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A NUMERICAL OPTIMAL CONTROL METHOD
FOR SOLVING A LARGE THERMIC PROCESS
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Abstract. This work deals with the optimal regulation of a large thermal process when the final
state is fixed and the control is subject to some constraints, for which we propose a relaxation method
coupled with the shooting one. We study the behavior of this method. The studied example concerns
the optimal control law for two ovens with three and twelve heating zones.
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1. Introduction

The goal of the present work is to propose a relaxation method coupled with the shooting one for solving
an optimal control problem; the behavior of this iterative method is also studied. The proposed method is
applied to the optimal control of a thermal process. The thermal process considered here, is described by a
linear state equation with a quadratic criterion to minimize. Furthermore, the terminal state and the size of the
horizon are fixed and, the control is subjected to some constraints. In the present study, the considered oven
is splitted in n heating zones to control. This system with n controls, presents large internal couplings, due
to the natural convection in the chimney and to thermal conduction; the objective is to maintain, in spite of
perturbations, a prescribed repartition of temperature on a vertical bar placed in the chimney and to minimize
the energy consumed. The observations are considered at n points and the constraints on the control must
be verified. The goal is to obtain on one hand good precision and on the other hand the minimized energy
consumption. The most simple representation of the linearized process for a given command is a 2n dimensional
model. The Hamilton−Pontryagin conditions which characterize the optimal conditions, provides 4n differential
equations and 2n inequations. In this paper, we consider the case of vertical oven having three and twelve heating
zones. In the case where the control is subject to some constraints, we use the notion of subdifferentiability
(see [1, 4]) to obtain the optimality conditions. We formalize theoretically the necessary optimal conditions of
the Pontryagin principle and then we have to solve a multivalued differential-algebraic problem. The solution of
such a problem is obtained by the projection on the convex set of the constraints. The state equation is modeled
by a differential system with an initial condition and a final condition. The costate is introduced by applying
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the Hamilton−Pontryagin condition. The costate equations are not equipped with initial or terminal condition
which is useful for an automatic computation. Consequently, in order to determine the initial condition of the
costate, we will use the shooting method [10]. Under suitable assumptions, we show the convergence of the
relaxation iterative algorithm (see [3, 5–8]) coupled with the shooting method. In the case of two oven with
three and twelve heating zones, we show that the proposed algorithm is very efficient, since the convergence is
fast and the computational time is short.

This paper is organized as follows. In Section 2, the optimal control problem and the Pontryagin principle in
the constrained case are presented. Section 3 is devoted to the description of the the relaxation method coupled
with the shooting one. In Section 4, a convergence result of the proposed method is given. In Section 5, we
present the results of the numerical experiments.

2. The problem to solve

2.1. Formulation of the problem

Let us consider a vertical oven constituted with a chimney having n heating zones. The problem is to bring
in a finite time T , the state of a bar located in the chimney, to a desired temperature zd. In the sequel, x ∈ R

n

represents the temperature of the chimney in n points. u ∈ R
r is the vector of control representing the intensity

of currents applied to the n heating zones. For notations consistency, z ∈ R
n is the vector of temperature of the

n points of the bar. The problem is to obtain a control u that make it possible to maintain the temperature of
the bar to zd in spite of the perturbations. Let y = (z1, x1, . . . , zi, xi, . . . , zn, xn) ∈ R

2n the state vector of the
dynamic system at time t ∈ [0, T ]. The mathematical model is obtained by linearizing the heat equation; so we
obtain: ⎧⎨

⎩
dy
dt = Ay(t) +Bu(t),

y(0) = y0, y(T ) = yf , t ∈ [0, T ],
(2.1)

where y(0) = y0 is the given initial state vector of the system and y(T ) = yf is the final state; A ∈ R
2n×2n is

an M-matrix where the entries are given, B ∈ R
2n×r is a given constant matrix.

The observation is given by

z = Cy, (2.2)

where C ∈ R
n×2n is also a given constant matrix. The problem is to minimize the functional J(u):

J(u) =
1
2

T∫
0

[
α

‖zd‖22
‖z − zd‖22 +

β

‖ud‖22
‖u− ud‖22

]
dt, (2.3)

subject to the constraint (2.1); ud is the control which leads asymptotically to the prescribed temperature zd

and, it can be shown that:

ud = − (CA−1B
)−1

zd.

