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GENERALIZED HYPERTREE DECOMPOSITION FOR SOLVING NON BINARY
CSP WITH COMPRESSED TABLE CONSTRAINTS ∗
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Abstract. Many real-world problems can be modelled as Constraint Satisfaction Problems (CSPs).
Although CSP is NP-complete, it has been proved that non binary CSP instances may be efficiently
solved if they are representable as Generalized Hypertree Decomposition (GHD) with small width.
Algorithms for solving CSPs based on a GHD consider an extensional representation of constraints to-
gether with join and semi-join operations giving rise to new large constraint tables (or relations) needed
to be temporarily saved. Extensional representation of constraints is quite natural and adapted to the
specification of real problems but unfortunately limits significantly the practical performance of these
algorithms. The present work tackles this problem using a compact representation of constraint tables.
Consequently, to make algorithms compatible with this compact representation, new “compressed join”
and “compressed semi-join” operations have to be defined. This last step constitutes our main contri-
bution which, as far as we know, has never been presented. The correctness of this approach is proved
and validated on multiple benchmarks. Experimental results show that using compressed relations and
compressed operations improves significantly the practical performance of the basic algorithm proposed
by Gottlob et al. for solving non binary CSPs with a Generalized Hypertree Decomposition.
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1. Introduction

Many real-world problems can be modelled as Constraint Satisfaction Problems (CSPs) but solving CSPs
is combinatorial by nature, making an efficient algorithm unlikely to exist. Usual methods that guarantee to
find a solution are enumerative and have an exponential time complexity in the worst case. In order to provide
better theoretical complexity bounds, structural decomposition methods have received considerable interest
these last decades. Numerous decomposition methods have been successfully used to characterize some tractable
classes [4,5,8,11,15,16,28]. From theoretical viewpoint, methods based on (generalized) hypertree decomposition
are better than those based on tree decomposition [11]. In addition, theoretical time complexities for resolution
algorithms using tree decomposition as well as (generalized) hypertree decomposition can really outperform the
classical direct methods. However, except for the recent work on BTD (Backtracking on Tree Decomposition)
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method [20], the experimental results do not confirm this theoretical gain from practical viewpoint. The memory
space consumption problem is the main drawback which prevents the practical efficiency of using structural
decomposition methods.

This work is an attempt to exploit efficiently a generalized hypertree decomposition (GHD) for solving non
binary CSPs. A basic algorithm is presented in [11] for processing a GHD with Join and Acyclic Solving (JAS ).
Its main primitive operation is the join of the relations to solve the subproblems associated with the nodes of the
hypertree. This operation is the major bottleneck for practical efficiency of JAS when solving large instances.
To overcome this drawback, we propose to exploit compressed representation of relations in order to represent
an exponential number of tuples in a polynomial space. This compressed representation of table constraints
(constraint relations defined in extension) needs to extend the classical join and semi-join operations used in
JAS giving rise to the new algorithm CJAS (Compressed Join Acyclic Solving). Notice that compressing table
constraints has already been successfully used for improving Generalized Arc Consistency (GAC ) algorithms
dealing with large extensional constraints [23]. But, as far as we know, this idea has never been explored for
improving the algorithms for solving non binary CSPs using a GHD.

Many techniques are proposed in order to reduce the space needed for representing and propagating constraint
relations. Katsirelos et al. [23] use compressed tuples to improve the algorithm GAC schema [3]. Régin [34]
proposed to use compressed tuples for expressiveness of constraint tables. Gent et al. [9] proposed to use tries
to propagate constraint relations and to look for a support in order to enforce GAC property [27]. A trie is a
rooted tree storing and retrieving strings over an alphabet. A table can be represented by a trie where levels
are associated with the variables in the scope of the constraint. At each level, the alphabet is the domain of the
corresponding variable. Kenil et al. [24] proposed to use Multi-valued Decision Diagrams (MDD) [21] for enforcing
GAC. A MDD is a trie where prefix redundancy is eliminated. Another approach [33] uses Deterministic Finite
Automaton to enforce GAC determining if a given tuple is accepted (present in the table) or not. Ullmann [38]
and Lecoutre [26] proposed to use Simple Table Reduction (STR) to keep supports. STR maintains dynamically
the tables of allowed tuples by removing from the tables all tuples that become invalid whenever a value is
removed from the domain of a variable.

The rest of the paper is organized as follows. Section 2 is devoted to the presentation of the background:
the useful definitions related to Constraint Satisfaction Problems, Tree Decomposition, Generalized Hypertree
Decomposition and the main algorithm proposed in the literature for solving CSP instances via a generalized
hypertree decomposition. In Section 3, we present the definitions related to compressed tuple, compressed
relation and compressed CSP. Based on the definition of compressed relation, we extend the classical join
and semi-join operations to compressed join and compressed semi-join operations. In Section 4 we present the
algorithm CJAS and prove its correctness. Section 5 permits us to validate experimentally our approach by
numerous tests on well-known benchmarks. Finally, in Section 6 we conclude this paper.

2. Background

The notion of Constraint Satisfaction Problem (CSP) has been formally defined by Montanari [29]. A CSP
instance is defined as a tuple P = 〈X ,D, C,R〉. X = {X1, . . . , Xn} is a finite set of n variables and D =
{D1, . . . , Dn} is a set of finite domains. Each variable Xi takes its value from its domain Di. C = {C1, . . . , Cm}
is a set of m constraints.

A constraint Ci ∈ C on an ordered subset of variables, Ci = (Xi1 , . . . , Xiai
)3 (ai is called the arity of the

constraint Ci), is defined by an associated relation Ri ∈ R of allowed combinations of values for the variables
in Ci. Note that we take the same notation for the constraint Ci and its scope. Binary CSPs are those defined
where each constraint involves only two variables that is ∀i ∈ {1, . . . , m}, |Ci| = 2. Constraints of arity greater
than 2 are called non binary or n-ary. A CSP with at least one n-ary constraint is called non binary or n-ary
CSP. A tuple t ∈ Ri is a list of values (vi1 , . . . , viai

) where ai = |Ci| such that vij ∈ Dij∀j ∈ {1, . . . , ai}.
3For the sake of simplicity, the list of variables in Ci will be used also to mean the set of variables occurring in Ci which is called

its scope.
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A solution to a CSP is an assignment of values to all the variables in X such that for each constraint Ci the
assignment restricted to Ci belongs to Ri.

The constraint hypergraph associated with a CSP instance P = 〈X ,D, C,R〉 is the hypergraph H = 〈V, E〉
where the set of vertices V is the set of variables X and the set of hyperedges E are the set of constraint scopes
in C. For any hyperedge h ∈ E we denote by var(h) the set of vertices of h and for any subset of hyperedges
K ⊆ E var(K) =

⋃
h∈K var(h). We denote by var(H) the set of vertices V and by edges(H) the set of hyperedges

E. (We use the term var because the vertices of the hypergraph correspond to the variables of the CSP). The
primal graph of a hypergraph H = 〈V, E〉 is a graph whose set of vertices is V and whose edges connect each
pair of vertices occurring together in a same hyperedge of H. In this context, tree decomposition and generalized
hypertree decomposition play an important role. These two notions are described hereafter.

Definition 2.1 (Tree decomposition [35]). A tree decomposition of a graph G = (V, E) is a pair 〈T, χ〉 where
T = (N, F ) is a tree and χ is a labelling function which associates with each vertex p ∈ N of T a set of vertices
χ(p) such that all the following conditions hold:

(1) For each vertex v ∈ V, there is a vertex p ∈ N such that v ∈ χ(p).
(2) For each edge {v, w} ∈ E, there is a vertex p ∈ N , such that {v, w} ⊆ χ(p).
(3) For each vertex v ∈ V , the set {p ∈ N |v ∈ χ(p)} induces a (connected) subtree of T .

The width of a tree decomposition is equal to maxp∈N |χ(p)| − 1 and the treewidth of a graph is the minimal
width over all its tree decompositions.

Note that this notion can be applied on any hypergraph by considering the tree decomposition of its associated
primal graph.

Definition 2.2 (Hypertree). Let H = 〈V, E〉 be a hypergraph. A hypertree for H is a triple 〈T, χ, λ〉 where
T = (N, F ) is a rooted tree, and χ and λ are labelling functions which associate each vertex p ∈ N with two
sets χ(p) ⊆ V and λ(p) ⊆ E. If T ′ = (N ′, F ′) is a subtree of T we define χ(T ′) =

⋃
v∈N ′ χ(v). We denote the

set of vertices N of T by vertices(T ) and the root of T by root(T ). Tp denotes the subtree of T rooted at the
node p and Parent(p) is the parent node of p in T .

Definition 2.3 (Hypertree Decomposition [12]). A Hypertree Decomposition of a hypergraph H = 〈V, E〉 is
a hypertree HD = 〈T, χ, λ〉 which satisfies the following conditions:

(1) For each edge h ∈ E, there exists p ∈ vertices(T ) such that var(h) ⊆ χ(p).
(2) For each vertex v ∈ V , the set {p ∈ vertices(T )|v ∈ χ(p)} induces a connected subtree of T .
(3) For each vertex p ∈ vertices(T ), χ(p) ⊆ var(λ(p)).
(4) For each p ∈ vertices(T ), var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The width of a hypertree HD = 〈T, χ, λ〉 is equal to maxp∈vertices(T ) |λ(p)|. The hypertree-width (hw(H)) of
a hypergraph H is the minimum width over all its hypertree decompositions.

A hyperedge h of a hypergraph H = 〈V, E〉 is strongly covered in HD = 〈T, χ, λ〉 if there exists p ∈
vertices(T ) such that the vertices of h are contained in χ(p) and h ∈ λ(p). A hypertree decomposition HD =
〈T, χ, λ〉 of a hypergraph H is complete if every hyperedge h of H is strongly covered in HD.

A hypertree HD = 〈T, χ, λ〉 is called a Generalized Hypertree Decomposition (GHD) [1,13] if the conditions (1),
(2) and (3) of Definition 2.3 hold. The width of a Generalized Hypertree Decomposition HD = 〈T, χ, λ〉 is equal
to maxp∈vertices(T ) |λ(p)|. The generalized-hypertree-width (ghw(H)) of a hypergraph H is the minimum width
over all its generalized hypertree decompositions.

The pair 〈T, χ〉 in a GHD 〈T, χ, λ〉 of a hypergraph H is a tree decomposition of H.

Remark 2.4. The terms node and vertex will be used interchangeably to refer to a vertex of T .
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Figure 1. The constraint hypergraph of the CSP instance of Example 2.5.
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Figure 2. A 2-width generalized hypertree decomposition of the constraint hypergraph of
Example 2.5.

Example 2.5. Let P = 〈X ,D, C,R〉 be a CSP instance defined as follows.

– X = {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16} is the set of variables,
– D = {D1, . . . , D16} where Di = {0, 1, 2} is the domain of the variable Xi ∀i ∈ {1, . . . , 16},
– C = {C1, C2, C3, C4, C5, C6, C7, C8, C9} is the set of constraints where

C1 = (X1, X2, X3), C2 = (X1, X4, X5), C3 = (X3, X8, X5), C4 = (X1, X8, X7), C5 = (X5, X6, X7),
C6 = (X3, X9, X7), C7 = (X3, X10, X11, X12), C8 = (X7, X13, X14), C9 = (X12, X16, X15, X14).

Figure 1 shows the constraint hypergraph associated with P and Figure 2 shows one of its generalized
hypertree decompositions. The width of the decomposition is 2.
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Two approaches have been proposed in the literature for constructing (generalized) hypertree decompositions,
namely the exact and heuristic methods for which we give a brief description in the following.

