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A GEOMETRIC PERSPECTIVE OF THE WEISZFELD ALGORITHM
FOR SOLVING THE FERMAT−WEBER PROBLEM
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Xavier1 and Nelson Maculan1

Abstract. The Fermat−Weber problem is a classical location problem that has the Weiszfeld algo-
rithm as its main iterative solution method. This article presents a geometric interpretation of its local
convergence for the particular case of three points, with the solution constrained to be an interior point,
which is fundamental to the present geometric interpretation. This constraint, on the other hand, im-
plies that the weights associated to each point must obey triangle inequalities. The eigenvalues analysis
is developed considering that all weights have the same value, which simplifies calculation and expla-
nation, but the generalization of this analysis is straightforward, as commented in the text. Step-size
scaling is also considered for accelerating the convergence rate. The accompanying eigenvalues analysis
determines step-size multiplier ranges that ensure convergence. Moreover, the eigenvalues depend on a
parameter that is computed based on the sample points configuration.
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1. Introduction

The original Fermat’s problem was firstly introduced by Pierre de Fermat to challenge Evangelista Torricelli,
who found a geometric solution. The problem can be stated as: given three distinct points in a plane, find the
point that minimizes the sum of the distances to those points. This point is known as the Fermat point of the
triangle formed by the three given points.

The problem can be generalized in diverse ways. The name of the economist Alfred Weber became associated
to the problem because of his discussion of the problem, and some generalizations of it, in his 1909 book on
industries location. His general version, that considers distance weights and more than three points, became
known as the Fermat−Weber problem. There are also multi-source versions of the problem (typically location
problems) which specifies more than one “source” points to attend the demands of a set of “sink” points. We
are not going to deal with this kind of generalization in this article.
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It is not our intention to discuss the long history associated with the Fermat−Weber problem. Instead,
it is far more profitable to present some key references. A vast survey on the subject was compiled by
Wesolowsky [14]. General discussions regarding location problems are presented by Cooper [5], Drezner [7],
Drezner and Hamacher [8], Üster and Love [10], and Smith, Laporte and Harper [12]. Brimberg [1–3] is an
active researcher on this subject and a good reference for the present state of art in this field. On the other
hand, Weiszfeld [13] created the prevalent algorithm used to solve problems of this class, whether as the main
algorithm or as the one used to solve related subproblems.

Despite the fact that there are thousands of scientific articles concerning the Fermat−Weber problem, as
well as the Weiszfeld algorithm, this article contemplates aspects and properties never mentioned before. It
focus on a geometric interpretation of the local convergence process of the Weber generalization that includes
weights to the distances to the three points, but with the solution constrained to be an interior point, which is
fundamental to the present geometric interpretation. On the algorithmic side, the effects of changing the step
length, as presented by Brimberg [3], is also analyzed on the same basis. Thus, to the best knowledge of the
authors, this kind of approach has not been done to date.

Although the present analysis is focused on the Weiszfeld algorithm, we believe that the same methodology
can be successfully applied to the analysis of other numerical procedures. The simplicity of the Fermat−Weber
problem with only three points and the low complexity of the Weiszfeld algorithm constitute an excellent
environment to deeply understand the local convergence of similar methods.

The remainder of this paper is organized as follows. Section 2 reviews the Fermat−Weber problem, the
Weiszfeld algorithm and its basic properties. Section 3 presents a geometric interpretation of the local Weiszfeld
iteration, the eigenvalues of the associated Jacobian, and the dependence of these eigenvalues on the configura-
tion of the three given points. Section 4 describes the effects on the Jacobian’s eigenvalues caused by changing
the Weiszfeld algorithm’s step-size, and the corresponding consequences on the convergence process. Finally,
Section 5 summarizes and presents the conclusions.

2. Statement and basic properties of the Fermat−Weber problem

Let ai, i = 1, 2, 3, be three given points on the plane and wi > 0, i = 1, 2, 3, three given weights. The
Fermat−Weber location problem can be stated as:

x∗ = arg min
x∈R3

W (x), (2.1)

where

W (x) =
3∑

i=1

wi ‖x − ai‖2 =
3∑

i=1

wi

√√√√ 2∑
j=1

(xj − aij)2. (2.2)

This is just the minimization of the wi weighted sum of the distances from a point x to three given points
in an euclidean space of dimension two. The three points are considered not collinear and therefore they are
always the vertices of a triangle (denoted by �a1a2a3), as can be seen in Figure 1. The solution point x∗ is
simply called “the Fermat−Weber point” in the literature [1, 3, 5–8,12, 14].

The distance function is a classical example of a convex function and W (x), the positively weighted sum of
the distances to a finite set of points, is consequently a convex function. It is easy to verify that W (x) is well
defined for all x ∈ R

2 and never attains negative values, resulting that W (x) pertains to the well behaved class
of closed proper convex functions (see [4,9,11]). The theory of convex analysis tells us that in such a case a local
minimum is actually a global minimum and this is a very comfortable situation because any algorithm used to
find local minima will actually find global minima.
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Figure 1. Visual reference for the Fermat−Weber problem with three points.

Turning now to a differential analysis, it is straightforward to calculate the tth component of the gradient
∇W (x):

∇Wt(x) =
3∑

i=1

wi(xt − ait)√∑2
j=1(xj − aij)2

= −
3∑

i=1

wi
ait − xt

‖ai − x‖2

· (2.3)

This expression clearly shows that W (x) is everywhere differentiable except at the points ai, where ∇Wt(x)
is not defined.