The two dimensionless coefficients α and β control the comparative weight given in the cost function concerning
the accuracy and the energy expenditure. Furthermore, the components of the control vector must verify the
following constraints:

um
i ≤ ui ≤ uM

i , ∀i ∈ {1, . . . , r}, ∀t ∈ [0, T ], (2.4)

and in the sequel Uad denotes the set of admissible controls; Uad is obviously convex, closed and non empty.
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The problem is, then, to determine u ∈ Uad realizing the minimum of the functional J :

J(u) = min
v∈Uad

J(v), (2.5)

subject to the constraints (2.1) and (2.4). The Hamiltonien of the system is defined by:

H (y, p, u, t) =
1
2

[
α

‖zd‖22
‖z − zd‖22 +

β

‖ud‖22
‖u− ud‖22

]
+ pt · [Ay +Bu] ,

where p is the costate vector. Then, we have to find û such that:

H (ŷ, p̂, û) ≤ H (y, p, u) , ∀u ∈ Uad.

A characterization of the solution of the problem in the case where the control is subject to some constraints
defined by equations (2.1)−(2.5) will be given by an adaption of the Pontryagin principle in which we use the
notion of subdifferential which will be recalled in Annex 1.

2.2. The Pontryagin principle in the constrained case

We give now a formulation of the Pontryagin principle, in the case where the control is subject to some
constraints. Consider the closed domain Uad = {u ∈ R

r / um
i ≤ ui ≤ uM

i } and let (ΨUad
)i be the indicator

function of Uad which satisfies:

(ΨUad
)i =

⎧⎨
⎩

0, if um
i ≤ ui ≤ uM

i ,

+∞, otherwise.

The subdifferential is given by:

(∂ΨUad
)i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅, if ui < um
i ,

]−∞, 0], if ui = um
i ,

0, if um
i < ui < uM

i ,
[0,+∞[, if ui = uM

i ,
∅, if ui > uM

i ,

and the corresponding graph is presented on Figure 1.

Figure 1. Subdifferential of the function ΨUad
.

Note that the subdifferential ΨUad
is monotone. Let us apply the result of Lemma A.4 to our problem. Thus,

we have to find û ∈ Uad which minimizes the Hamiltonien H ; so, since H is a continuous operator (see [4]), we
have to solve the following problem:

0 ∈ ∂(H + ΨUad
) (û) = ∂H(û) + ∂ΨUad

(û).
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The new formulation of the necessary conditions of optimality is then:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy
dt = Ay +Bu; y(0) = y0, y(T ) = yf , ∀t ∈ [0, T ],

−dp
dt = AT p+ CTCy − CT zd, p(0) to be determined,

∂(H + ΨUad
) (û) = ∂H(û) + ∂ΨUad

(û) � 0,

(2.6)

which in our case leads to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy
dt = Ay +Bu; y(0) = y0, y(T ) = yf , ∀t ∈ [0, T ],

−dp
dt = AT p+ CTCy − CT zd, p(0) to be determined,

BT p+ k(u− ud) + ∂ψUad
� 0,

(2.7)

where:

• p(t) is the costate,
• k = ‖zd‖2

‖ud‖2 · β
α ,

• ud = −(CA−1B)−1zd,
• ∂ψUad

is the subdifferential mapping of the indicator function of the convex Uad.

Note that ∂ψUad
is identically zero in the case without constraint.

3. Algorithm

3.1. The shooting method

Due to the fact that the final state is fixed, we have also to use the shooting method, which allows to obtain
the value of p(0) necessary to the solution of the problem characterized by the Pontryaguin principle. The idea
of the shooting method is to introduce an unknown, the initial value of the adjoint state p0 and to solve a
non-linear system of equations:

yp0(T )− yf = 0,

where yp0(t) is obtained by solving the system of differential equations:

⎧⎨
⎩

dy
dt = ∂H

∂p , y(0) = y0, y(T ) = yf , ∀t ∈ [0, T ],

−dp
dt = ∂H

∂y , p(0) = p0;

this system can be numerically solved using an integrator such as the Euler or Runge Kutta methods. By
denoting G(p0) = yp0(T ) − yf , we define a function from R

n to R
n. G is an implicit nonlinear system of n

equations and n unknown variables satisfying:

G(p0) = 0.

