation. Ph.D. thesis, Georgia Institute of
Technology (1997).

[11] W. Kubiak, D. Rebaine and C. Potts, HLF is optimal for scheduling a divide and conquer graph on m identical parallel
machines. Discrete Optim. 6 (2009) 79–91.

[12] V.J. Rayward-Smith and A.J. Clark, Scheduling theory applied to divide and conquer task systems on identical parallel
machines, in Conpar’88, BCS Work shop Series. Edited by C.R. Jessehope, K.D. Reinartz. Cambridge University Press,
Cambridge (1989).

[13] J. Valdes, R.E. Tarjan and E.L. Lawler, The recognition of series parallel digraphs. SIAM J. Comput. 11 (1982) 298–317.

	Introduction
	Break reformulation of the linear ordering problem
	Linear ordering for oriented trees
	A structural result
	A linear time algorithm
	Encoding the tree-linear-ordering function

	The linear ordering for the divide-and-Conquer graph
	Conclusion
	References