If we denote φit as the angle between the vector −→xai and the xt-axis, for i = 1, 2, 3 and t = 0, 1 (as depicted
in Fig. 2), the previous equation can be rewritten as:

∇Wt(x) = −
3∑

i=1

wi
ait − xt

‖ai − x‖2

= −
3∑

i=1

wi cosφit. (2.4)

Now, if we consider the weights wi as the magnitude of three vectors with the same origin in the euclidean
plane, the expression (2.4) can be interpreted as the negative of the vector sum of these three vectors. But in a
minimization problem the negative of the gradient, in this case the sum of the three vectors, is just the direction
used in a descent algorithm. We will return to this geometric interpretation in the next Section.

The Weiszfeld algorithm [13] is the main algorithm used in the search for the Fermat−Weber point. It can
be derived from the search for critical points, setting each ∇Wt(x) to zero:

∇Wt(x∗) = 0 ⇒ x∗
t =

∑3
i=1

wiait√∑ 2
j=1(x∗

j−aij)2∑3
i=1

wi√∑ 2
j=1(x∗

j−aij)2

=
∑3

i=1 yi(x∗)ait∑3
i=1 yi(x∗)

=
3∑

i=1

yi(x∗)
S(x∗)

ait, (2.5)

where
yi(x) =

wi√∑2
j=1(xj − aij)2

=
wi

‖x − ai‖2

and

S(x) =
3∑

i=1

yi(x).
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Let’s define:

δi(x) =

{
yi(x)
S(x) , ∀x ∈ R

2\{a1, a2, a3}
δij , x = aj, j = 1, 2, 3

, i = 1, 2, 3. (2.6)

The apparently artificial values δi(aj) = δij , where δij is the Kronecker delta, are the easily checked natural
limits:

lim
x→aj

yi(x)
S(x)

= δij . (2.7)

These limits justify the choice of the notation for these functions.
From the above definitions it follows that x∗ is a fixed point of the Weiszfeld iterative algorithm:

x∗ =
3∑

i=1

δi(x∗)ai = Aδ(x∗), (2.8)

where the matrix A is formed from the juxtaposition of the column vectors ai, and δ(x) is the column vector
formed from the juxtaposition of the scalars δi(x). Let’s define g(x) = Aδ(x) to simplify the notation of some
expressions.

The definition (2.6) of the functions δi(x), i = 1, 2, 3, implies that ∀x ∈ R
2 we have

∑3
i=1 δi(x) = 1 and

0 ≤ δi(x) ≤ 1. Also, g(x) is a continuous function in its domain R
2, since all discontinuities in (2.5) were

removed.
For each x ∈ R

2, g(x) is then a convex combination of the points ai, which will be denominated δ(x)-convex
combination. There are some possible combinations of the δi(x) values and the corresponding positions of g(x)
relative to the triangle �a1a2a3:

• g(x) outside �a1a2a3: not possible, because g(x) is a δ(x)-convex combination;
• g(x) inside �a1a2a3: normal case, obtained from 0 < δi(x) < 1, i = 1, 2, 3;
• g(x) is one of the ai, i = 1, 2, 3: possible only if x = ai, because g(x) = ai = δ1(x)a1 + δ2(x)a2 + δ3(x)a3

implies δi(x) = 1 and δj(x) = 0, j 
= i, as its only solution. For example, if g(x) = a1 we have:

a1 = δ1(x)a1 + δ2(x)a2 + δ3(x)a3

a1 = (1 − δ2(x) − δ3(x))a1 + δ2(x)a2 + δ3(x)a3

0 = δ2(x)(a2 − a1) + δ3(x)(a3 − a1)

and taking into consideration that the vector a2 − a1 and a3 − a1 are linearly independent we have δ2(x) =
δ3(x) = 0 and of course δ1(x) = 1. Then by definition of δ1(x) we have x = a1;

• g(x) inside one of the edges of �a1a2a3: not possible, because it would be necessary to have δi(x) = 0 for
only one specific index i. It does not happen if x = aj , j = 1, 2, 3, based on the previous item, and it does
not happen if x ∈ R

2\{a1, a2, a3} because having wi > 0, i = 1, 2, 3, implies that all yi(x) > 0 and therefore
all δi(x) > 0.

If we denote the interior of �a1a2a3 as
◦
�a1a2a3, we can describe the general action of g(x) in two parts:

• g(ai) = ai, i = 1, 2, 3;

• g(x) maps R
2\{a1, a2, a3} into

◦
�a1a2a3.

Some interesting conclusions can be traced from the above analysis, if we consider g(x) as the base function for
an iterative algorithm. Firstly, as g(x) is a δ(x)-convex combination of the points ai, the very first iteration is
enough to bring an external point x ∈ R

2\�a1a2a3 to the interior of the triangle.
Secondly, if x∗ 
= ai, i = 1, 2, 3, then each ai is a fixed point that can act as a “trap” for the iterative method,

preventing it from continuing the search for the actual minimum. This means that the points ai should be
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avoided during the iteration process (but the resulting limit point can still be one of the ai points). Avoiding
the ai points is something that happens automatically if we don’t start at one of these points, because, as shown

above, we have g
(
R

2\{a1, a2, a3}
) ⊂ ◦

�a1a2a3.
Finally, we have the easily checked limit:

lim
||x||→∞

δi(x) =
wi∑3
i=1 wi

· (2.9)

In case all wi have the same value, then for a point x located very far away from the triangle we have δi(x) �
1
3 .

