GENERALIZATION OF THE TOTAL OUTER-CONNECTED DOMINATION IN GRAPHS

NADER JAFARI RAD1 AND LUTZ VOLKMANN2

Abstract. Let $G=(V, E)$ be a graph without an isolated vertex. A set $S \subseteq V$ is a total dominating set if S is a dominating set, and the induced subgraph $G[S]$ does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total dominating set of G. A set $D \subseteq V$ is a total outer-connected dominating set if D is a total dominating set, and the induced subgraph $G[V \setminus D]$ is connected. The total outer-connected domination number of G is the minimum cardinality of a total outer-connected dominating set of G. In this paper we generalize the total outer-connected domination number in graphs. Let $k \geq 1$ be an integer. A set $D \subseteq V$ is a total outer-k-connected component dominating set if D is a total dominating and the induced subgraph $G[V \setminus D]$ has exactly k connected component(s). The total outer-k-connected component domination number of G, denoted by $\gamma_{tc}^k(G)$, is the minimum cardinality of a total outer-k-connected component dominating set of G. We obtain several general results and bounds for $\gamma_{tc}^k(G)$, and we determine exact values of $\gamma_{tc}^k(G)$ for some special classes of graphs G.

Mathematics Subject Classification. 05C69.

Received May 18, 2015. Accepted June 1, 2015.

1. Introduction

For notation and terminology in general we follow [4]. Let $G=(V, E)$ be a simple graph of order $n=|V(G)|=|V|$ and size $e=|E(G)|=|E|$. We denote the open neighborhood of a vertex v of G by $N_G(v)$ or just $N(v)$, and its closed neighborhood by $N_G[v]=N[v]$. For a vertex set $S \subseteq V$, $N(S)=\bigcup_{v \in S}N(v)$ and $N[S]=\cup_{v \in S}N[v]$. The degree $\deg(x)$ of a vertex x denotes the number of neighbors of x in G. The maximum degree and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by $\text{diam}(G)$, is the maximum eccentricity among all vertices of G. A set of vertices S in G is a dominating set, if $N[S]=V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. If S is a subset of V then we denote by $G[S]$ the subgraph of G induced by S. A dominating set S of G is a total dominating set if $G[S]$ has no isolated

\textbf{Keywords.} Total domination, total outer-connected domination.

1 Department of Mathematics, Shahrood University of Technology, P.O. Box 3619995161, Shahrood, Iran.
\texttt{n.jafarirad@shahroodut.ac.ir}

2 Lehrstuhl II für Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany.
\texttt{volkm@math2.rwth-aachen.de}
vertex. The total domination number of \(G \), denoted by \(\gamma_t(G) \), is the minimum cardinality of a total dominating set of \(G \).

Total outer-connected domination in graphs was introduced by Cyman in [1]. If \(G \) is without an isolated vertex, then a set \(D \subseteq V \) is a total outer-connected dominating set (TOCDS) of \(G \) if \(D \) is a total dominating set of \(G \) and the subgraph induced by \(V \setminus D \) is connected. The minimum cardinality of a total outer-connected dominating set in \(G \) is the total outer-connected domination number denoted \(\gamma_{tc}(G) \). A minimum TOCDS of a graph \(G \) is called a \(\gamma_{tc}(G) \)-set. Cyman in [1], Hattinig and Joubert in [3] obtained a lower bound for the total outer-connected domination number of a tree in terms of the order of the tree, and characterized trees achieving equality. Cyman and Raczek in [2] characterized trees with equal total domination and total outer-connected domination numbers. They also gave a lower bound for the total outer-connected domination number of a tree in terms of the order and the number of leaves of the tree, and characterized extremal trees. Jiang and Kang in [5] studied Nordhaus–Gaddum Typebounds for the total outer-connected domination number of a graph.

We generalize the total outer-connected domination number of a graph. Let \(G \) be a graph with no isolated vertex. For an integer \(k \geq 1 \), a subset \(S \) of the vertices of \(G \) is a total outer-\(k \)-connected component dominating set, or just TO\(k \)CDS, if \(S \) is a total dominating set of \(G \) and \(G[V \setminus S] \) has \(k \) connected components. The total outer-\(k \)-connected component domination number of \(G \), denoted by \(\gamma^k_{tc}(G) \), is the minimum cardinality of a TO\(k \)CDS of \(G \). In the case that there is no TO\(k \)CDS of \(G \), we define \(\gamma^k_{tc}(G) = 0 \). We also refer a \(\gamma^k_{tc}(G) \)-set in a graph \(G \) as a TO\(k \)CDS of cardinality \(\gamma^k_{tc}(G) \). Note that a TOCDS \(S \) is a TO\(1 \)CDS if \(|S| < |V| \), and thus the concept of total outer-\(k \)-connected component domination is a generalization of the concept of total outer-connected domination.