• Exact methods: given a hypergraph H = 〈V, E〉, the goal of exact algorithms is to find a hypertree decom-
position of width hw less than or equal a constant k if it exists. The first exact algorithm opt-k-decomp
proposed for the generation of optimal hypertree decomposition is due to Gottlob et al. [12]. This algo-
rithm builds a hypertree decomposition in two steps: it finds if a hypergraph H = 〈V, E〉 has a hypertree
decomposition HD = 〈T, χ, λ〉 with width less than or equal to a constant k then it tries to find a hypertree
decomposition with the smallest possible width. The algorithm opt-k-decomp runs in O(m2kV 2) where m
is the number of hyperedges, V is the number of vertices and k is a constant. Among the improvements of
opt-k-decomp, we can cite Red-k-decomp [17], det-k-decomp [10] and the algorithm proposed by Subbarayan
and Anderson [37] which is a backtracking version of opt-k-decomp. However up to now, exact methods have
an important drawback: they need a huge amount of memory space and runtime. This makes the exact
approach inefficient in practice for large instances. To overcome this limitation, some heuristics have been
proposed for computing (generalized) hypertree decompositions.

• Heuristics and meta-heuristics: many heuristics and meta-heuristics have been proposed for computing (gen-
eralized) hypertree decompositions. Korimort [25] proposed a heuristic based on the vertex connectivity of
the given hypergraph. Marko Samer [36] explored the use of branch decomposition heuristics for constructing
hypertree decompositions. Musliu and Schafhauser [30] explored the use of Genetic Algorithms for general-
ized hypertree decompositions. In [2], the authors proposed a heuristic based on separators of the constraint
hypergraph, etc.

Hereafter, we briefly present the algorithm Bucket Elimination (BE) for generating generalized hypertree
decompositions because it is the one used in our experimental study. BE is successfully used to compute a
tree decomposition of a given graph (or a primal graph of a hypergraph). BE has been extended by Dermaku
et al. [6] to compute a generalized hypertree decomposition. The simple idea behind this extension derives from
the fact that a GHD satisfies the properties of a tree decomposition. Consequently, for computing a generalized
hypertree decomposition, BE proceeds as follows: it builds first a tree decomposition and then it creates the λ-
labels for each node of this tree in order to satisfy the third condition of a generalized hypertree decomposition.
This is done greedily by attempting to cover the variables of each node by hyperedges (constraints). Moreover
the BE algorithm requires a variable ordering to be efficient.

2.1. Solving a CSP with a Generalized Hypertree Decomposition

To solve a CSP instance using a GHD, Gottlob et al. [11] have proposed the following algorithm (we called
GLS for Gottlob, Leone and Scarcello).

Algorithm 1. Algorithm GLS.
Input: a CSP instance P = 〈X ,D, C,R〉
Output: a solution of P

1: Compute a GHD of the constraint hypergraph
2: Complete the obtained decomposition
3: For each node p, compute a new constraint relation Rp which is the projection on the variables in χ(p) of the join of

the constraint relations in λ(p)
4: Process the obtained CSP by any efficient algorithm solving acyclic instances.

In this article we will consider the Yannakakis algorithm [39] for processing acyclic instances. Algorithm 2
which implements the 3rd and 4th steps of Algorithm 1 is called Join Acyclic Solving algorithm.
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2.2. Join-Acyclic Solving Algorithm (JAS)

The Join Acyclic Solving (JAS ) algorithm uses the following database operations for processing a GHD. Let
Ri and Rj be two relations associated with the constraints Ci and Cj respectively.

• Join operation of two tuples ��t

Let tk and tl be two tuples in Ri and Rj respectively. tk ��t tl is a tuple t such that ∀Xr ∈ Ci ∩ Cj

tk[Xr] = tl[Xr], and t[Ci] = tk and t[Cj ] = tl.
• Join operation of relations ��

Ri �� Rj = {t | t is a tuple defined on Ci ∪ Cj with t[Ci] ∈ Ri and t[Cj ] ∈ Rj}.4
R1 �� R2 �� . . . �� Rk = ((. . . (R1 �� R2) �� . . .) �� Rk).

• Semi-join operation �
Ri � Rj = ΠCi(Ri �� Rj) = {t ∈ Ri | ∃t′ ∈ Rj s.t ∀Xk ∈ Ci ∩ Cj , t′[Xk] = t[Xk]}.

Let t ∈ Ri and t′ ∈ Rj be two tuples. t and t′ are said compatible if ∀Xk ∈ Ci ∩ Cj , t[Xk] = t′[Xk].
The Join Acyclic Solving (JAS ) algorithm is formally described by Algorithm 2. After selecting an appropriate

node ordering (line 1), all the subproblems associated with the nodes of the GHD are solved separately by the
join and projection operations (lines 3–8). The resulting GHD is made directional arc consistent by using bottom
up semi-join operations (lines 9–14) and the whole problem is finally solved in a backtrack-free way (lines 15–20).

Algorithm 2. Join Acyclic Solving Algorithm (JAS).
Input: a complete GHD 〈T, χ, λ〉 associated with the CSP instance
Output: a solution A of the CSP if it is consistent

1: σ ← (p1, . . . , pl) /* node ordering with p1 being the root and each node precedes all its children.
l is the number of nodes of the considered GHD.*/

2: A ← ∅
3: for each node pi in σ do
4: Rpi ← (��Cj∈λ(pi) Rj)[χ(pi)]
5: if Rpi = ∅ then
6: Exit /*the problem has no solution*/
7: end if
8: end for
9: for i = l downto 2 do

10: RParent(pi) ← RParent(pi) � Rpi

11: if RParent(pi) = ∅ then
12: Exit /*the problem has no solution*/
13: end if
14: end for
15: Select a tuple tp1 in Rp1

16: A ← tp1

17: for i = 2 to l do
18: Select a tuple tpi in Rpi such that A is compatible with tpi /*tpi necessarily exists*/
19: A ← A ��t tpi

20: end for
21: Return A

Unfortunately, JAS has not proved its practical efficiency for instances of realistic size because of the join
operations being the source of memory explosion. In order to cope with this crucial drawback of JAS, we
propose in this paper an optimized version based on a compression strategy. This version is referred as CJAS

4 The square brackets denote the projection operator: t[Ci] is the projection of tuple t on variables that belong to Ci.
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for Compressed Join Acyclic Solving. Before presenting formally the CJAS algorithm in Section 4, we present
in Section 3 the compression method used in this paper.

3. The compression strategy

In this section, we present the concepts relating to compressed tuple, compressed relation and compressed
CSP. Accordingly to the definition of compressed relation, we introduce formally the concepts of compressed
join and compressed semi-join operations.

3.1. Compressed CSP

Definition 3.1 (Compressed tuple [23]). Let P = 〈X ,D, C,R〉 be a CSP instance. Let Ri be the relation asso-
ciated with the constraint Ci = (Xi1 , . . . , Xiai

). A compressed tuple (ctuple for short) is a tuple (D′
i1

, . . . , D′
iai

)
where D′

ij
⊆ Dij , ∀j ∈ {1, . . . , ai}. A tuple t accepted by a ctuple ct is any tuple (vi1 , . . . , viai

) where vij ∈ D′
ij∀j ∈ {1, . . . , ai}. D′

ij
is called the c value of the variable Xij .

Notations: in the rest of this paper,

• c value(Xij , ct) will denote the c value of the variable Xij in the compressed tuple ct.
• tuples(ct) will denote the set of tuples accepted by ct.

Now we present the definition of compressed relation.

Definition 3.2 (Compressed relation [23]). Let Ri be the relation associated with the constraint Ci =
(Xi1 , . . . , Xiai

). A compressed relation (crelation for short) Rc
i associated with Ri is a set of ctuples. Each

tuple in Ri is accepted by a ctuple in Rc
i and each ctuple in Rc

i accepts only tuples in Ri.

Note that compressed representation of a relation is not always unique. So, in the sequel, the compressed
relation associated with any relation is the one obtained by the compression algorithm presented in the Appendix
of this article.

Example 3.3. Let R1 be the relation associated with the constraint C1 = (X1, X2, X3).

R1 = {(0, 9, 1), (1, 9, 2), (2, 9, 0), (3, 9, 3), (4, 9, 2), (5, 9, 3), (6, 9, 1), (7, 9, 1), (8, 9, 1), (9, 9, 3), (10, 9, 3)}.
One possible compressed relation associated with R1 can be:

Rc
1 = {({3, 5, 9, 10}, {9}, {3}), ({0, 6, 7, 8}, {9}, {1}), ({1, 4}, {9}, {2}), ({2}, {9}, {0})}

Each ctuple in Rc
1 is a compact representation of a subset of tuples. The ctuple ({3, 5, 9, 10}, {9}, {3}) repre-

sents the subset of tuples {(3, 9, 3), (5, 9, 3), (9, 9, 3), (10, 9, 3)} of R1.

Definition 3.4 (Compressed CSP). Let P = 〈X ,D, C,R〉 be a CSP instance, a compressed CSP instance
associated with P is any P

′
= 〈X ,D, C,R′〉 where |R′| = |R| and ∀Ri ∈ R, ∃Rc

i ∈ R′ such that Rc
i is a

compressed version of Ri.

3.2. Compressed join and compressed semi-join operations

Now, we introduce the compressed join and compressed semi-join operations in order to manipulate com-
pressed relations. For this purpose, we present the following definitions.

Definition 3.5 (Compatible compressed tuples). Let Ri and Rj be two relations associated respectively with
the constraints Ci and Cj . Let Rc

i and Rc
j be two crelations associated with Ri and Rj . Consider ct and ct′ two

ctuples in Rc
i and Rc

j respectively.

• ct is all-compatible with ct′ if ∀Xk ∈ Ci ∩ Cj , c value(Xk, ct) ⊆ c value(Xk, ct′).
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• ct and ct′ are compatible if there are at least two tuples t and t′ accepted respectively by ct and ct′ such
that t and t′ are compatible.

• ct and ct′ are incompatible otherwise.

Definition 3.6 (Maximal under inclusion ctuple). Let Ri be the relation associated with the constraint Ci.
Let Rc

i be a crelation associated with the relation Ri. A ctuple ct is said maximal under inclusion in Rc
i if � ct′

in Rc
i such that ∀Xk ∈ Ci, c value(Xk, ct) ⊆ c value(Xk, ct′).

Remark 3.7. In this paper, we will consider only ctuples which are maximal under inclusion.

3.2.1. Compressed join operation

First, we introduce the compressed join of two ctuples.

Definition 3.8 (Compressed join of two ctuples). Let Ri and Rj be two relations associated with the constraints
Ci and Cj respectively. Let Rc

i and Rc
j be two crelations associated with Ri and Rj and consider ct and ct′ two

ctuples of Rc
i and Rc

j respectively.
The compressed join of ct and ct′, denoted by ct ��ct ct′ is a ctuple ct′′ defined on Ck = Ci ∪ Cj as follows:

• ∀Xr ∈ Ck \ Cj , c value(Xr, ct
′′) = c value(Xr, ct).

• ∀Xr ∈ Ck \ Ci, c value(Xr, ct
′′) = c value(Xr, ct

′).
• ∀Xr ∈ Ci ∩ Cj , c value(Xr, ct

′′) = c value(Xr, ct) ∩ c value(Xr, ct
′).

If c value(Xr, ct
′′) = ∅ then ct ��ct ct′ = ∅.

We then present the compressed join of two compressed relations.