But this means that the first iteration of the iterative method will bring this point to the interior of a very
narrow neighborhood of the barycenter of the triangle, a nice property.

From equality (2.8) we have that x∗ is a fixed point of the linear function g(x). If we consider using the
Banach fixed-point theorem we have that our target now is to find conditions to ensure that the absolute value
of each eigenvalue of the Jacobian of g(x) is smaller than one, at least locally to x∗. This fact enables the use
of g(x) in an iterative method to find x∗, as shown below:

xq+1 = g(xq) =
3∑

i=1

yi(xq)
S(xq)

ai = Aδ(xq). (2.10)

To calculate the Jacobian of g(x) it is necessary to calculate the gradient of yi(x) and the gradient of S(x):

∇jyi(x) =
∂yi(x)
∂xj

= −wi(xj − aij)
‖x − ai‖3

2

= −yi(x)
xj − aij

‖x − ai‖2
2

,

∇jS(x) =
∂S(x)
∂xj

= −
3∑

q=1

wq(xj − aqj)
‖x − aq‖3

2

= −
3∑

q=1

yq(x)
xj − aqj

‖x − aq‖2
2

· (2.11)

Thus, the components of the Jacobian of g(x), Jg(x)ij , for i = 1, 2 and j = 1, 2, are:

Jg(x)ij =
∂gi(x)
∂xj

=
∂

∂xj

∑3
p=1 apiyp(x)

S(x)
=

3∑
p=1

(
api

S(x)
∂yp(x)
∂xj

− apiyp(x)
S(x)2

∂S(x)
∂xj

)

=
3∑

p=1

(
−yp(x)

S(x)
api

xj − apj

‖x − ap‖2
2

− yp(x)
S(x)2

api

(
3∑

q=1

yq(x)
xj − aqj

‖x − aq‖2
2

))
·

Rearranging:

Jg(x)ij =
3∑

p=1

(
δp(x)api

3∑
q=1

δq(x)
xj − aqj

‖x − aq‖2
2

− δp(x)api
xj − apj

‖x − ap‖2
2

)

=

(
3∑

p=1

δp(x)api

)(
3∑

q=1

δq(x)
xj − aqj

‖x − aq‖2
2

)
−

3∑
p=1

δp(x)api
xj − apj

‖x − ap‖2
2

·

As the summation indexes are immaterial, “p” and “q” can be exchanged in the last summation:

Jg(x)ij =

(
3∑

p=1

δp(x)api

)(
3∑

q=1

δq(x)
xj − aqj

‖x − aq‖2
2

)
−

3∑
q=1

δq(x)aqi
xj − aqj

‖x − aq‖2
2

·
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Thus:

Jg(x)ij =
3∑

q=1

δq(x)

(∑3
p=1 δp(x)api − aqi

)
(xj − aqj)

‖x − aq‖2
2

=
3∑

q=1

δq(x)
((Aδ(x))i − aqi) (xj − aqj)

‖x − aq‖2
2

·

And finally Jg(x) can be expressed as:

Jg(x) =
3∑

i=1

δi(x)
(Aδ(x) − ai) (x − ai)

T

‖x − ai‖2
2

=
3∑

i=1

δi(x)
(ai − Aδ(x)) (ai − x)T

‖ai − x‖2
2

· (2.12)

The main target of this development is to express the behavior of the Weiszfeld algorithm in a local neighbor-
hood of the Fermat−Weber point, and remembering that x∗ = Aδ(x∗), the expression of Jg(x) at x∗ becomes:

Jg(x∗) =
3∑

i=1

δi(x∗)
(ai − x∗) (ai − x∗)T

‖ai − x∗‖2
2

· (2.13)

If we define vi = ai − x∗, it can be rewritten as:

Jg(x∗) =
3∑

i=1

δi(x∗)
vivT

i

vT
i vi

=
3∑

i=1

δi(x∗) Projvi
. (2.14)

Considering that in a first order approximation we have g(x) = x∗ +Jg(x∗)(x−x∗), it is possible to interpret
the action of Jg(x∗) in the following way: g(x) is the result of the sum of x∗ (as a base vector) and the δi(x∗)
weighted projections of (x − x∗) on each of the vectors vi, i = 1, 2, 3.

As a basic result from linear algebra we know that vi is an eigenvector of Projvi
associated with the eigenvalue

λ = 1, and all the other eigenvalues are zero. As a consequence, for any arbitrary vector u ∈ R
2 we have

||Projvi
(u)||2 ≤ ||u||2.