For solving the previous system, we used the Newton’s method. The principle of the Newton’s method is
described as follows: in the qth step, let pq

0 be a given approximation of the zero p0 of G; therefore p0 can be
written by p0 = pq

0 +Δpq
0 and then we have:

0 = G(p0) = G(pq
0 +Δpq

0) = G(pq
0) + JG(pq

0) · (p0 − pq
0) + o(p0 − pq

0),
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where JG(pq
0) is the Jacobian matrix of the application p0 	→ G(p0) computed when p0 = pq

0; then the Newton’s
method leads to the solution of the linear system:

JG(pq
0) · (p0 − pq

0) = −G(pq
0).

Note that the mapping p0 → G(p0) is not explicitly known but it can numerically be computed. Hence, we will
use a method of numerical differentiation based on the finite difference method. To avoid the computation of
JG(pq

0), we will simply find an approximation of JG(pq
0). According to [9], we have two typical finite difference

approximations which are frequently used:

∂Gi

∂p0j
(p0) ≈ 1

hij

[
Gi

(
p0 +

j∑
l=1

hile
l

)
−Gi

(
p0 +

j−1∑
l=1

hile
l

)]
,

or
∂Gi

∂p0j
(p0) ≈ 1

hij

[
Gi(p0 + hije

j)−Gi(p0)
]
,

where hij are the discretization step of the ith equation with respect to the jth variable and el is the lth vector
of the canonical basis; note that, classically, we can always choose the values of hij equal each other to a common
value h. Let Δij(p0, h) be an approximation of ∂Gi

∂p0j
(p0); if the finite difference approximation is consistent then:

lim
h→0

Δij(p0, h) =
∂Gi

∂p0j
(p0), i, j = 1, . . . , n.

Let us denote by
J(p0, h) = (Δij(p0, h)),

the difference matrix. The following process

pq+1
0 = pq

0 − J(pq
0, h)−1 ·G(pq

0), q = 0, 1, . . .

is called a discretized Newton iteration. The problem of convergence of this iterative process is solved thanks
to a result of Ortega and Rheinboldt’s book [9]. Indeed, if the discretization parameters hij are small and tend
to zero, the convergence of the iterative process is ensured.

3.2. The coupled shooting relaxation methods

To solve the considered problem, we propose the relaxation method (see [3, 5, 8]) coupled with the shooting
method [10]. The numerical solution of the problem leads to the following iterative steps:

(1) Choose a first approximation of the costate p0(0) and the corresponding values of u0, t ∈ [0, T ].
(2) r ← 0 where r is the number of the current iteration.
(3) While convergence > ε (where ε defines the convergence threshold) do:

• Determine the state variable yr and the costate variable pr, by integration of the state equations and of
the costate equations: ⎧⎨

⎩
dyr

dt
= Ayr +Bur,

yr(0) = y0.

(3.1)

⎧⎨
⎩−

dpr

dt
= AT pr + CTCyr − CT zd,

pr(0)
(3.2)

where pr(0) is computed by the shooting method.
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• Determine the control ur+1 :

ur+1 ← Proj
(
ud − 1

k
BT pr

)
, (3.3)

where Proj(.) is the projected operator on the closed convex Uad.
• Convergence ← |ur+1 − ur|.
• Determine the shooting function:

G(p) = yr(T )− yf .

• Solve the shooting equation by Newton’s method and find the new value of p(0) :

pr+1(0)← pr(0) + correction ,

• r← r + 1
End while.

Remark 3.1. Steps (3.1)−(3.3) of the loop correspond to the relaxation method while the other steps corre-
spond to the implementation of the shooting method.