Definition 3.9 (Compressed join of two crelations). Let Ri and Rj be two relations associated with the con-
straints Ci and Cj respectively. Let Rc

i and Rc
j be two crelations associated with Ri and Rj . The compressed join

of Rc
i and Rc

j is a crelation Rc
k defined on Ck = Ci ∪ Cj . It will be denoted by Rc

i ��cr Rc
j and defined

as the union of all pairs of possible compressed join of ctuples of Rc
i with those of Rc

j . Formally, Rc
k=

Rc
i ��cr Rc

j = {ct′′ = ct ��ct ct′|ct′′ maximal under inclusion in Rc
k, ∀ct ∈ Rc

i , ∀ct′ ∈ Rc
j}.

Example 3.10. Let R1, R2 and R3 be three relations associated with the constraints C1, C2 and C3 respectively.

C1 = (X1, X2, X3),
C2 = (X1, X2, X4),
C3 = (X1, X2, X3, X4),
R1 = {(0,9,1),(1,9,2),(2,9,0),(3,9,3),(4,9,2), (5,9,3), (6,9,1),(7,9,1),(8,9,1),(9,9,3)},
R2 = {(0,9,3),(1,8,3),(1,9,3),(5,8,3),(6,9,3), (7,9,3)},
R3 = R1 �� R2 = {(0,9,1,3),(6,9,1,3),(7,9,1,3),(1,9,2,3)}
Let Rc

1, Rc
2 and Rc

3=Rc
1 ��cr Rc

2 be three crelations associated respectively with R1, R2 and R3.
Rc

1 = {({3,5,9},{9},{3}),({0,6,7,8},{9},{1}), ({1,4},{9},{2}),({2},{9},{0})},
Rc

2 = {({0,1,6,7},{9},{3}),({1,5},{8},{3})} and
Rc

3 = {({0,6,7 },{9},{1},{3}),({1},{9},{2},{3})}.
Observe that tuples(({0, 6, 7}, {9}, {1}, {3}))∪ tuples(({1}, {9}, {2}, {3}) = R3.

Remark 3.11. Rc
1 ��cr Rc

2 ��cr . . . ��cr Rc
k=(. . . (Rc

1 ��cr Rc
2) ��cr . . .) ��cr Rc

k.

Remark 3.12. The compressed join operation generalizes naturally the classical join operation. Indeed, a
classical tuple is a compressed tuple where the c value of each variable contains only one value.
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3.2.2. Compressed semi-join operation

We present the compressed semi-join of two crelations and an algorithm for computing this operation.

Definition 3.13 (Compressed semi-join of two crelations). Let Ri and Rj be two relations associated with the
constraints Ci and Cj respectively. Let Rc

i and Rc
j be two crelations associated respectively with Ri and Rj .

The compressed semi−join of Rc
i and Rc

j , denoted by Rc
i �cr Rj , is a crelation R′c

i defined on Ci and containing
a set of ctuples representing all and only the tuples, accepted by the ctuples in Rc

i , which have compatible
ones in the tuples accepted by the ctuples in Rc

j . More formally, the compressed join of two crelations Rc
i and

Rc
j can be written as follows: R′c

i =Rc
i �cr Rc

j = {ct| ct is a ctuple defined on Ci such that: (ct is maximal
under inclusion in R′c

i ) and (∃ct′ ∈ Rc
i |(∀Xk ∈ Ci, c value(Xk, ct) ⊆ c value(Xk, ct

′)) and (∃ ct′′ ∈ Rc
j |ct is all-

compatible with ct′′)}.
Example 3.14. Consider the constraints C1 and C2 of Example 3.10.

Rc
1 �cr R2 = ΠC1(R

c
1 ��cr R2) = {({0, 6, 7}, {9}, {1}), ({1}, {9}, {2})}

3.2.3. Algorithm for computing compressed semi-join of two crelations

In order to present Algorithm 3 computing the compressed semi-join operation, we have to introduce the
notion of a support of a tuple.

Definition 3.15 (A support for a tuple in a ctuple). Let Rc
i and Rc

j be two crelations. Let ct be a ctuple in Rc
j

and let t be a tuple accepted by a ctuple in Rc
i . ct will be said a support for t if ct accepts at least one tuple t′

such that t and t′ are compatible.

Algorithm 3. Compressed semi-join operation.
Input: two crelations Rc

i and Rc
j

Output: R′c
i = Rc

i �cr Rc
j

1: R′c
i ← ∅

2: while Rc
i �= ∅ do

3: cti ← head(Rc
i ) /* The function head returns the first ctuple of Rc

i */
4: Rc

i ← Rc
i − {cti}

5: ctj ← head(Rc
j)

6: found← false
7: while (notfound) and (ctj �= NIL) do
8: if compatible(cti, ctj) then
9: const all compatible ctuple(cti, ctj , ctcomp)

10: R′c
i ← R′c

i ∪ {ctcomp}
11: if next(ctj) �= NIL then
12: DIFF ← difference(cti, ctcomp)
13: Rc

i ← Rc
i∪ DIFF

14: end if
15: found← true
16: else
17: ctj ← next(ctj)
18: end if
19: end while
20: end while

In Algorithm 3, the crelation Rc
i is managed as a stack. The crelation R′c

i is initially empty. It will contain,
at the end, a set of ctuples accepting all the tuples represented by the ctuples of Rc

i which have a support
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in Rc
j . At each step, the first ctuple of Rc

i is moved to cti and the current ctuple of Rc
j is saved in ctj . The main

difference between computing the compressed semi-join and computing the semi-join of two relations comes
from the fact that a ctuple is not a simple tuple but indeed an abstraction of a subset of simple tuples. So, a
ctuple cti of Rc

i can be compatible but not all-compatible with a ctuple ctj of Rc
j . This means that some tuples

accepted by cti must be derived to make the resulting ctuple ctcomp all-compatible with ctj and to be inserted
in R′c

i . However, a set of ctuples representing the other tuples of cti must be created and pushed in Rc
i because

they can be compatible with other ctuples (after ctj) in Rc
j if such ctuples exist.

To deal with this technical particularity related to the definition of a ctuple, Algorithm 3 proceeds as follows.
If the ctuples cti and ctj are compatible then, according to Algorithm 4, a ctuple ctcomp derived from cti and
corresponding to a ctuple all-compatible with ctj is built and pushed in R′c

i (lines 8–10).

Algorithm 4. const all compatible ctuple.
Input: two ctuples cti ∈ Rc

i and ctj ∈ Rc
j

Output: a ctuple ctcomp

1: for each variable Xk in Ci do
2: if Xk ∈ Ci ∩ Cj then
3: c value(Xk, ctcomp)← c value(Xk, cti) ∩ c value(Xk, ctj)
4: else
5: c value(Xk, ctcomp)← c value(Xk, cti)
6: end if
7: end for

ctcomp represents all the tuples accepted in cti and having compatible tuples accepted in ctj.
If ctj is not the last ctuple of Rc

j , then Algorithm 5 builds a set DIFF of ctuples incompatible with the
current ctuple ctj (lines 11-12) and representing all and only the tuples of cti which have not compatible ones
in the tuples accepted by ctj . These new ctuples are pushed in Rc

i (line 13) in order to be tested against the
next ctuples of Rc

j after ctj.
To build the set DIFF, Algorithm 5 is called giving rise to the ctuples derived from cti and incompatible with

ctj w.r.t. each variable belonging both to Ci and Cj .

Algorithm 5. Difference.
Input: two ctuples cti and ctcomp

Output: a set DIFF of ctuples accepting the tuples of cti which are not accepted in ctcomp

1: DIFF ← ∅
2: for each variable Xk ∈ Ci ∩ Cj do
3: if (c value(Xk, cti) \ c value(Xk, ctcomp)) �= ∅ then
4: create incompatible ctuple(cti, ctcomp, Xk, ctXk)
5: DIFF ← DIFF ∪{ctXk}
6: end if
7: end for
8: return DIFF

Remark 3.16. The compressed semi-join operation generalizes the classical semi-join operation on relations.
Indeed, a classical tuple is a compressed tuple with all the c values having only one value. So, when computing
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the compressed semi-join operation of two classical tuples t and t′, ctcomp accepts only one tuple which is t if t
and t′ are compatible else ctcomp is empty. The set DIFF is always empty because there is no derived ctuples
when t and t′ are compatible.

Algorithm 6. create incompatible ctuple
Input: two ctuples cti and ctcomp

Input: a variable Xk ∈ Ci ∩ Cj

Output: a ctuple ctXk

1: c value(Xk, ctXk)← c value(Xk, cti) \ c value(Xk, ctcomp)
2: for each variable Xl ∈ Ci \ Ci ∩ Cj do
3: c value(Xl, ctXk )← c value(Xl, cti)
4: end for
5: for each variable Xl ∈ Ci ∩ Cj and Xl �= Xk do
6: if Xl is before Xk in Ci then
7: c value(Xl, ctXk )← c value(Xl, ctcomp)
8: else
9: c value(Xl, ctXk )← c value(Xl, cti)

10: end if
11: end for

Example 3.17 (Computing a compressed semi-join operation). Let C1 and C2 be two constraints where:

C1= (X1, X2, X3, X4),

C2=(X5, X6, X3, X4, X7),

S = C1 ∩ C2 = (X3, X4).

Let Rc
1 and Rc

2 be two crelations associated with R1 and R2 respectively:

Rc
1 = {({3,5,9},{9,2},{3,4},{1,2,4}),({0,6,7,8},{9},{1},{3,4})};

Rc
2 = {({0,1,6,7},{9},{3,5},{1,2,3},{3,4}),({1,5},{8},{3,4}, {1,2,4},{2,4})};

R′c
1 =Rc

1 �cr Rc
2 defined on C1 is computed as follows.

(1) (line 1) Initially, R′c
1 = ∅.

(2) (lines 2–20) the first ctuple ({3, 5, 9}, {9, 2}, {3, 4}, {1, 2, 4}) in Rc
1 is moved to cti and the first ctuple

({0, 1, 6, 7}, {9), {3, 5}, {1, 2, 3}, {3, 4}) in Rc
2 is saved in ctj . found is assigned to false.

(3) (lines 7–19) cti and ctj are compatible then
• (lines 9–18) a ctuple ctcomp all-compatible with ctj is derived from cti. Variables X3 and X4

belonging to S take the c values: c value(X3, cti) ∩ c value(X3, ctj) = {3, 4} ∩ {3, 5} = {3}
and c value(X4, cti) ∩ c value(X4, ctj) = {1, 2, 4} ∩ {1, 2, 3} = {1, 2} respectively. The other
variables in C1 \ S keep their corresponding c values in cti. The derived compressed ctuple
ctcomp=({3, 5, 9}, {9, 2}, {3}, {1, 2}) is then pushed in R′c

1 .
• (lines 11-14) as cti and ctj are not all-compatible and ctj is not the last ctuple of Rc

2,
the set DIFF of ctuples, incompatible with ctj , is computed thanks to Algorithm 5. There
are two intersection variables X3 and X4 making the set DIFF containing ctuples ctX3

and ctX4 . DIFF = {ctX3 , ctX4} = {({3, 5, 9}, {9, 2}, {4}, {1, 2, 4}), ({3, 5, 9}, {9, 2}, {3, 4}, {4})}.
Because ctuple ({3, 5, 9}, {9, 2}, {4}, {4})} is already present in ctX3 hence DIFF becomes
{({3, 5, 9}, {9, 2}, {4}, {1, 2, 4}), ({3, 5, 9}, {9, 2}, {3}, {4})}. DIFF is then pushed in Rc

1.
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This loop leads to the following configuration:
R′c

1 = {({3, 5, 9}, {9, 2}, {3}, {1, 2})};
Rc

1 = {({3, 5, 9}, {9, 2}, {4}, {1, 2, 4}), ({3, 5, 9}, {9, 2}, {3}, {4}),
({0, 6, 7, 8}, {9}, {1}, {3, 4})};

(4) The same process (beginning in 2) is repeated for the new ctuple cti = ({3, 5, 9}, {9, 2}, {4}, {1, 2, 4})
removed from Rc

1 compatible with the next ctuple ctj = ({1, 5}, {8}, {3, 4}, {1, 2, 4}, {2, 4}) of Rc
2 then

• ctcomp = ({3, 5, 9}, {9, 2}, {4}, {1, 2, 4}) all-compatible with ctj is pushed in R′c
1 .