If we consider u as having its origin at x∗ (defined as u = x − x∗), we have:

‖Jg(x∗)u‖2 =

∥∥∥∥∥
3∑

i=1

δi(x∗) Projvi
(u)

∥∥∥∥∥
2

<

3∑
i=1

δi(x∗)‖Projvi
(u)‖2 ≤

3∑
i=1

δi(x∗)‖u‖2 = ‖u‖2. (2.15)

The inequality above is strict because the vectors vi are never perfectly aligned (the points ai are not
collinear). It follows that:

‖Jg(x∗)u‖2

‖u‖2

< 1 , ∀u ∈ R
2 ⇒ ‖Jg(x∗)‖2 < 1, (2.16)

where ‖Jg(x∗)‖2 means the euclidean norm of the matrix Jg(x∗). Thus g(x) can be used in an iterative method
to find x∗, as claimed above, because all the functions considered so far are differentiable (except at the points
ai) and so there is a local neighborhood of x∗ where the iterative Weiszfeld method (2.10) converges:

xq+1 = g(xq) =
3∑

i=1

yi(xq)
S(xq)

ai = Aδ(xq).
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It is possible to obtain another expression for Jg(x∗) if we take a closer look at ∇W (x):

∇Wt(x) =
3∑

i=1

wi(xt − ait)√∑2
j=1(xj − aij)2

= xt

3∑
i=1

wi√∑2
j=1(xj − aij)2

−
3∑

i=1

wiait√∑2
j=1(xj − aij)2

, (2.17)

which can be expressed as:

∇W (x) = xS(x) −
3∑

i=1

aiyi(x). (2.18)

For a given xq, and using (2.10) we have:

∇W (xq) = xqS(xq) −
3∑

i=1

aiyi(xq) = xqS(xq) − xq+1S(xq) (2.19)

and then:

xq+1 = xq − ∇W (xq)
S(xq)

⇒ g(x) = x − ∇W (x)
S(x)

· (2.20)

This new expression for g(x) permits another way to represent the Jacobian Jg(x) as:

Jg(x) = I − HW (x)
S(x)

+
∇W (x)∇ST (x)

S(x)2
· (2.21)

Remembering that ∇W (x∗) = 0, we have:

Jg(x∗) = I − HW (x∗)
S(x∗)

· (2.22)

This is a simple expression for Jg(x∗), which depends only on S(x∗) and on the Hessian of W (x) at x∗.

3. Geometric interpretation and convergence

The interesting fact that in the local analysis xq+1 is obtained by projections on the vectors vi = ai − x∗

gives rise to a geometric interpretation which helps the convergence analysis. We will restrict this interpretation

to the cases where x∗ 
= ai, i = 1, 2, 3, which means that x∗ ∈
◦
�a1a2a3.

Returning to equation (2.4) and forcing ∇W (x) = 0 results, for t = 1, 2:

∇Wt(x∗) = −
3∑

i=1

wi cosφit = 0. (3.1)

This expression can be easily interpreted as the equilibrium of a system of three forces with magnitudes wi,
i = 1, 2, 3.

Figure 2 depicts this system of “forces” and also shows the angles φi1 of the wi vectors with respect to the
horizontal axis x1. The equilibrium of these three “forces” implies that their sum must be zero, meaning that
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Figure 2. Equilibrium of the three “forces” w1, w2 and w3.

they can be considered as the clockwise (or counterclockwise) oriented edges of a triangle. Therefore, the weights
wi must obey the well known triangle inequalities:

w1 < w2 + w3, (3.2)

w2 < w1 + w3, (3.3)
w3 < w1 + w2. (3.4)

To simplify analysis, lets define u = w2/w1 > 0 and v = w3/w1 > 0. If we consider (w2, w3, w1) as the
homogeneous coordinates of a point in the projective space RP

2, the tuple (u, v) can then be seen as the
corresponding coordinates in the affine plane. The previous inequalities may be rearranged and rewritten as:

u + v > 1, (3.5)

u − v < 1, (3.6)
v − u < 1. (3.7)

Figure 3 depicts the uv affine plane, for u ≥ 0 and v ≥ 0, divided into four open regions: A, B, C and D.
Region B does not satisfy the constraint v − u < 1, region C does not satisfy the constraint u − v < 1 and
region D does not satisfy the constraint u+ v > 1. Regions B, C and D represent non-equilibrium configurations
that are not the focus of our geometric approach. Region A represents the equilibrium region, which satisfies all
the constraints. The boundary of region A represents degenerated cases that will not be considered: they would
demand parallelism of the “forces” and collinearity of the points ai as a consequence.

The previous constraints on the values of u and v are enough to guarantee the existence of the equilibrium
configuration of forces in the two dimensional euclidean space, but they are not enough to guarantee that this
configuration is compatible with the triangle formed by the points ai, as depicted in Figure 2. This triangle can
be characterized by its angles αi, i = 1, 2, 3, which restrict the freedom of the angles θi between the “forces” wi.
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Figure 3. The uv affine plane showing the region A of equilibrium.

Applying the law of cosines we obtain:

cos θ1 = −1
2

(
w2

2 + w2
3 − w2

1

w2w3

)
, (3.8)

cos θ2 = −1
2

(
w2

1 + w2
3 − w2

2

w1w3

)
, (3.9)

cos θ3 = −1
2

(
w2

1 + w2
2 − w2

3

w1w2

)
· (3.10)

Of course, if we have wi = w, for w > 0, then the solution to the above equations is θi = 120 degrees,
i = 1, 2, 3. Imposing the constraints −1 ≤ cos θi ≤ 1, i = 1, 2, 3, to these expressions results in the same set of
inequalities (3.2), (3.3) and (3.4), which can now be considered redundant.