4. Convergence of the method

The optimality equation can be written as follows⎛
⎜⎝

dy
dt

−dp
dt

∂ΨUad

⎞
⎟⎠+

⎛
⎝ Ā 0 −B
−Q ĀT 0
0 BT kI

⎞
⎠
⎛
⎝ y
p
u

⎞
⎠ �

⎛
⎝ 0
−CT zd

kud

⎞
⎠,

where Ā = −A, k = ‖zd‖2

‖ud‖2 · β
α , Q = CTC and I is the identity matrix. Thus, the problem can be written as the

sum of a linear system perturbed by a diagonal mapping. Let

Θ =

⎛
⎜⎝

Ā 0 −B
−Q ĀT 0
0 BT kI

⎞
⎟⎠.

We recall the following definitions:

Definition 4.1. A nonsingular matrix Ā is called an M -matrix if Ā−1  0 and āij � 0 for i �= j.

Definition 4.2. A matrix Θ is an H-matrix if the matrix with diagonal elements entries |θii| and with the
off-diagonal entries −|θij | is an M -matrix.

Remark 4.3. M-matrices have many important properties; particularly the spectral radius of the Jacobi matrix
J = I − D̄−1 · Ā is lower than one, where D̄ is the diagonal of Ā; in the sequel, we will use this property.

Proposition 4.4. If the following conditions are satisfied:

• A is a M-matrix,
• k ≥ k0 > 0,
• p2(0)− p2(T ) > 0,

then the relaxation method coupled with the shooting method for the numerical computation of the optimal control
defined by equations (2.1), (2.4) and (2.5), converges for all initial value of u0.
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Proof. We will give briefly the main lines of the proof, since the proof is similar to the one used in [8] in a distinct
framework. Indeed, we have seen in Lemma A.5 that the subdifferential is a monotone continuous mapping.
Moreover, if y(0) is zero; this is always possible by a change of variable, we have〈

dy
dt
, y

〉
=

1
2

∫ T

0

dy2

dt
dt =

1
2
[y2(T )− y2(0)] =

1
2
y2(T ) > 0,

where 〈, 〉 is the standard inner product in the space of continuous functional. Moreover, the final costate value
of p(t) is in general different from zero and according to the second assumption, we have:〈

−dp
dt
, p

〉
= −1

2

∫ T

0

dp2

dt
dt = −1

2
[p(T )2 − p(0)2] > 0.

Let Y = (y, p, u) be the exact solution of the following system of equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dyi

dt + āiiyi +
∑
j �=i

āijyj −
∑
j

bijuj = 0,

−dpi

dt + āiipi +
∑
j �=i

āijpj −
∑
j

qijyj = −∑
j

CT
j zjd,

kui − kudi +
∑
j �=i

bTijpj + ∂Ψi � 0.

(4.1)

Let W = (ω, π, ν) be the iterate values obtained by an iterative method such that Jacobi or Gauss-Seidel
algorithms; then we have: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dyr
i

dt + āiiy
r
i +

∑
j �=i

āijωj −
∑
j

bijνj = 0,

−dpr
i

dt + āiip
r
i +

∑
j �=i

āijπj −
∑
j

qijωj = −∑
j

CT
j zjd,

kur
i − kudi +

∑
j �=i

bTijπj + ∂Ψ̄i � 0.

(4.2)

By subtracting the previous equations (4.1) and (4.2) and multiplying by (yi − yr
i ), (pi − pr

i ) and (ui − ur
i )

respectively, we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
d
dt (yi − yr

i ), yi − yr
i

〉
+ āii|yi − yr

i |2 =
∑
j �=i

aij〈yj − ωj, yi − yr
i 〉

+
∑
j

bij〈uj − νj , yi − yr
i 〉,

〈− d
dt(pi − pr

i ), pi − pr
i 〉+ āii|pi − pr

i |2 =
∑
j �=i

aij〈pj − πj , pi − pr
i 〉

+
∑
j

qij〈xj − ωj , pi − pr
i 〉,

k〈ui − ur
i , ui − ur

i 〉+
∑
j

bTij〈pj − πj , ui − ur
i 〉+ 〈∂Ψi − ¯∂Ψi, ui − ur

i 〉 � 0,

Note that due to the property of monotony of the subdifferential we have 〈Zi−Z̄i, ui−ur
i 〉 ≥ 0 for Zi ∈ ∂Ψi, Z̄i ∈

¯∂Ψi. By taking into account the monotonicity of the previous three diagonal operators, we obtain the following
inequalities: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|yi − yr
i | ≤

∑
j �=i

|aij |
āii
|yj − ωj |+

∑
j

|bij |
āii
|uj − νj |,

|pi − pr
i | ≤

∑
j �=i

|aij |
āii
|pj − πj |+

∑
j

|qij |
āii
|yj − ωj |,

|ui − ur
i | ≤

∑
j

|bT
ij |
k |pj − πj |,
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which can be written as:

|Yi − Y r
i | ≤

∑
j �=i

|θij |
θii
|yj − wj |.