• the set DIFF is not created because ctj is the last ctuple of Rc
2. This loop leads to the following

configuration:
R′c

1 = {({3, 5, 9}, {9, 2}, {3}, {1, 2}), ({3, 5, 9}, {9, 2}, {4}, {1, 2, 4})};
Rc

1 = {({3, 5, 9}, {9, 2}, {3}, {4}), ({0, 6, 7, 8}, {9}, {1}, {3, 4})};
(5) The first ctuple ({3, 5, 9}, {9, 2}, {3}, {4}) is removed from Rc

1 to cti which is compatible with ctj =
{1, 5}, {8}, {3, 4}, {1, 2, 4}, {2, 4}) in Rc

2 then
• ctuple ctcomp = {({3, 5, 9}, {9, 2}, {3}, {4})} all-compatible with ctj is created.
• DIFF = ∅ because cti is all-compatible with ctj . Then ctcomp is moved to R′c

1 . This loop leads to
the following configuration:

R′c
1 = {({3, 5, 9}, {9, 2}, {3}, {1, 2}), ({3, 5, 9}, {9, 2}, {4}, {1, 2, 4}),

({3, 5, 9}, {9, 2}, {3}, {4})}; Rc
1 = {({0, 6, 7, 8}, {9}, {1}, {3, 4})}.

(6) Finally the last unique ctuple cti = ({0, 6, 7, 8}, {9}, {1}, {3, 4}) in Rc
1 is considered. It has no compatible

ctuple in Rc
2 making R′c

1 unchanged and Rc
1 = ∅.

The result of the compressed semi-join operation is then
R′c

1 = {({3, 5, 9}, {9, 2}, {3}, {1, 2}), ({3, 5, 9}, {9, 2}, {4}, {1, 2, 4}), ({3, 5, 9}, {9, 2}, {3}, {4})}.
Remark 3.18. Observe that the tuples accepted by the ctuples in R′c

1 are exactly the tuples accepted by the
ctuples in Rc

1 which have a support in the ctuples of Rc
2.

4. CJAS : The Compressed version of JAS

In this section we present the compressed version of JAS called CJAS. Both algorithms are composed of
the same main steps, but the ones in CJAS are submitted to some modifications deriving from the compressed
representation of relations. The compressed version is formally described by Algorithm 7.

4.1. Presentation of CJAS

This algorithm proceeds as follows:

(1) The procedure Compress Csp (line 1) transforms each relation Ri of a constraint Ci in C into a compressed
relation Rc

i according to Definitions 3.1 and 3.2. The method proposed by Katsirelos et al. in [23] is used to
compress the relations and it is presented in Appendix.

(2) The nodes of T are organized in a list σ according to the depth-first (pre-order) traversal (line 2).
(3) At each node pi of T , the subproblem is separately solved (lines 4–9) by computing, according to the

Definition 3.9, the compressed join of the constraint crelations in λ(pi). The obtained crelation is then
projected on the variables in χ(pi) and each ctuple of this crelation represents a set of solutions for this
subproblem.

(4) Once all the subproblems have been solved, the resulting GHD is made directional arc consistent in the
downto loop (lines 10–15) using the compressed semi-join operations as follows.
Let p and q be two nodes of GHD such that q is the parent of p. Rc

p (resp. Rc
q) is the crelation obtained by

the compressed join of the crelations associated with the constraints in λ(p) (resp. λ(q)). The compressed
semi-join of Rc

q and Rc
p consists of removing from the ctuples in Rc

q all the tuples which have no compatible
ones (tuples) accepted in the ctuples of Rc

p.
(5) Finally, the whole CSP instance is solved in backtrack-free way (lines 16–21).
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Algorithm 7. Compressed Join Acyclic Solving (CJAS ).
Input: a complete GHD 〈T, χ, λ〉 associated with a given CSP
Output: a solution A of the CSP if it is consistent

1: Compress Csp (CSP)
2: σ = (p1, p2, . . . , pl) /* a node ordering of T , p1 is the root and each node precedes all its children */
3: A ← ∅
4: for i = 1 to l do
5: Rc

pi
← ( ��cr

Cj∈λ(pi)R
c
j)[χ(pi)] /* Rc

pi
is a compressed relation associated with the node pi*/

6: if Rc
pi

= ∅ then
7: Exit /*the problem has no solution*/
8: end if
9: end for

10: for i = l downto 2 do
11: Rc

Parent(pi)
← Rc

Parent(pi)
�cr Rc

pi

12: if Rc
Parent(pi)

= ∅ then
13: Exit /*the problem has no solution */
14: end if
15: end for
16: Select a tuple tp1 accepted by one ctuple in Rc

p1 /*tp1 necessarily exists*/
17: A ← tp1

18: for i = 2 to l do
19: Select a tuple tpi accepted by one ctuple in Rc

pi
such that A is compatible with tpi

20: A ← A ��t tpi

21: end for
22: return A

The CJAS efficiency depends clearly on the quality of the compression (line 1). Indeed, when the compression
ratio is bad, CJAS behaves like JAS. In this work, we have considered the algorithm proposed in [23] with the
MaxFreq heuristic for compressing constraint relations because it gives acceptable compression ratio for the
benchmarks used in our experimental study.

4.2. Theoretical properties of CJAS

4.2.1. Correctness of CJAS

In order to prove the correctness of the CJAS algorithm, we have to establish the following lemmas. First,
we prove that the set of the tuples accepted by a compressed join of two ctuples cti and ctj is exactly the join
of tuples accepted by cti with those accepted by ctj .

Lemma 4.1. Let Rc
i and Rc

j be two crelations associated with the constraints Ci and Cj respectively. Let cti
and ctj be two compressed tuples in Rc

i and Rc
j respectively. If Ti = tuples (cti) and Tj = tuples (ctj) then

Ti �� Tj = tuples (cti ��ct ctj).

Proof.

(i) Let t ∈ Ti �� Tj then according to the definition of join operation there exist t1 ∈ Ti and t2 ∈ Tj such that
t1 = t[Ci], t2 = t[Cj ] and ∀Xk ∈ Ci ∩ Cj , t1[Xk] = t2[Xk]. Then t1 is accepted by cti and t2 is accepted
by ctj . Following the definition of the compressed join of two ctuples, t is accepted by cti ��ct ctj and then
t ∈ tuples(cti ��ct ctj).

(ii) Let t ∈ tuples(cti ��ct ctj) then t is accepted by the ctuple ct = cti ��ct ctj defined on Ci ∪ Cj . According
to the definition of ��ct, there exist t1 ∈ tuples(cti) and t2 ∈ tuples(ctj) such that t1 = t[Ci], t2 = t[Cj ]
and ∀Xk ∈ Ci ∩ Cj , t1[Xk] = t2[Xk]. So, t ∈ Ti �� Tj . �
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Lemma 4.2 ensures that at each iteration of Algorithm 3, the tuples accepted by the ctuple ctcomp together
with the ones accepted by the ctuples in DIFF are exactly the tuples accepted by the ctuple cti. Moreover,
ctcomp is incompatible with all the ctuples in DIFF and is all-compatible with ctj.

Lemma 4.2. Let cti and ctj be two compressed tuples in Rc
i and Rc

j respectively.
If cti and ctj are compatible and ctcomp is the ctuple built by Algorithm 4 then:

(1) ctcomp is all-compatible with ctj.
(2) All the ctuples in DIFF (computed by Algorithm 5) are incompatible with ctj.
(3) The set of tuples accepted by cti is the union of the tuples accepted by ctcomp and those accepted by the

ctuples in DIFF.

Proof.

(1) By construction ctcomp is all-compatible with ctj .
(2) By construction each compressed tuple ctk in DIFF is incompatible with ctj .
(3) Let ti be a tuple accepted by cti. Consider that ti is not accepted by ctcomp nor by all the ctuples in

DIFF. If ti is not accepted by ctcomp then there is in ti a value v for a variable Xik
∈ Ci ∩ Cj such that

v �∈ c value(Xik
, ctj). However, by construction there is a ctuple in DIFF (see Algorithm 5) associated

with Xik
which accepts any combination of the value v for Xik

with all other possible values for all other
variables in Ci \ {Xik

}. Consequently, ti is either accepted in ctcomp or accepted by a ctuple in DIFF. So,
the union of the tuples accepted by ctcomp and all those accepted by all the ctuples in DIFF is exactly the
set of tuples accepted by cti. �

In Lemma 4.3, we prove that the tuples which are removed by the compressed semi-join operation (tuples which
are not accepted in R′c

i = Rc
i �cr Rc

j) are incompatible with all the tuples accepted by the ctuples of the second
relation Rc

j and hence cannot be part of any global solution for the CSP instance.

Lemma 4.3. Let P = 〈X ,D, C,R〉 be a CSP instance. Let Rc
i and Rc

j be two crelations associated respectively
with two constraints Ci and Cj in C. Let R′c

i be a crelation such that R′c
i = Rc

i �cr Rc
j. Let M be the set of tuples

accepted in Rc
i and not in R′c

i . For each solution sol of the CSP instance, sol[Ci] �∈ M .

Proof. Suppose that there is a global solution sol for P = 〈X ,D, C,R〉 such that sol[Ci] = ti and sol[Cj ] = tj .
Hence, there is in Rc

i a ctuple ct which accepts ti and there is in Rc
j a ctuple ct′ which accepts tj such that ti

is compatible with tj . So, we have to show that there is necessarily a ctuple ctcomp accepting ti in R′c
i . At each

iteration of Algorithm 3 where cti (the head of Rc
i ) accepts ti, two situations are possible for ctj .

• ctj = ct′, in this case a ctuple ctcomp accepting ti is created and inserted in R′c
i (lines 9–10).

• ctj = ct′j (ct′j before ct′ in Rc
j), we distinguish three cases.

(1) ct′j is incompatible with cti. In this case, the next ctuple ct′′j after ct′j in Rc
j is considered and thanks to

the loop while (line 7) the same process is repeated with the configuration 〈cti, ct′′j 〉.
(2) ct′j is a support for ti. In this case a ctuple ctcomp accepting ti is built and inserted in R′c

i .
(3) ct′j is not a support for ti and cti is compatible with ct′j . In this case a new ctuple ct′i accepting ti is

derived from cti and pushed in Rc
i (via the set DIFF ). Thanks to Lemma 4.2 and thanks to the loop

while (line 2) we will reach a configuration such that we have at the head of Rc
i a ctuple cti = ct′i

accepting ti and the same process is then repeated.

So at the end, there is necessarily a ctuple ctcomp ∈ R′c
i accepting ti and then (thanks to Lem. 4.2) ti �∈

M . Finally, all the tuples which are in Rc
i and not in R′c

i cannot be part of a global solution for the CSP
instance. �

Proposition 4.4. CJAS is correct w.r.t. the JAS algorithm.

Proof. In order to prove the correctness of CJAS w.r.t. JAS, we have to prove the correctness of each step.
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(1) Step 1: The procedure Compress Csp is correct. The proof is given in [23].
(2) Step 2: The compressed join of compressed relations is correct.