Expressing now these equations in terms of u and v we have:

cos θ1 = −1
2

(
u2 + v2 − 1

uv

)
, (3.11)

cos θ2 = −1
2

(
1 + v2 − u2

v

)
, (3.12)

cos θ3 = −1
2

(
1 + u2 − v2

u

)
. (3.13)

With help of Figure 2 it is possible to notice that θi > αi, i = 1, 2, 3, is a mandatory constraint to make the
wi spatial configuration compatible with the triangle formed by the points ai. Remembering that the function
cosine is decreasing for arguments between 0 and 180 degrees, this constraint becomes cos θi < cosαi, i = 1, 2, 3.
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Figure 4. uv affine plane showing the restricted region E of equilibrium.

If we substitute our uv definitions for cos θi in these inequalities we obtain:

−1
2

(
u2 + v2 − 1

uv

)
< cosα1, (3.14)

−1
2

(
1 + v2 − u2

v

)
< cosα2, (3.15)

−1
2

(
1 + u2 − v2

u

)
< cosα3, (3.16)

or,

u2 + 2uv cosα1 + v2 > 1, (3.17)
u2 − 2v cosα2 − v2 < 1, (3.18)
v2 − 2u cosα3 − u2 < 1. (3.19)

These additional constraints can also be included in the uv affine plane, and the new acceptable uv (open)
region will be denoted as region E, as depicted in Figure 4. The first inequality is the exterior of an ellipse and
the other two are the “exterior” of two hyperbolas. Obtaining different curves like ellipses and hyperbolas as
boundaries is just a side effect of representing the feasible region in the affine plane, instead of the projective
space RP

2, where the tuples (w2, w3, w1) really belong to.
Summarizing, given w1, w2 and w3, wi > 0, i = 1, 2, 3, we define u = w2/w1 and v = w3/w1. Then the region

E can be delimited using the cosαi information and the inclusion of the point (u, v) in the region E can be easily
tested.

Now we will resume our geometric considerations using wi = w, for w > 0, i = 1, 2, 3 and assume that all
vertices have angles less than 120 degrees. The reason for developing this special situation is its rich geometric
appealing mainly caused by the fact that in this case the Fermat−Weber point has the property that the angles
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Figure 5. Vectors yq = xq − x∗, yq+1 = xq+1 − x∗ and associated projections.

formed by the vectors vi are 120 degrees, as depicted in Figure 5 (a similar development can be undertaken
using the θi angles, but at the cost of more complex expressions). This Figure presents a cartesian plane with x∗

translated to the origin, the vector v1, chosen to point in the upward direction, the vectors v2 and v3, located
120 and 240 degrees, respectively, conterclockwise from v1, the vector yq = xq − x∗, the projections on the vi

directions, its δi (= δi(x∗)) weighted versions and its sum, the vector yq+1 = xq+1 − x∗. The angle θ is formed
by the vector yq and the horizontal axis.

The projection factors on each vi are:

⎧⎪⎨
⎪⎩

πv1 : cos(90◦ − θ) = sin θ

πv2 : cos(120◦ + 90◦ − θ) = − 1
2 sin θ −

√
3

2 cos θ

πv3 : cos(240◦ + 90◦ − θ) = − 1
2 sin θ +

√
3

2 sin θ.

Applying the weights δi and calculating the sum of the projection factors of each vi component on the h
(horizontal) and v (vertical) axes of the plane:

⎧⎨
⎩

πh = −
√

3
2 δ2

(
− 1

2 sin θ −
√

3
2 cos θ

)
+

√
3

2 δ3

(
− 1

2 sin θ +
√

3
2 cos θ

)
,

πv = δ1 sin θ − 1
2δ2

(
− 1

2 sin θ −
√

3
2 cos θ

)
− 1

2δ3

(
− 1

2 sin θ +
√

3
2 cos θ

)
,

or, {
πh = 3

4 (δ2 + δ3) cos θ +
√

3
4 (δ2 − δ3) sin θ,

πv =
√

3
4 (δ2 − δ3) cos θ + δ1 sin θ + 1

4 (δ2 + δ3) sin θ,
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which means that [
xq+1

u − x∗
u

xq+1
v − x∗

v

]
=

[
3
4 (δ2 + δ3)

√
3

4 (δ2 − δ3)√
3

4 (δ2 − δ3) δ1 + 1
4 (δ2 + δ3)

] [
xq

u − x∗
u

xq
v − x∗

v

]
,

or,
xq+1 − x∗ = Jg(x∗)(xq − x∗), (3.20)

where

Jg(x∗) =

[
3
4 (δ2 + δ3)

√
3

4 (δ2 − δ3)√
3

4 (δ2 − δ3) δ1 + 1
4 (δ2 + δ3)

]
. (3.21)

As a particular case, if δ1 = δ2 = δ3 = 1
3 then Jg(x∗) = 1

2I, which implies that (xq+1 − x∗) = 1
2 (xq − x∗). It

means that whenever the points ai are located at the vertices of an equilateral triangle then the local convergence
will be linear with rate 1

2 . The eigenvalues of this matrix, denoted by μ, will define the convergence behavior.
It is worth noting that the matrix Jg(x∗) is symmetric (as expected) and that implies that all the eigenvalues
are real. They can be found by looking for the roots of:

det

([
3
4 (δ2 + δ3) − μ

√
3

4 (δ2 − δ3)√
3

4 (δ2 − δ3) δ1 + 1
4 (δ2 + δ3) − μ

])
= 0. (3.22)