If k is greater than a given number k0 > 0, then the matrix Θ is a H-matrix [5]. Thus, we can define the uniform
weighted norm:

‖Y − Y r‖J = max
j

|Yj − Y r
j |

μj
,

where μj are the components of the eigenvector associated with the spectral radius ρ(J) of the Jacobi matrix J
associated with the matrix Θ̄. From the Perron–Frobenius theorem [9], μ has strictly positive components and
we have:

Jμ ≤ ρ(J)μ, with 0 ≤ ρ(J) < 1.

Thus, we have the following contraction:

‖Y − Y r‖
J
≤ ρ(J)‖Y − Y r−1‖

J
,

since ρ(J) < 1 and then the convergence of the method is ensured. �

Remark 4.5. The proof of the convergence remains valid in both cases with and without constraints on the
control. Indeed, in the latter case the subdifferential of the indicator function is identically zero and the proof
is still valid in both cases.

5. numerical experiments

The numerical experimentations were performed on the regulation of two thermal processes of large dimen-
sions. This corresponds to the oven with three and twelve heating zones.

5.1. The oven with three heating zones

The studied example is connected with an optimal control law for a vertical oven with three heating zones
which has six state variables and three control variables; in our case n = 6 and r = 3. The time is provided in min-
utes and the controls are in calories per minute, T = 180 mn, zd = 30◦c and ud = (372.3915, 193.3312, 419.6856).
Numerical values of the matrices A, B and C, are given below.

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.030 0.013 0.0077 0.0071 0.00017 0.00065
0.0017 −0.012 0.00009 0.00033 0.00008 0.00029
0.0075 0 −0.040 0.016 0.0077 0.00073

0 0.0030 0.0019 −0.014 0.00009 0.0033
0 0 0.0075 0 −0.029 0.012
0 0 0 0.0030 0.0014 −0.013

⎞
⎟⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0
0.00125 0 0

0 0 0
0 0.00125 0
0 0 0
0 0 0.00125

⎞
⎟⎟⎟⎟⎟⎟⎠

C =

⎛
⎝1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎠
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5.1.1. Case without constraint

The main experimental results are summarized in Table 1, Figure 2.

Table 1. Number of iterations necessary for convergence and CPU time in seconds for the
unconstrained case.

β/α k = 0.0077 × (β/α) CPU time Number of iterations

1/10 7.6664 × 10−4 1.0140 10
1/4 0.0019 1.0452 10
1/2 0.0038 1.0764 11
1/1 0.0077 1.0920 11
2/1 0.0153 1.1388 12
4/1 0.0307 1.1856 12
10/1 0.0767 1.2168 13

5.1.2. Case with constraints

The values of the constraints of the control are given in Table 2.

Table 2. Values of the control.

i um
i uM

i

1 180 300
2 0 450
3 0 500

The main experimental results are summarized in Table 3, Figure 3.

Table 3. Number of iterations necessary for convergence and CPU time in seconds for the
constrained case.

β/α k = 0.0077 × (β/α) CPU time Number of iterations

1/10 7.6664 × 10−4 0.9984 10
1/4 0.0019 1.0764 10
1/2 0.0038 1.0608 11
1/1 0.0077 1.1700 11
2/1 0.0153 1.1388 12
4/1 0.0307 1.1544 12
10/1 0.0767 1.1388 13

Note that the problem is solved by a satisfactory way since the constraint related to the value of the final
state is well satisfied. Moreover, in both cases the convergence is fast and CPU-time is short.