Since tuples((��cr
Cj∈λ(pi)R

c
j)[χ(pi)]) = (��Cj∈λ(pi)Rj)[χ(pi)] (thanks to Lem. 4.1), the set of the tuples

obtained by the join operation on the relations in the λ label of each node pi is equivalent to the set of the
tuples accepted by the ctuples of the crelations computed by the compressed join operation of the crelations
in the λ label of pi. Hence at the end of this step, the obtained acyclic compressed CSP instance has the
same solutions as the original CSP instance P.

(3) Step 3: The compressed semi-join of crelations is correct. Indeed, thanks to Lemma 4.3, all the tuples
removed at the crelation associated with the parent node of each node pi cannot be part of a global solution
of the acyclic CSP instance represented by the GHD.

(4) Step 4: This step is obviously correct. It consists just of choosing a tuple t compatible with the previous
ones at each node, t necessarily exists thanks to the compressed semi-join operation.

Hence the correctness of CJAS derives from the correctness of JAS. �

4.2.2. Complexity analysis of CJAS

In this subsection, we assess the space and time complexities of the CJAS algorithm.

Notations

• S is the size of the compressed CSP instance.
• cr is the size of the largest compressed relation.
• ghtw is the generalized hypertree width of the decomposition GHD returned by BE.
• l is the number of nodes of the hypertree.
• cval is the size of the largest c value.
• a is the largest arity of constraints.
• m is the number of constraints.
• r is the size of the largest relation (maximum number of classical tuples).
• d is the size of the largest domain of a variable.
• s′ is the size of the largest separator between two successive nodes in the hypertree.
• crnode is the size of the largest crelation associated with nodes.

Theorem 4.5. The space complexity of CJAS is in O(S · crghtw).

Proof. Let P = 〈X ,D, C,R〉 be a CSP instance and let P ′ = 〈X ,D, C,R′〉 be one of its compressed represen-
tations. Let Ci be a constraint and let ctj be a compressed tuple in Rc

i (Ri is the relation associated with
Ci).

• The size of ctj is sctj =
∑|Ci|

k=1 |c value(Xk, ctj)| ≤ a · cval.
• The size of Rc

i is sCi =
∑|Rc

i |
j=1 sctj ≤ a · cval · cr.

• The cost of the compressed relations is bounded by
∑i=m

i=1 sCi ≤ a · cval · cr · m.
• The number of ctuples (which are the solutions of the subproblem) at each node of the GHD is bounded by

crghtw. Hence, the size of the compressed relation at each node is bounded by a · cval · crghtw.

Finally, the space complexity of CJAS is bounded by (l · a · cval · crghtw + a · cval · cr ·m)=O(S · crghtw). �

Theorem 4.6. The time complexity of CJAS is in O(l · s′ · cvals
′+2 · cr2ghtw).

Proof.

• The first step (line 1) of CJAS, dealing with compressing relations can be done in O(m.r.a2.d). Indeed,
compressing one relation with the method used in this article can be done in O(r.a2.d) [23].

• The second step (line 2) can be done in O(l).
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• Since the cost of computing intersection of two c values can be done in O(cval2), then the cost of the third
step (lines 4–9) of CJAS dealing with compressed join operation of the compressed constraint relations at
each node can be done in O(a · cval2 · crghtw).

• Let Rc
p and Rc

q two compressed relations computed for the node p and q such that q is the parent of p. In
the worst case, each ctuple in Rc

q can give rise to cvals
′
other ctuples. The cost of the compressed semi-join

operation of Rc
q and Rc

p (fourth step lines 10-15) is in O(cvals
′ · s′ · cval2 · cr2

node). This cost is bounded by
O(cvals

′ · s′ · cval2 · cr2ghtw).
So, the time complexity of the third step of CJAS is bounded by O(l · cvals

′+2 · s′ · cr2ghtw).
• The last step consists of building a solution (lines 16–21).

The cost of this operation is in O(cval · s′ · cr · l).
Finally, the time complexity of CJAS is in O(l · cvals

′+2 · s′ · cr2ghtw). �

5. Experimental results

5.1. Environment considerations

The Compressed Join Acyclic Solving (CJAS ) and the Join Acyclic Solving (JAS ) algorithms are implemented
using the C++ language and the Bucket Elimination (BE ) algorithm [6] is used to compute a GHD for each
CSP instance. BE was evaluated in [6] as the best algorithm giving a nearly optimal generalized hypertree
decomposition within a reasonable CPU time. For making complete the decompositions, we have used the
method proposed in [11]: for each constraint Ci, not strongly covered in the hypertree, choose a node p of the
hypertree such that the scope of Ci is a subset of χ(p) (this node must exist by condition (1) of Def. 2.3)
and create a special leaf node q as a child of p with χ(q) is the set of the variables in the scope of Ci and
λ(q) = {Ci}. The experiments were run on a Core (TM) 2 Duo CPU T5670 @ 1.80 GHZ with 2 GB of RAM
under Linux. These tests have been conducted with benchmarks presented at the Third International CSP 2008
Solver Competition5. Some of these problems are original CSP problems and some are CSP formulation of
Satisfiability problems from the DIMACS Benchmark challenge on cliques, satisfiability and coloring problems6.

In all the tables of results, |X | is the number of variables, |C| is the number of constraints, ghtw is the width
of the GHD returned by BE for the constraint hypergraph, nb nodes7 is the number of nodes of the GHD and
r is the maximum cardinality of the constraint relations. MO means that the method runs out of memory for
the considered instance. All the times are given in seconds and for each instance the time out (TO) was fixed
to 1800 s. The symbol / means that BE cannot decompose the constraint hypergraph. For the CJAS and JAS
algorithms, all the reported times include the decomposition time of the BE algorithm to build the GHD and
the time of making complete8 the obtained decomposition. The times reported for CJAS include also the time
spent by the compression algorithm for the considered CSP instance.

5.2. Description of benchmarks

The following benchmarks presented at the Third International CSP Solver Competition are considered:

(1) original CSP problems:
• Renault and Modified Renault series: The original “Renault problem” is obtained from a Renault Megane

configuration and appears under two forms: normalized and simple. This series involves large relations
of high arity. The “Modified Renault” series contains 50 structured instances involving domains with up
to 42 possible values. The largest constraint relation contains 48 721 tuples.

5http://www.cril.univ-artois.fr/CPAI08/.
6http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html.
7The special nodes added to complete GHD are not included in this number.
8Unless otherwise stated this time is � 0.

http://www.cril.univ-artois.fr/CPAI08/
http://www.cs.ubc.ca/ ~hoos/SATLIB/benchm.html
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• Large bdd class: this series contains 35 quasi random instances (random containing a small structure).
The maximum arity of the constraints is 15 and the maximum number of tuples for each constraint
relation is 7086.

(2) CSP formalization of Satisfiability problems from DIMACS (domain of all variables is Boolean):
• Ssa series: This series contains 8 instances encoding circuit fault analysis: single-stuck-at fault – 4

instances are satisfiable, 4 instances are unsatisfiable. The maximum arity of the constraints is less than
6 and the largest constraint relation contains 63 tuples.

• Pret series: This series contains 8 instances encoding 2-coloring forced to be unsatisfiable with either
60 or 150 variables. The constraint arity of each constraint is 3 (3-SAT) and the maximum number of
tuples of each constraint relation is 4.

• Dubois series: This series contains 13 randomly generated unsatisfiable 3-SAT instances. For each in-
stance the maximum number of tuples of each constraint relation is 4.

• VarDimacs series: This series comes from the original Sat formalization of BF (Bridge Fault): circuit
fault analysis (4 unsatisfiable instances), and from the Pigeon-hole problem (5 unsatisfiable instances).
For each instance, the maximum arity of the constraints is greater than 2 and the maximum number of
tuples of each constraint relation is 511 (normalized-hole-10 ext).

• aim-50 series: This series contains 24 artificially generated random-3-SAT instances. For each instance
the maximum number of tuples of each constraint relation is 7.

5.3. Performance measures

To validate our contribution from a practical point of view, we consider both performance measures: the CPU
time and the memory space. For this purpose, we present the following notions.

Definition 5.1 (Compression gain). Let P = 〈X ,D, C,R〉 be a CSP instance and let P ′ = 〈X ,D, C,R′〉 be one
of its compressed representations.

• the compression gain: GP = 1 −
∑ m

i=1 sCi∑ m
i=1 |Ci|×|Ri| , where m is the number of constraints and sCi is the size of

the constraint Ci (see Sect. 4.2.2, Proof 4.2.2).

GP (also called memory gain) measures the memory savings achieved when the relations are compressed. The
closer to 0 this gain is, the worse is the compression. Notice that we suppose that each relation Ri is associated
with only one constraint.

Definition 5.2 (Compression ratio). Let P = 〈X ,D, C,R〉 be a CSP instance and let P ′ = 〈X ,D, C,R′〉 be
one of its compressed representations. Let Ri be the relation of Ci and Rc

i one of its compressed versions. The
compression ratio ρ measures the performance of the compression algorithm w.r.t. the total number of tuples
covered by the instance.

• the compression ratio: ρ =

m∑

i=1
|Rc

i |

m∑

i=1
|Ri|

, where m is the number of constraints.

ρ measures the degree of compression w.r.t. constraint relations. Closer to 0 this number is, better is the com-
pression. The optimal ratio is reached when ρ =

|C|

∑ |C|
i=1 |Ri|

meaning that each compressed relation is represented

by one unique compressed tuple.
In the sequel, ρ and G will denote respectively for each instance its compression ratio and compression gain.

5.4. Comparing CJAS with JAS

We compare CJAS and JAS on all the benchmarks of Section 5.2.
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• Table 1 compares JAS and CJAS on the Modified-Renault and Renault series. These results clearly show
the benefit of our approach. The low value of ρ means that all the instances are well compressed. It explains
the good behaviour of CJAS in terms of time resolution while JAS fails to solve the most part of the two
series.

• Table 2 reports the results on the Large bdd series. The good results obtained by CJAS are due to the small
widths of the GHD (2) (because two constraints of arity 15 are sufficient to recover all the 21 variables in the
χ label of the unique node of the GHD) and the good compression ratio (ρ  0.79). Note that the number
of special nodes added (as children of the unique node returned by BE ) to complete the decomposition is
2711 for each instance. For each instance of this series, the time of making complete the decomposition is
less than 1 s. This time is included in the times of CJAS and JAS in Table 2. Note that for this series, all
the solutions of each CSP instance are computed after the semi-join operation because all the variables of
each instance are in the root node of the GHD decomposition, so each tuple accepted by a ctuple in the
obtained crelation satisfies all the 2713 constraints.

• Table 3 presents the results obtained on the ssa series. The ssa-6288-047 ext instance is defined on 10 408 vari-
ables and 23563 constraints. BE and det-k-decomp fail to decompose its constraint hypergraph into a GHD
because of its size. Regarding the instances unsolved by JAS, although their relations are small, the widths
of their GHDare too large (between 11 and 25). This explains why JAS could not solve these instances due
to the memory explosion problem. But, thanks to the high-compression ratio (0.4) for all instances, CJAS
succeeds to solve three of these instances in a short time.

• Table 4 shows the results obtained on the Pret series. Both relation sizes (4) and the widths of the GHD
decompositions returned by BE (5) are very small for all instances. This explains why the two algorithms
succeed to solve very quickly all these instances even if no compression gain is observed.

• Table 5 shows the results on the Dubois series. CJAS and JAS succeed to solve all the instances in short
times because relation sizes (4) and the widths of the GHD decompositions are very small for all instances.