Developing this expression:

μ2 −
(

3
4
(δ2 + δ3) + δ1 +

1
4
(δ2 + δ3)

)
μ +

3
4
(δ2 + δ3)

(
δ1 +

1
4
(δ2 + δ3)

)
− 3

16
(δ2 − δ3)2 = 0, (3.23)

or,

μ2 − μ +
3
4
K = 0, (3.24)

where K = δ1δ2 + δ1δ3 + δ2δ3. The roots are given by:

μ1,2 =
1
2
±

√
1 − 3K

2
· (3.25)

The smallest root will be denoted by μ1 = 1
2−

√
1−3K

2 and the largest root will be denoted by μ2 = 1
2 +

√
1−3K

2 .
Focusing on the largest root, it is clear that decreasing K increases μ2, and it is thus necessary to verify how
much K can be reduced. But δi > 0, i = 1, 2, 3, and this implies that K > 0. Also, it is possible to develop
another expression for K:

1 = (δ1 + δ2 + δ3)2 = δ2
1 + δ2

2 + δ2
3 + 2(δ1δ2 + δ1δ3 + δ2δ3) = δ2

1 + δ2
2 + δ2

3 + 2K,

or,

K =
1 − (δ2

1 + δ2
2 + δ2

3)
2

=
1 − r2

2
, (3.26)

where r2 = δ2
1 + δ2

2 + δ2
3 . This expression can be easily interpreted if we consider r as the radius of a sphere

located at the origin of a tridimensional euclidean space R
3 with axes labeled as δ1, δ2 and δ3. As δ1+δ2+δ3 = 1,

the K level curves correspond to the intersection of the spheres defined for each r and the plane δ1 +δ2 +δ3 = 1.
It is then possible to make K > 0 smaller than any ε > 0 simply imposing the constraint

√
1 − 2ε < r < 1. On

the other hand, the largest possible value of K is 1
3 , which can be obtained decreasing r to the smallest possible

value, given by r =
√

3
3 , or δ1 = δ2 = δ3 = 1

3 (this is the limit situation when the sphere of radius r is tangent
to the plane defined by δ1 + δ2 + δ3 = 1).

Then the range of variation of K is 0 < K ≤ 1
3 and K can be as small as needed making the angle of one

of the vertices of the triangle formed by the points ai approach 120 degrees. The factor Δ = 1 − 3K measures
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the deviation from the equilateral triangle configuration and will be named equilaterality coefficient. Please note
that the maximum deviation Δ = 1 (K = 0) in our context means that the triangle has one angle greater than
or equal to 120 degrees. On the other hand, minimum deviation Δ = 0 (K = 1

3 ) means that the triangle is
equilateral.

We have then the following situations:

(1) In the most symmetric situation the points ai are located at the vertices of an equilateral triangle and
K = 1

3 . It results in having μ1 = μ2 = 1
2 , which means that the rate of convergence is 1

2 no matter the
direction xq takes when converging to x∗.

(2) In the opposite situation, K is very close to zero (0 < K � 1
3 ), which implies that μ1 is very close to zero

and μ2 is very close to one. It means a fast convergence on the direction of the eigenvector associated with
μ1 and a very slow convergence on the direction of the eigenvector associated with μ2.

In general, we can define the rate of local convergence associated to the Weiszfeld algorithm as the largest
eigenvalue associated to the Jacobian:

μC = μ2 =
1 +

√
1 − 3K

2
· (3.27)

These results demonstrate that, depending on the geometrical configuration of the points ai in the plane R
2,

one of the eigenvalues will always be greater than or equal to 0.5 and the rate of convergence will follow this
worst eigenvalue. If a certain δi is too close to one, K is very close to zero and one of the eigenvalues is then
very close to one, meaning a very slow convergence to x∗.

4. Step-size generalization

The generalization developed in the article “Accelerating convergence in the Fermat−Weber location prob-
lem” [3] includes a parameter λ > 0 which changes (2.20) in the following way:

xq+1 = xq − λ
∇W (xq)
S(xq)

⇒ g(x) = x − λ
∇W (x)
S(x)

· (4.1)

The target of this modification is to increase the step-size of the Weiszfeld algorithm, accelerating its con-
vergence. The λ parameter will be called step-size multiplier, and λ = 1 corresponds to the original Weiszfeld
algorithm.

But for what values of λ does the method converge? And for these values of λ, which ones improve its
convergence rate?