5.2. The oven with twelve heating zones

The studied example is connected with an optimal control law calculation for a vertical oven with twelve
heating zones which has twenty four state variables and twelve control variables; in our case n = 24 and r = 12.
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The constants of time are in minutes and the controls are in calories per minute, T = 40 mn, zd = 30 ◦C
and ud = (1075.7, 826.3, 840.9, 845.7, 842.7, 850.7, 858.8, 872.2, 894.3, 930.7, 959.7, 1484.1) . The state matrix A is
given by:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 S + ε εS ε2S . . . εkS . . . ε10S

θ D S + θ εS . . . . . . ε8S ε9S

0 θ D S + θ . . . . . . . .

0 0 θ D S + θ . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

0 0 0 . . . . . . S + ε εS ε2S

. . . . . . . . . . S + θ εS

. . . . . . . . . θ D S + θ

0 0 0 . . . . . 0 0 θ D12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where each blocks D1, D, D12, S and θ are defined by the following 2× 2 matrices:

D1 =

⎛
⎝ −0.38 0.196

0.0068 −0.0629

⎞
⎠ D =

⎛
⎝ −0.39 0.196

0.0068 −0.0682

⎞
⎠ D12 =

⎛
⎝ −0.44 0.196

0.0068 −0.0559

⎞
⎠

S =

⎛
⎝ 0.0054 0.012

0.00033 0.00074

⎞
⎠ θ =

⎛
⎝0.065 0

0 0.0031

⎞
⎠ S + θ =

⎛
⎝0.0704 0.012

0.0003 0.0038

⎞
⎠

with ε = 0.67. The elements of the matrices B and C have the following values:

bij =

⎧⎨
⎩

0.00195, if i is even and j = i/2;

0, else.
cij =

⎧⎨
⎩

1, if i = 1 to 24 and j = 2i− 1;

0, else.

5.2.1. Case without constraints

The main experimental results are summarized in Table 4 and from Figures 4 to 7.

Table 4. Number of iterations necessary for convergence and CPU time in seconds for the
unconstrained case.

β/α k = 0.00098 × (β/α) CPU time Number of iterations

1/10 9.8325 × 10−5 6.7704 15

1/4 2.4581 × 10−4 7.2696 17
1/2 4.9162 × 10−4 6.8796 15
1/1 9.8325 × 10−4 6.0372 14
2/1 0.0020 6.6300 15
4/1 0.0039 7.1448 16
10/1 0.0098 6.5832 14
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5.2.2. Case with constraints

The values of the constraints of the control are given in Table 5.

Table 5. Values of the control.

i um
i uM

i i um
i uM

i i um
i uM

i

1 100 1200 5 500 850 9 500 900

2 835 870 6 500 850 10 500 1000

3 500 850 7 500 900 11 500 1000

4 500 850 8 500 900 12 100 1000

The experimental results are summarized in Table 6 and from Figures 8 to 11.

Table 6. Number of iterations necessary for convergence and CPU time in seconds in the
constrained case.

β/α k = 0.00098 × (β/α) CPU time Number of iterations

1/10 9.8325 × 10−5 6.9888 15

1/4 2.4581 × 10−4 7.5660 17

1/2 4.9162 × 10−4 6.8328 15

1/1 9.8325 × 10−4 6.2088 14

2/1 0.0020 6.4428 15

4/1 0.0039 6.6300 16

10/1 0.0098 6.2868 14

5.3. General comments on numerical experiments

The comments concern both cases of oven with three or twelve heating zones and are general for the case
without or with constraints. We can remark that the convergence is fast, since from ten to 17 iterations are
necessary to reach convergence. Moreover, in both cases the elapsed time for the global computation is about
one second for the oven with three heating zones and about seven seconds for the other oven. When we compare
the results obtained by the two simulations concerning the two mathematical models which describe the evolution
of the thermic process, we note that the results obtained with the oven with twelve heating zones are more
realistic. Indeed the splitting in twelve areas is sharper compared with the splitting in three areas. Note also,
that in these cases, there exists convection phenomenon in the first and the last areas. Then, the proposed and
original method combining the shooting method with the relaxation algorithm is well adapted for an online
control of a thermic process, in both cases for constrained and unconstrained control.