• Table 6 reports the comparison results of the CJAS and JAS algorithms on some instances of VarDimacs
series. Excepted for normalized-bf-432-007 ext instance for which both algorithms have been confronted to
the memory explosion problem due to the fact that the width of the GHD is very high (29), for other
instances CJAS is more efficient thanks to the good compression ratio (ρ  0.50).

• Table 7 reports some significant results on the aim-50 series. For this series again, CJAS solved all the
tested instances while JAS fails to solve them because of the memory explosion. The large widths of the
decompositions GHD returned by BE (between 9 and 12) are the main reasons of the failure of JAS.

5.5. Comparing CJAS with BTD

This subsection compares CJAS with the four variants of BTD used in [20]

• BTD-09MF (TD)

• BTD-09MCS(TD)

• BTD-HDBE(HD)

• BTD-09BE(HD)

on some instances of the “modified Renault series” used in [20].
Note that it is very difficult to compare the practical behavior of two algorithms developed by different teams.

Comparison of a new algorithm with previous ones is made possible by means of published results when the
environment (operating system, CPU, language, RAM, etc.) and the search/inference procedure is known [26].
Another strategy is to reimplement previous algorithms but with the problem of choosing the right optimized
data structures.

In our case, since we did not have the binaries of BTD, we opted for the first strategy. This is not an ideal
strategy to compare two methods, but we believe that it can provide a general indication about the practical
behavior of CJAS and BTD. For the BTD variants, the resolution times are the ones reported in [20] where
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Table 1. Comparing CJAS with JAS : modified Renault and Renault instances.

Problems Size Time (s)

|X | |C| r ghtw nb nodes ρ G CJAS JAS BE Observation

normalized-renault-mod-0 ext 111 147 48 721 4 84 0.02 0.94 9.36 MO 0 Consistent

normalized-renault-mod-1 ext 111 147 48 721 2 85 0.03 0.93 4.33 883.71 0 Inconsistent

normalized-renault-mod-2 ext 111 147 48 721 3 84 0.03 0.93 606.52 MO 0 Consistent

normalized-renault-mod-3 ext 111 147 48 721 3 82 0.03 0.94 5.39 MO 0 Inconsistent

normalized-renault-mod-4 ext 111 147 48 721 4 84 0.03 0.94 7.51 MO 0 Consistent

normalized-renault-mod-5 ext 111 147 48 721 3 83 0.03 0.94 4.75 TO 0 Inconsistent

normalized-renault-mod-6 ext 111 147 48 721 3 82 0.03 0.94 4.98 1799.66 0 Inconsistent

normalized-renault-mod-7 ext 111 147 48 721 3 83 0.03 0.94 6.52 TO 0 Consistent

normalized-renault-mod-8 ext 111 147 48 721 3 87 0.02 0.94 4.54 TO 0 Inconsistent

normalized-renault-mod-9 ext 111 147 48 721 3 86 0.04 0.93 8.06 MO 0 Consistent

normalized-renault-mod-10 ext 111 149 48 721 3 80 0.04 0.93 4.83 56.79 0 Inconsistent

normalized-renault-mod-11 ext 111 149 48 721 3 84 0.03 0.93 9.75 TO 0 Consistent

normalized-renault-mod-12 ext 111 149 48 721 3 85 0.02 0.94 4.83 TO 0 Inconsistent

normalized-renault-mod-13 ext 111 149 48 721 3 79 0.03 0.93 7.01 TO 0 Consistent

normalized-renault-mod-14 ext 111 149 48 721 3 84 0.03 0.93 4.67 TO 0 Inconsistent

normalized-renault-mod-15 ext 111 149 48 721 3 79 0.03 0.93 5.10 1296.43 0 Inconsistent

normalized-renault-mod-16 ext 111 149 48 721 3 80 0.03 0.93 4.61 55.39 0 Inconsistent

normalized-renault-mod-17 ext 111 149 48 721 4 82 0.02 0.94 5.03 MO 0 Inconsistent

normalized-renault-mod-18 ext 111 149 48 721 3 81 0.02 0.94 4.28 MO 0 Inconsistent

normalized-renault-mod-19 ext 111 149 48 721 3 83 0.03 0.94 4.79 839.71 0 Inconsistent

normalized-renault-mod-20 ext 111 159 48 721 3 82 0.04 0.92 6.03 MO 0 Inconsistent

normalized-renault-mod-21 ext 111 159 48 721 3 84 0.04 0.92 8.62 MO 0 Inconsistent

normalized-renault-mod-22 ext 111 159 48 721 3 82 0.04 0.93 4.40 TO 0 Inconsistent

normalized-renault-mod-23 ext 111 159 48 721 3 84 0.04 0.92 4.51 MO 0 Inconsistent

normalized-renault-mod-24 ext 111 159 48 721 4 79 0.04 0.92 4.80 MO 0 Inconsistent

normalized-renault-mod-25 ext 111 159 48 721 3 82 0.04 0.93 4.48 323.02 0 Inconsistent

normalized-renault-mod-26 ext 111 159 48 721 3 81 0.05 0.92 4.68 MO 0 Inconsistent

normalized-renault-mod-27 ext 111 159 48 721 4 85 0.04 0.93 4.35 MO 0 Inconsistent

normalized-renault-mod-28 ext 111 159 48 721 3 79 0.04 0.92 4.46 TO 0 Inconsistent

normalized-renault-mod-29 ext 111 159 48 721 4 78 0.05 0.92 5.15 MO 0 Inconsistent

normalized-renault-mod-30 ext 111 154 48 721 3 86 0.03 0.93 33.50 MO 0 Inconsistent

normalized-renault-mod-31 ext 111 154 48 721 3 85 0.04 0.93 6.02 TO 0 Consistent

normalized-renault-mod-32 ext 111 154 48 721 5 86 0.03 0.94 122.62 MO 0 Consistent

normalized-renault-mod-33 ext 111 147 48 721 3 83 0.03 0.93 14.56 TO 0 Inconsistent

normalized-renault-mod-34 ext 111 154 48 721 4 85 0.03 0.93 8.81 MO 0 Consistent

normalized-renault-mod-35 ext 111 154 48 721 4 84 0.03 0.93 16.22 MO 0 Inconsistent

normalized-renault-mod-36 ext 111 154 48 721 4 82 0.03 0.93 8.04 MO 0 Consistent

normalized-renault-mod-37 ext 111 154 48 721 4 80 0.02 0.94 4.30 MO 0 Inconsistent

normalized-renault-mod-38 ext 111 149 48 721 4 77 0.03 0.93 6.21 MO 0 Consistent

normalized-renault-mod-39 ext 111 154 48 721 5 76 0.02 0.94 4.92 MO 0 Inconsistent

normalized-renault-mod-40 ext 108 149 48 721 4 82 0.02 0.94 4.46 MO 0 Inconsistent

normalized-renault-mod-41 ext 108 149 48 721 4 81 0.03 0.94 29.50 MO 0 Consistent

normalized-renault-mod-42 ext 108 149 48 721 3 82 0.02 0.94 10.98 TO 0 Inconsistent

normalized-renault-mod-43 ext 108 149 48 721 3 78 0.02 0.94 18.40 MO 0 Consistent

normalized-renault-mod-44 ext 108 149 48 721 4 83 0.02 0.94 11.30 MO 0 Consistent

normalized-renault-mod-45 ext 108 149 48 721 5 83 0.02 0.94 8.43 MO 0 Consistent

normalized-renault-mod-46 ext 108 149 48 721 4 78 0.02 0.94 10.04 MO 0 Consistent

normalized-renault-mod-47 ext 108 149 48 721 4 80 0.02 0.94 4.80 MO 0 Inconsistent

normalized-renault-mod-48 ext 108 149 48 721 4 82 0.03 0.93 9.21 MO 0 Consistent

normalized-renault-mod-49 ext 108 149 48 721 4 78 0.02 0.94 5.89 MO 0 Consistent

normalized-renault ext 101 134 48 721 4 79 0.018 0.95 4.69 TO 0 Consistent

normalized-renault-mgd ext 101 113 48 721 2 81 0.018 0.95 4.51 1418.79 0 Consistent
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Table 2. Comparing CJAS and JAS : large bdd instances.

Problems Size Time (s)

|V | |E| r ghtw nb nodes ρ G CJAS JAS BE Observation

normalized-bdd-21-2713-15-79-1 ext 21 2713 6892 2 1 0.79 0.19 114.20 363.12 95 Inconsistent

normalized-bdd-21-2713-15-79-2 ext 21 2713 6836 2 1 0.79 0.19 109.88 328.31 95 Inconsistent

normalized-bdd-21-2713-15-79-3 ext 21 2713 6910 2 1 0.79 0.19 114.42 266.61 96 Inconsistent

normalized-bdd-21-2713-15-79-4 ext 21 2713 6993 2 1 0.79 0.19 154.20 280.30 97 Consistent

normalized-bdd-21-2713-15-79-5 ext 21 2713 6825 2 1 0.79 0.19 124.02 263.09 95 Consistent

normalized-bdd-21-2713-15-79-6 ext 21 2713 6935 2 1 0.79 0.19 112.55 277.34 94 Inconsistent

normalized-bdd-21-2713-15-79-7 ext 21 2713 6944 2 1 0.78 0.19 110.24 277.18 95 Inconsistent

normalized-bdd-21-2713-15-79-8 ext 21 2713 6939 2 1 0.78 0.20 120.39 299.12 98 Consistent

normalized-bdd-21-2713-15-79-9 ext 21 2713 6934 2 1 0.79 0.19 113.32 293.70 96 Inconsistent

normalized-bdd-21-2713-15-79-10 ext 21 2713 6717 2 1 0.79 0.18 119.54 285.93 103 Inconsistent

normalized-bdd-21-2713-15-79-11 ext 21 2713 6925 2 1 0.79 0.19 120.05 269.12 101 Inconsistent

normalized-bdd-21-2713-15-79-12 ext 21 2713 6851 2 1 0.79 0.19 124.47 287.13 101 Inconsistent

normalized-bdd-21-2713-15-79-13 ext 21 2713 6794 2 1 0.79 0.19 131.16 261.63 99 Consistent

normalized-bdd-21-2713-15-79-14 ext 21 2713 6923 2 1 0.79 0.19 118.67 294.59 99 Inconsistent

normalized-bdd-21-2713-15-79-15 ext 21 2713 6900 2 1 0.78 0.19 125.48 287.65 102 Inconsistent

normalized-bdd-21-2713-15-79-16 ext 21 2713 6901 2 1 0.79 0.19 126.09 274.56 102 Inconsistent

normalized-bdd-21-2713-15-79-17 ext 21 2713 6972 2 1 0.78 0.20 122.32 288.26 101 Inconsistent

normalized-bdd-21-2713-15-79-18 ext 21 2713 6907 2 1 0.79 0.19 120.16 293.69 103 Inconsistent

normalized-bdd-21-2713-15-79-19 ext 21 2713 6829 2 1 0.79 0.19 142.36 305.60 102 Consistent

normalized-bdd-21-2713-15-79-20 ext 21 2713 7092 2 1 0.79 0.19 126.96 325.08 102 Inconsistent

normalized-bdd-21-2713-15-79-21 ext 21 2713 6879 2 1 0.78 0.19 115.06 273.53 100 Inconsistent

normalized-bdd-21-2713-15-79-22 ext 21 2713 6796 2 1 0.79 0.19 148.73 264.01 102 Consistent

normalized-bdd-21-2713-15-79-23 ext 21 2713 6869 2 1 0.79 0.19 118.55 287.09 103 Inconsistent

normalized-bdd-21-2713-15-79-24 ext 21 2713 7086 2 1 0.78 0.19 126.02 287.71 101 Consistent

normalized-bdd-21-2713-15-79-25 ext 21 2713 6945 2 1 0.78 0.19 126.05 335.73 105 Inconsistent

normalized-bdd-21-2713-15-79-26 ext 21 2713 6861 2 1 0.79 0.19 117.02 258.62 95 Inconsistent

normalized-bdd-21-2713-15-79-27 ext 21 2713 6979 2 1 0.78 0.19 121.93 301.57 99 Inconsistent

normalized-bdd-21-2713-15-79-28 ext 21 2713 6775 2 1 0.80 0.18 124.78 300.79 102 Inconsistent

normalized-bdd-21-2713-15-79-29 ext 21 2713 6954 2 1 0.79 0.19 119.03 285.08 100 Inconsistent

normalized-bdd-21-2713-15-79-30 ext 21 2713 6807 2 1 0.79 0.19 119.72 260.44 101 Inconsistent

normalized-bdd-21-2713-15-79-31 ext 21 2713 6898 2 1 0.78 0.20 140.84 253.40 101 Consistent

normalized-bdd-21-2713-15-79-32 ext 21 2713 6858 2 1 0.79 0.19 130.23 311.63 102 Consistent

normalized-bdd-21-2713-15-79-33 ext 21 2713 6806 2 1 0.79 0.18 117.17 298.57 103 Inconsistent

normalized-bdd-21-2713-15-79-34 ext 21 2713 7036 2 1 0.79 0.19 124.49 264.08 105 Consistent

normalized-bdd-21-2713-15-79-35 ext 21 2713 6814 2 1 0.79 0.19 121.49 286.95 102 Consistent

Table 3. Comparing CJAS with JAS : ssa instances.