This idea will be developed in this Section using a local expansion in the neighborhood of x∗ (the Jacobian
without argument will be assumed to be calculated at x∗). The value generated by this modified iteration will
be denoted using a subscript λ:

xq+1
λ = xq + λ(xq+1 − xq) = (1 − λ)xq + λxq+1

= (1 − λ)xq + λ [x∗ + Jg(x∗)(xq − x∗)] , (4.2)

or,

xq+1
λ − x∗ = (1 − λ)xq − (1 − λ)x∗ + λJg(x∗)(xq − x∗)

= [(1 − λ)I + λJg(x∗)] (xq − x∗), (4.3)

and now it is possible to define the new Jacobian Jλ
g using (2.22):

Jλ
g = (1 − λ)I + λJg = (1 − λ)I + λ

(
I − HW (x∗)

S(x∗)

)
(4.4)
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Once again, in case δ1 = δ2 = δ3 = 1
3 , then all eigenvalues of Jg are 0.5 or, in other words, Jg = 1

2I. Using
now (4.4) we obtain Jλ

g = (1− λ
2 )I, which means that all eigenvalues of Jλ

g are 1− λ
2 . Searching for accelerating

the convergence means decreasing the eigenvalues of Jλ
g , which can be obtained by increasing λ, starting from its

standard Weiszfeld algorithm value of one. Thus, for λ = 1 we have linear convergence with rate of convergence
0.5. If we increase λ from 1 to 1.5, we get linear convergence with rate of convergence 0.25. The best result
can be obtained letting λ = 2, what makes Jλ

g = 0. In a local analysis context, it means that the order of
convergence shifts from linear to superlinear.

The above mentioned case is a particular case. In general, Jg can have eigenvalues larger than 0.5, and they
can attain, in extreme cases, values very close to the value one.

Following the same reasoning developed in Section 3 and applying (4.4), the new matrix that represents the
linear transformation Jλ

g is:

Jλ
g =

[
1 − λ + 3

4 (δ2 + δ3)λ
√

3
4 (δ2 − δ3)λ√

3
4 (δ2 − δ3)λ 1 − λ +

(
δ1 + 1

4 (δ2 + δ3)
)
λ

]
.

The eigenvalues of this matrix, which are functions of λ, will characterize the convergence behavior. Again,
they can be found looking for the roots of:

det

([
1 − λ + 3

4 (δ2 + δ3)λ − μ
√

3
4 (δ2 − δ3)λ√

3
4 (δ2 − δ3)λ 1 − λ +

(
δ1 + 1

4 (δ2 + δ3)
)
λ − μ

])
= 0. (4.5)

Developing this expression:

μ2 −
(

1 − λ +
3
4
(δ2 + δ3)λ + 1 − λ +

(
δ1 +

1
4
(δ2 + δ3)

)
λ

)
μ

+ 1 − 2λ + λ2 + (λ − λ2)
(

δ1 +
1
4
(δ2 + δ3) +

3
4
(δ2 + δ3)

)

+
3
16

(δ2 + δ3)(4δ1 + δ2 + δ3) − 3
16

(δ2 − δ3)2λ2 = 0, (4.6)

or,

μ2 − μ(2 − λ) + 1 − λ +
3
4
Kλ2 = 0. (4.7)

where K = δ1δ2 + δ1δ3 + δ2δ3. The roots are given by:

μ = 1 − λ

2
± λ

√
1 − 3K

2
· (4.8)

Obviously, if we let λ = 1 then (4.8) becomes (3.25).
As in Section 3, we have then the following situations:

(1) In the most symmetric situation, whenever the points ai are located at the vertices of an equilateral triangle,
we have K = 1

3 . It results in having μ1 = μ2 = 1 − λ
2 , which means that the rate of convergence starts

from 0.5 for λ = 1, but it can be substantially improved increasing λ until it reaches the value λ = 2, for
which we will have μ1 = μ2 = 0. This corresponds to the already commented superlinear (local) convergence
situation. It is worth noting that the convergence rate is the same no matter the geometric position of xq

relative to x∗.
If we continue increasing λ, the eigenvalues μ1 and μ2 will simultaneously become negative. The convergence
can still be sustained if |μ1| = |μ2| < 1, which implies in keeping λ < 4. On the other side, if λ ≥ 4 the
method will diverge.
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(2) In a general situation, K is positive but different from 1
3 . Using a previous Section compatible naming

scheme, the eigenvalues will be denoted as:

μ1 = 1 − λ

2
− λ

√
1 − 3K

2
= 1 − λ

(
1
2

+
√

1 − 3K

2

)
, (4.9)

μ2 = 1 − λ

2
+ λ

√
1 − 3K

2
= 1 − λ

(
1
2
−

√
1 − 3K

2

)
. (4.10)

For a fixed value of K, 0 < K < 1
3 , we have:

0 <

(
1
2
−

√
1 − 3K

2

)
<

(
1
2

+
√

1 − 3K

2

)
< 1.

These definitions imply that the coefficient of λ in the expression of μ1 is larger than the coefficient of λ in
the expression of μ2, which means that μ1 is more sensitive to the increase of λ than μ2. For λ = 1 we have
0 < μ1 < μ2 < 1 and increasing λ will decrease both μ1 and μ2, but μ1 will decrease faster than μ2 and it
means that μ1 can be made zero before μ2:

μ1 = 1 − λ

2
− λ

√
1 − 3K

2
= 0 ⇒ λ1 =

2
1 +

√
1 − 3K

· (4.11)

So for λ = λ1 the convergence in the μ1 associated autovector direction is superlinear. The definition of λ1

implies that 1 < λ1 ≤ 2, for 0 < K ≤ 1
3 . On the other hand, it is still possible to reduce μ2 if we continue

increasing λ. However, increasing λ above λ1 means making μ1 negative, but this is not a real problem in
terms of convergence, as far as we keep |μ1| < 1. The convergence to x∗ will just become oscillatory in the μ1

associated autovector direction. So, it is possible to increase λ until:

μ1 = 1 − λ

2
− λ

√
1 − 3K

2
= −1 ⇒ λS =

4
1 +

√
1 − 3K

· (4.12)

Specifically, keeping λ < λS ensures convergence. Notice that λS = 2λ1 and so we have 2 < λS ≤ 4.
However, if we target the best convergence configuration, the ideal situation could be achieved by increasing λ

in such a way as to get μ2 = −μ1, which would imply |μ1| = |μ2|. In this case the convergence rate would be the
best possible, considering that the approaching direction is not known (the convergence to x∗ will be oscillatory
in the μ1 associated autovector direction, as already commented above). The λ and μ that characterize this
situation are:

μ2 = −μ1 ⇒ 1 − λ

2
+ λ

√
1 − 3K

2
= −1 +

λ

2
+ λ

√
1 − 3K

2
⇒ λM = 2 (4.13)

and

μM = 1 − λM

2
+ λM

√
1 − 3K

2
=

√
1 − 3K. (4.14)

Thus, λ = λM = 2 is (again) the best value to be used for λ because in general we don’t know the approaching
direction (we don’t know, a priori, the location of x∗) and μM is the best convergence rate that can be achieved
in this situation. It is not possible to have a specific value of λ that ensures superlinear convergence in all
approaching directions, as in the symmetric situation, but λ = 2 is still the best alternative (a tradeoff between
a good and homogeneous convergence in all directions and the best convergence rate that can be achieved in
one specific eigenvector direction).
Another special value of λ is the one that changes the signal of the second eigenvalue:

μ2 = 1 − λ

2
+ λ

√
1 − 3K

2
= 0 ⇒ λ2 =

2
1 −√

1 − 3K
· (4.15)
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Figure 6. λ1, λM , λ2 and λS as functions of K.

So for λ = λ2 the convergence rate in the direction of the eigenvector associated with μ2 is superlinear. If
λ > λ2 then μ2 < 0 and the convergence becomes oscillatory in the direction of the eigenvector associated
with μ2.
An interesting question now is: which one is bigger, λS or λ2? Is there a specific value K0 for K that implies
λS = λ2?

λS = λ2 ⇒ 4
1 +

√
1 − 3K

=
2

1 −√
1 − 3K

⇒ K0 =
8
27

⇒ λ = 3. (4.16)

Therefore K = K0 = 8
27 implies λS = λ2 = 3. A closer examination of the definitions of λS and λ2 leads us to

the conclusion that K < K0 ⇒ λS < λ2 and K > K0 ⇒ λS > λ2.

Summarizing: increasing λ from one to λ1 decreases both μ1 and μ2. When λ reaches λ1 we have μ1 = 0.
Increasing λ from λ1 to λM still decreases μ1 and μ2, but μ1 is now negative, and we start to increase its
absolute value. When λ reaches λM we have μ2 = −μ1 = μM and this is what we consider the best convergence
case. Still increasing λ beyond λM decreases μ2 but increases the absolute value of μ1, in such a way that
μ2 < μM , but |μ1| > μM . Now, depending on which one is bigger, λ2 or λS , μ2 will change signal (if λ2 < λS),
or the algorithm will diverge in the direction associated with the eigenvalue μ1 (if λS < λ2), or both events will
happen simultaneously (if λ2 = λS = 3).

These different cases are depicted in Figure 6.
A figure of merit ρ that measures the benefit of using λ = λM = 2 against the standard λ = 1 can be created

to compare both situations. Considering it is expected that μM < μC , we define ρ for μM > 0 as:

ρ = 2
μC

μM
− 1 = 2

1
2 +

√
1−3K

2√
1 − 3K

− 1 =
1√

1 − 3K
− 1 =

1
μM

− 1,

and ρ = +∞ for μM = 0. We always have ρ > 0 (because 0 < K ≤ 1
3 implies that 0 ≤ μM < 1) and this is a

direct measurement of the improvement in the linear convergence of the method. For K very close to zero we
have μM (and μC) very close to one and in consequence we have ρ very close to zero. For K approaching 1

3

the linear convergence rate gets lower (better) and ρ gets bigger. If K = 1
3 then the convergence is superlinear
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and having ρ = +∞ makes a lot of sense. These properties entitles ρ to be named as the convergence rate
improvement index.

5. Conclusion

The results presented in this article demonstrate that there is an interesting geometric interpretation of the
local convergence process for the traditional Weiszfeld algorithm and its step-size modified version when the
angles of the triangle formed by the three points ai, i = 1, 2, 3 are less than 120 degrees and the weights are all
equal. The same ideas can be applied even if these restrictions are relaxed but the Fermat−Weber point is still
interior to the triangle, except that the convergence expressions become more complex.

The eigenvalues analysis also shows that using λ = 2 in the modified Weiszfeld algorithm results in a
substantial improvement in the local convergence rate, but this improvement becomes less noticeable when the
points are spread out in a configuration that does not resembles the vertices of an equilateral triangle (in other
words, when K is close to 0).

In particular, local superlinear convergence, independent of the geometric position of the iteration points in a
neighborhood of the Fermat−Weber point, is obtained only in the ideal configuration of the equilateral triangle,
for which μM = 0.

It is the aim of future research to analyze other geometric aspects of the Weiszfeld algorithm, extending some
results to special configurations that include more than three points. Some of these properties are even valid in
the context of global convergence.
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