6. Conclusion

In this paper, we have proposed a relaxation method coupled with the shooting method for solving an
optimal control problem. The numerical experimentations were applied on the regulation of two large thermal
processes constituted by two ovens with three and twelve heating zones. Note that the convergence is fast and
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the CPU-time is short. Therefore, the proposed algorithm is well adapted to the online control of a thermic
process. Moreover, the proposed method of computation is also efficient when the control is subject to some
constraints. Note also that the present study can be extended without any problem to the case where the state
and the control are subjected to some constraints.

Annex 1: Basic theoretical results

Subdifferential mapping

The notion of subdifferential mapping will play a major role in this study. Thus we recall hereafter this notion
and the main properties associated.

Definition A.1. Given a convex function χ on E and a point μ ∈ E, we denote by ∂χ(μ) the set of all μ′ ∈ E′

such that

χ(v) ≥ χ(μ) + 〈v − μ, μ′〉, for every v ∈ E, (A.1)

where 〈, 〉 denotes the pairing between E and E′, E′ being the topological dual space of E. Such elements μ′

are called subgradients of χ at μ and ∂χ(μ) is called the subdifferential of χ at μ.

Remark A.2. Recall that the pairing between E and E′ is a bilinear form, from E×E′ to R. If E is a Hilbert
space, then the pairing is the inner product of E.

Remark A.3. Let χ be a Gateaux differentiable (or Frechet differentiable) mapping at μ, then ∂χ(μ) is a
single element, namely the Gateaux (or Frechet) differential of χ at μ [1]. From (A.1), it is obvious that ∂χ(μ)
is a closed convex set (possibly empty, see [1]).

In the sequel, we will use a multivalued formulation of the constrained minimization problem.

Lemma A.4. Let μ ∈ E; μ is such that χ(μ) = min
v∈E

(χ(v)) if and only if 0 ∈ ∂χ(μ).

Proof. Let μ ∈ E such that χ(μ) = min
v∈E

(χ(v)); then we have χ(v) ≥ χ(μ) + 〈v− μ, 0〉, and then 0 ∈ ∂χ(μ). �

Lemma A.5. The subdifferential ∂χ(μ) is a monotone operator (in general multivalued) from E to E′.

Proof. Let w′ ∈ ∂χ(w); then χ(v) ≥ χ(w) + 〈v − w,w′〉, ∀v ∈ E. Let also μ′ ∈ ∂χ(μ), then χ(v) ≥ χ(μ) + 〈v −
μ, μ′〉, ∀v ∈ E. Consider the first inequality for v = μ and the second for v = w; then by adding the two previous
inequalities, we obtain

〈w − μ,w′ − μ′〉 ≥ 0. �

The indicator function of the convex subset K will also play an important role in the sequel. The indicator
function of the convex subset K is defined as follows.
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Definition A.6. Let K be a closed convex subset of E and let ΨK be the indicator function of the convex
subset K; then ΨK is defined by

ΨK(μ) =
{

0, si μ ∈ K,
+∞, otherwise.

Clearly, ΨK(μ) is convex.

Consequent A.7. It follows from Lemma A.4 that the minimum of χ on K ⊂ E leads to solve a multivalued
equation 0 ∈ A(v), where A = ∂(χ+ ΨK), ΨK is the indicator function of the convex set K. By considering the
definition of the subdifferential, we have (see [1]),

∂ΨK(v) = {v′ ∈ E′/〈v − w, v′〉 ≥ 0, for every w ∈ K}.
This shows that D(∂ΨK) = D(ΨK) = K and ∂ΨK(v) = {0} for each v ∈ int(K). Moreover, if v lies on the
boundary of K, then ∂ΨK(v) coincides with the normal cone K at point v.

Annex 2

The oven with three heating zones

Case without constraint

Figure 2. State and control for β = 1 and α = 4.

Case with constraints

Figure 3. State and control for β = 1 and α = 4.
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Annex 3

The oven with twelve heating zones

Case without constraints

Figure 4. State for β = 1 and α = 10.

Figure 5. Control for β = 1 and α = 10.
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Figure 6. State for β = 1 and α = 4.

Figure 7. Control for β = 1 and α = 4.
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Case with constraints

Figure 8. State for β = 1 and α = 10.

Figure 9. Control for β = 1 and α = 10.
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Figure 10. State for β = 1 and α = 4.

Figure 11. Control for β = 1 and α = 4.
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