Problems Size Time (s)
|X | |C| r ghtw nb nodes ρ G CJAS JAS BE Observation

ssa-0432-003 ext 435 738 31 16 283 0.52 0.43 3.80 MO 1 Inconsistent
ssa-2670-130 ext 1359 2366 31 25 655 0.51 0.44 MO MO 1 Inconsistent
ssa-2670-141 ext 391 177 15 2 166 0.47 0.46 0.01 0.05 0 Consistent
ssa-6288-047 ext 10 408 23 563 63 / / / / / / / Consistent
ssa-7552-038 ext 1501 2444 63 18 1071 0.53 0.43 MO MO 11 Consistent
ssa-7552-158 ext 1363 1985 31 11 955 0.57 0.39 6.94 MO 6 Consistent
ssa-7552-159 ext 1363 1983 31 11 1012 0.57 0.39 8.05 MO 7 Consistent
ssa-7552-160 ext 757 847 7 4 332 0.48 0.38 0.13 0.07 0 Consistent
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Table 4. Comparing CJAS with JAS : Pret instances.

Problems Size Times
|X | |C| r ghtw nb nodes ρ G CJAS JAS BE Observation

normalized-Pret -60-25 ext 60 40 4 5 25 1 0 0.008 0.007 0 Inconsistent
normalized-Pret -60-40 ext 60 40 4 5 25 1 0 0.006 0.006 0 Inconsistent
normalized-Pret -60-60 ext 60 40 4 5 27 1 0 0.009 0.007 0 Inconsistent
normalized-Pret -60-75 ext 60 40 4 5 26 1 0 0.08 0.01 0 Inconsistent
normalized-Pret -150-25 ext 150 100 4 5 69 1 0 0.01 0.009 0 Inconsistent
normalized-Pret -150-40 ext 150 100 4 5 68 1 0 0.01 0.01 0 Inconsistent
normalized-Pret -150-60 ext 150 100 4 5 69 1 0 0.01 0.009 0 Inconsistent
normalized-Pret -150-75 ext 150 100 4 5 68 1 0 0.01 0.01 0 Inconsistent

Table 5. Comparing CJAS with JAS : Dubois instances.

Problems Size Time (s)
|X | |C| r ghtw nb nodes ρ G CJAS JAS BE Observation

normalized- Dubois-20 ext 60 40 4 2 25 1 0 0.002 0.001 0 Inconsistent
normalized-Dubois-21 ext 63 42 4 2 25 1 0 0.002 0.002 0 Inconsistent
normalized-Dubois-22 ext 66 44 4 2 27 1 0 0.005 0.004 0 Inconsistent
normalized-Dubois-23 ext 69 46 4 2 28 1 0 0.005 0.004 0 Inconsistent
normalized-Dubois-24 ext 72 48 4 2 28 1 0 0.006 0.004 0 Inconsistent
normalized-Dubois-25 ext 75 50 4 2 31 1 0 0.006 0.002 0 Inconsistent
normalized-Dubois-26 ext 78 52 4 2 31 1 0 0.006 0.005 0 Inconsistent
normalized-Dubois-27 ext 81 54 4 2 33 1 0 0.006 0.005 0 Inconsistent
normalized-Dubois-28 ext 84 56 4 2 39 1 0 0.007 0.006 0 Inconsistent
normalized-Dubois-29 ext 87 58 4 2 38 1 0 0.003 0.002 0 Inconsistent
normalized-Dubois-30 ext 90 60 4 2 36 1 0 0.003 0.002 0 Inconsistent
normalized-Dubois-50 ext 150 100 4 2 63 1 0 0.006 0.005 0 Inconsistent
normalized-Dubois-100 ext 300 200 4 2 128 1 0 0.01 0.01 0 Inconsistent

Table 6. Comparing CJAS with JAS : some instances of VarDimacs series.

Problems Size Time (s)
|X | |C| r ghtw nb nodes ρ G CJAS JAS BE Observation

normalized-bf-0432-007 ext 970 1943 31 29 1788 0.53 0.38 MO MO 16 Consistent
normalized-bf-1355-075 ext 1818 2049 15 5 1766 0.44 0.44 9.24 19.04 8 Consistent
normalized-bf-1355-638 ext 532 339 31 2 322 0.44 0.51 0.045 0.35 0 Consistent
normalized-bf-2670-001 ext 1244 1354 31 6 1288 0.62 0.34 1.36 1.34 1 Consistent
normalized-hole-06 ext 42 133 63 7 121 0.35 0.70 62.99 MO 1 Inconsistent

the authors used a PC Pentium IV, 3.2 GHZ with 1 GB of RAM and running under Linux. Note that for
this comparison, we have executed CJAS on a machine with similar configuration (PC Pentium IV, 3.2 GHZ
with 1 GB of RAM and running under Linux).

The results of this comparison are reported in Table 8. Note that the sizes of the instances are the ones in
Table 1.

We can observe that for these 17 instances:

• CJAS is the fastest for 6 instances.
• BTD-09BE(HD) is the fastest for 4 instances.
• BTD-09MF (TD) is the fastest for 4 instances.
• BTD-09MCS(TD) is the fastest for 2 instances.
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Table 7. Comparing CJAS with JAS : some instances of aim-50 series.

Problems Size Time (s)
|X | |C| r ghtw nb nodes ρ G CJAS JAS BE Observation

normalized-aim-50-1-6-sat-1 ext 50 77 7 10 53 0.42 0.43 9.66 MO 0 Consistent
normalized-aim-50-1-6-sat-2 ext 50 76 7 9 62 0.42 0.43 0.69 MO 0 Consistent
normalized-aim-50-1-6-sat-3 ext 50 78 7 10 57 0.42 0.42 1.85 MO 0 Consistent
normalized- aim-50-1-6-sat-4 ext 50 77 7 10 58 0.42 0.42 23.15 MO 0 Consistent
normalized- aim-50-1-6-unsat-1 ext 50 69 7 9 49 0.42 0.43 0.55 MO 0 Inconsistent
normalized- aim-50-1-6-unsat-2 ext 50 77 7 10 20 0.42 0.43 2.95 MO 0 Inconsistent
normalized- aim-50-1-6-unsat-3 ext 50 70 7 10 55 0.41 0.43 4.58 MO 0 Inconsistent
normalized- aim-50-1-6-unsat-4 ext 50 76 7 11 55 0.42 0.43 3.33 MO 0 Inconsistent
normalized- aim-50-2-0-sat-1 ext 50 94 7 11 19 0.42 0.43 234.66 MO 0 Consistent
normalized- aim-50-2-0-sat-2 ext 50 96 7 11 70 0.42 0.43 16.76 MO 0 Consistent
normalized- aim-50-2-0-sat-4 ext 50 94 7 12 23 0.42 0.43 42.70 MO 0 Consistent
normalized- aim-50-2-0-unsat-1 ext 50 97 7 13 21 0.42 0.43 20.69 MO 0 Inconsistent
normalized- aim-50-2-0-unsat-2 ext 50 94 7 12 21 0.42 0.43 8.46 MO 0 Inconsistent
normalized- aim-50-2-0-unsat-4 ext 50 94 7 11 65 0.42 0.42 0.44 MO 0 Inconsistent

Table 8. Comparing BTD variants [20] and CJAS : some instances of modified Renault series.

Problems Time (s)

CJAS BTD − 09MF (TD) BTD − 09MCS(TD) BTD − HDBE(HD) BTD − 09BE(HD)

normalized-renault-mod-3 ext 6.39 10.67 11.15 42.34 20.56

normalized-renault-mod-6 ext 5.26 3.71 3.75 1279.55 2.70

normalized-renault-mod-12 ext 5.34 11.64 11.85 134.24 10.49

normalized-renault-mod-16 ext 5.98 6.04 10.36 3.65 6.43

normalized-renault-mod-17 ext 5.53 9.59 5.42 145.06 3.41

normalized-renault-mod-18 ext 4.92 12.23 12.09 39.34 10.46

normalized-renault-mod-19 ext 4.96 7.74 12.07 49.25 16.36

normalized-renault-mod-23 ext 5.17 12.87 2.81 28.82 3.79

normalized-renault-mod-24 ext 5.19 7.97 8.05 35.01 7.63

normalized-renault-mod-30 ext 39.89 3.80 9.81 202.05 8.25

normalized-renault-mod-35 ext 17.35 7.32 12.28 57.33 13.19

normalized-renault-mod-36 ext 8.71 3.80 1.78 225.76 4.88

normalized-renault-mod-37 ext 5.05 13.68 17.01 13.64 21.16

normalized-renault-mod-39 ext 5.52 13.45 35.55 746.24 1.79

normalized-renault-mod-40 ext 5.21 5.86 8.60 65.55 9.01

normalized-renault-mod-42 ext 13.98 2.48 3.44 TO 2.50

normalized-renault-mod-47 ext 7.77 53.71 21.31 324.20 80.25

Cumulative runtime 152.22 186.56 187.33 3392.03 222.86

• BTD-HDBE(HD) is the fastest for 1 instance.

Furthermore, the cumulative runtime of CJAS on all instances is better.

5.6. Comparing CJAS with the Abscon 109 solver

In this subsection we compare CJAS with the Abscon 109 9 solver on some instances considered in this paper.
Abscon 109 is an efficient solver using no-decomposition.

Table 9 presents the comparison results between CJAS and Abscon 109 on the ssa series. On this series,
Abscon 109 succeeds to solve all the instances while CJAS fails to solve two instances because of the memory

9Available at http://www.cril.univ-artois/~lecoutre/software.html.

http://www.cril.univ-artois/~lecoutre/software.html
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Table 9. Comparing CJAS with Abscon 109 : ssa instances.

Problems Size Time (s)
|X | |C| r ghtw nb nodes ρ G CJAS Abscon 109 Observation

normalized-ssa-0432-003 ext 435 738 31 16 283 0.52 0.43 3.80 7.83 Inconsistent
normalized-ssa-2670-130 ext 1359 2366 31 25 655 0.51 0.44 MO 17.66 Inconsistent
normalized-ssa-2670-141 ext 391 177 15 2 166 0.47 0.46 0.01 0.69 Consistent
normalized-ssa-6288-047 ext 10 408 23 563 63 / / / / / 107.56 Consistent
normalized-ssa-7552-038 ext 1501 2444 63 18 / 0.53 0.43 MO 2.60 Consistent
normalized-ssa-7552-158 ext 1363 1985 31 11 955 0.57 0.39 6.94 2.05 Consistent
normalized-ssa-7552-159 ext 1363 1983 31 11 1012 0.57 0.39 8.05 2.03 Consistent
normalized-ssa-7552-160 ext 757 847 7 4 332 0.48 0.38 0.13 0.81 Consistent

Table 10. Comparing CJAS with Abscon 109 : Pret instances.

Problems Size Times
|X | |C| r ghtw nb nodes ρ G CJAS Abscon 109 Observation

normalized-Pret -60-25 ext 60 40 4 5 25 1 0 0.008 0.92 Inconsistent
normalized-Pret -60-40 ext 60 40 4 5 25 1 0 0.006 3.42 Inconsistent
normalized-Pret -60-60 ext 60 40 4 5 27 1 0 0.009 0.93 Inconsistent
normalized-Pret -60-75 ext 60 40 4 5 26 1 0 0.08 1.76 Inconsistent
normalized-Pret -150-25 ext 150 100 4 5 69 1 0 0.01 23.58 Inconsistent
normalized-Pret -150-40 ext 150 100 4 5 68 1 0 0.01 13.04 Inconsistent
normalized-Pret -150-60 ext 150 100 4 5 69 1 0 0.01 5.34 Inconsistent
normalized-Pret -150-75 ext 150 100 4 5 68 1 0 0.01 6.37 Inconsistent

explosion problem. For the instances where Abscon 109 is faster, the main reason is the time decomposition
of BE.

Table 10 shows clearly that CJAS outperforms Abscon 109 on the Pret series. This is because the width of
the GHD decomposition returned by BE for each instance is small and the size of each constraint relation is
also small.

Table 11 presents the comparison results between CJAS and Abscon 109 on the Dubois series. We observe
that CJAS behaves better on this series. The good behaviour of CJAS can be explained by the fact that the
width of the GHD decomposition returned by BE for each instance is small and the size of each constraint
relation is also small.

5.7. Discussion

Like JAS, the CJAS method is more suitable for computing all the solutions of a CSP instance. This is
especially true when the number of nodes (without the ones added for making complete the decomposition) of
the generalized hypertree decomposition is 1 as it is the case in the Large bdd series where all the solutions of
the whole instance are computed after the compressed semi-join step. CJAS highly depends on the quality of
the compression. When the compression ratio ρ is equal to 1, both algorithms CJAS and JAS have the same
behaviour. On the contrary, when the compression ratio ρ is smaller, CJAS outperforms JAS in general in term
of CPU time. This is not only due to the memory gain obtained by the compression step but also to the small
CPU time needed to compute the compressed join and compressed semi-join operations.

From another point of view, the overall performance of CJAS highly depends on the quality of the decompo-
sition. To illustrate this fact, we have tested the decomposition returned by det-k-decomp [10] for the modified
Renault 30 instance (normalized-renault-mod-30 ext in Tab. 1). We have obtained a resolution time of 14 s
with the decomposition returned by det-k-decomp instead of 33.50 s required by the decomposition returned
by BE.
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Table 11. Comparing CJAS with Abscon 109 : Dubois instances.

Problems Size Time (s)
|X | |C| r ghtw nb nodes ρ G CJAS Abscon 109 Observation

normalized-Dubois-20 ext 60 40 4 2 25 1 0 0.002 4.23 Inconsistent
normalized-Dubois-21 ext 63 42 4 2 25 1 0 0.002 0.89 Inconsistent
normalized-Dubois-22 ext 66 44 4 2 27 1 0 0.005 0.97 Inconsistent
normalized-Dubois-23 ext 69 46 4 2 28 1 0 0.005 0.94 Inconsistent
normalized-Dubois-24 ext 72 48 4 2 28 1 0 0.006 0.78 Inconsistent
normalized-Dubois-25 ext 75 50 4 2 31 1 0 0.006 1.05 Inconsistent
normalized-Dubois-26 ext 78 52 4 2 31 1 0 0.006 1.28 Inconsistent
normalized-Dubois-27 ext 81 54 4 2 33 1 0 0.006 0.85 Inconsistent
normalized-Dubois-28 ext 84 56 4 2 39 1 0 0.007 1.56 Inconsistent
normalized-Dubois-29 ext 87 58 4 2 38 1 0 0.003 1.49 Inconsistent
normalized-Dubois-30 ext 90 60 4 2 36 1 0 0.003 1.43 Inconsistent
normalized-Dubois-50 ext 150 100 4 2 63 1 0 0.006 1.98 Inconsistent
normalized-Dubois-100 ext 300 200 4 2 128 1 0 0.01 407.37 Inconsistent

Furthermore, CJAS fails to solve many instances of the series Normalized-aim 100 and Normalized-aim 200
because the width of the GHD decomposition returned by BE for each instance is very high. With CJAS, the
number of ctuples (which are the solutions of the subproblem) at each node of the GHD is bounded by (cr)ghtw

where cr is the maximum number of compressed tuples in a crelation, ghtw is the GHD width. Let a be the
highest arity of the constraints and let cval be the size of the largest c value. Hence, to use the CJAS method, it
is better that a.cval.crghtw be smaller than a given threshold that depends on the characteristics of the machine
used.

Compared to BTD, CJAS is competitive for the benchmarks tested in this paper.
Compared to the direct resolution algorithms non based on decomposition, CJAS performs well on structured

instances, and on instances where the width of the GHD is not too high and the constraint relations are not
very large.

6. Conclusion

To cope with the problem of memory explosion of the Join Acyclic Solving (JAS ) algorithm, we have presented
in this paper, a new algorithm called CJAS. It is a compressed version of JAS and it is based on the compression
of the constraint relations. We have mainly introduced the compressed join and compressed semi-join operations
to work with the compressed tuples in the relations. We have evaluated the CJAS method on benchmarks
selected for the CSP 2008 competition. Our experimental results confirm the fact that JAS behaves well when
the maximum number of tuples of the relations and the width of the decomposition of the constraint hypergraph
are small, but it struggles or fails to solve CSP instances when the width is too high. On its side, CJAS
depends on the quality of the compression. Indeed, when the compression ratio ρ is 1 (no compression at all), it
behaves like JAS, but when ρ is small (non-negligible) CJAS clearly outperforms JAS. Compared to the related
method BTD, our experiments have shown that CJAS is competitive. Compared to the methods non-based-
decomposition, CJAS behaves well on structured instances and on instances where the width of the GHD is not
too high and the constraint relations are not very large. Future works will include a larger study of compression
and decomposition algorithms.

Appendix. Computing a compressed relation

In Section 3 we noticed that compressed representation of a relation is not always unique. In this Appendix,
the compression algorithm due to Katsirelos et al. [23] is presented and it is the one used for the experimental
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Figure A.1. A Decision Tree associated with the relation R1 of Example 3.3.

study. A compressed relation associated with any relation is a set of compressed tuples obtained from a Decision
Tree representing all the original tuples of the relation.

As illustrated by Figure A.1, a Decision Tree T representing the tuples of a given relation is a binary tree
where each node (v) is labelled with l(v): a possible assignment of a value to a variable (a literal). Each edge
from a node to its child is labelled with Yes if the literal is true and with No if the literal is false. Any tuple
t in the relation is associated with a node v if it satisfies all the literals on the path from the root of T to v.
The set of all the tuples in the relation associated with a node v is denoted by U(v). For any node v in T , v is
said empty if U(v) = ∅. For any node v in T , if U(v) contains all the possible tuples that could be associated
with v then v is said complete. A literal s (resp ¬s) is said implied in a node v if all the tuples associated with
v include (resp. do not include) s.

Unfortunately, constructing an optimal Decision Tree is a NP-Complete problem [18] and a heuristic approach
proposed in [23] is outlined by Algorithm 8.

At each node v of the Decision Tree T , this algorithm checks if implied literals exist. If it is the case, it extends
T with one new node v′ for each implied literal. If it is not the case, the function Choose Literal(U(v)) selects
a literal for the node v and then expands each of the two new nodes v1 and v2. If an empty node (U(v) = φ) or
a complete node is created then it stops.



266 Z. HABBAS ET AL.

Once the Decision Tree T is built, for each complete leaf node v, a compressed tuple ct representing U(v) is
created as follows. Let S(v) be the set of literals labelling the nodes in the path from the root of T to v.

For each variable Xi with domain Di, let D′
i be the c value of Xi in ct. Initially D′

i=Di, if there is a node in
the path from the root of T to v labelled with (Xi = di) and the outcoming edge is labelled with “Yes”, then
D′

i = {di} else D′
i = D′

i −{dj} for each literal (Xi = dj) ∈ S(v). At the end, the compressed tuple ct accepting
exactly the same tuples as v is (D′

1, . . . , D
′
n).

For the choice of a literal by the function Choose Literal, a number of splitting heuristics are proposed in [23].
In this work, the MaxFreq heuristic is used because of its good behavior on the benchmarks experimented for
this article.

Algorithm 8. The compression algorithm.
TableToDecisionTree (Set of tuples: U , Node: v)

1: if v is empty or v is complete then
2: return
3: end if
4: if ∃ a literal s: s is implied in v then
5: v’ ← {Parent:v, Edgeliteral: s}
6: TableToDecisionTree (U(v’),v’)
7: else
8: s ← Choose Literal (U(v))
9: v1 ← {Parent:v, Edgeliteral: s}

10: v2 ← {Parent:v, Edgeliteral: ¬s}
11: TableToDecisionTree (U(v1),v1)
12: TableToDecisionTree (U(v2),v2)
13: end if
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[34] J.-C. Régin, Improving the Expressiveness of Table Constraints. In Proc. of workshop ModRef 11 at CP’11 (2011).

[35] N. Robertson and P.D. Seymour, Graph minors .II. algorithmic aspects of treewidth. J. Algorithms 7 (1986) 309–322.

[36] M. Samer, Hypertree-Decomposition via Branch-Decomposition. In Proc. of IJCAI’05 (2005) 1535–1536.

[37] S. Subbarayan and H. Reif Anderson, Backtracking Procedures for Hypertree, Hyperspread and Connected Hypertree Decom-
position of CSPs. In Proc. of IJCAI’07 (2007) 180–185.

[38] J.R. Ullmann, Partition search for non binary constraint satisfaction. Inf. Sci. J. 177 (2007) 3639–3678.

[39] M. Yannakakis, Algorithms for Acyclic Database Schemes. In Proc. of VLDB’81. Edited by C. Zaniolo and C. Delobel, Cannes,
France (1981) 82–94.


	Introduction
	Background
	 Solving a CSP with a Generalized Hypertree Decomposition
	 Join-Acyclic Solving Algorithm (JAS)

	The compression strategy
	Compressed CSP
	Compressed join and compressed semi-join operations
	 Compressed join operation
	Compressed semi-join operation
	Algorithm for computing compressed semi-join of two crelations


	CJAS: The Compressed version of JAS
	Presentation of CJAS
	Theoretical properties of CJAS 
	Correctness of CJAS 
	Complexity analysis of CJAS
	Notations


	Experimental results
	Environment considerations
	Description of benchmarks
	Performance measures
	Comparing CJAS with JAS 
	Comparing CJAS with BTD
	Comparing CJAS with the Abscon 109 solver
	Discussion

	Conclusion
	Computing a compressed relation 
	References