In Section 2, we present some general results and bounds for the total outer-\(k \)-connected component domination number of graphs. In Section 3, we determine exact values of the total outer-\(k \)-connected component domination number for some special classes of graphs.

All graphs we consider in this paper are without isolated vertices and have at least three vertices. We recall that a leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. A pendant edge is an edge which at least one of its end-points is a leaf. We denote by \(L(G) \) and \(S(G) \) the set of all leaves and all support vertices of \(G \), respectively.

With \(K_n \) we denote the complete graph on \(n \) vertices, with \(P_n \) the path on \(n \) vertices, with \(C_n \) the cycle of length \(n \), and with \(W_n \) the wheel with \(n + 1 \) vertices. A bipartite graph is a graph whose vertex set can be partitioned into two sets of pair-wise non-adjacent vertices. We denote by \(K_{m,n} \) the complete bipartite graph which one partite set has cardinality \(m \) and the other partite set has cardinality \(n \). The corona \(cor(G) \) of a graph \(G \) is the graph obtained from \(G \) by adding a pendant edge to any vertex of \(G \). By \(\alpha(G) \) we denote the independence number of a graph \(G \).

2. General results and bounds

We begin with the following observation.

Observation 2.1. Let \(k \geq 1 \) be an integer, and let \(G \) be a graph without isolated vertices. If \(0 < \gamma^k_{tc}(G) < n \), then \(\alpha(G) \geq k \), and \(\delta(G) \leq n - k \).

Proof. Assume that \(0 < \gamma^k_{tc}(G) < n \) for some integer \(k \). Let \(S \) be a \(\gamma^k_{tc}(G) \)-set, and \(G_1, G_2, \ldots, G_k \) be the components of \(G[V \setminus S] \). Let \(x_i \) be a vertex in \(V(G_i) \) for \(i = 1, 2, \ldots, k \). Then clearly \(\{x_1, x_2, \ldots, x_k\} \) is an independent set, implying that \(\alpha(G) \geq k \). To complete the proof, note that, since \(x_1 \) is not adjacent to any \(x_i \), \(i = 2, 3, \ldots, k \), then \(\delta(G) \leq \deg(x_1) \leq (n - 1) - (k - 1) = n - k \). \(\square \)

Lemma 2.2. If \(\gamma^k_{tc}(G) = 0 \) for some integer \(k \), then for every \(m > k \), \(\gamma^m_{tc}(G) = 0 \).

Proof. Let \(\gamma^k_{tc}(G) = 0 \) for some integer \(k \) and \(m > k \) be an integer. Suppose to the contrary that \(\gamma^m_{tc}(G) \neq 0 \). Let \(S \) be a \(\gamma^k_{tc}(G) \)-set, and let \(G_1, G_2, \ldots, G_m \) be \(m \) connected components of \(G[V \setminus S] \). It is obvious that
Lemma 2.3. Let k be the maximum integer such that $\gamma_{tc}^k(G) > 0$. If S is a TOK-CDS, then every connected component of $G[V - S]$ is a complete graph.

Proof. Let k be the maximum integer such that $\gamma_{tc}^k(G) > 0$, and let S be a TOK-CDS. Suppose to the contrary that there is a connected component G_1 of $G[V - S]$ such that G_1 is not complete. Let x, y be two non-adjacent vertices in G_1. Then $S \cup (V(G_1) - \{x, y\})$ is a $TO(k + 1)$-CDS for G, a contradiction.

Lemma 2.4. If a graph G has a TOK-CDS, then it has a TOt-CDS for any integer $t < k$.

Proof. Let S be a TOK-CDS for a graph G, where $k > 1$, and let G_1, G_2, \ldots, G_k be the components of $G[V - S]$. Let $t < k$. Then $S \cup (V(G_1) \cup V(G_2) \cup \ldots \cup V(G_{k-t}))$ is a TOt-CDS for G.

Lemma 2.5. Let G be a connected graph. If k is the maximum integer such that $\gamma_{tc}^k(G) > 0$, then $\text{diam}(G) \leq 3k - 1$.

Proof. If k is the maximum integer such that $\gamma_{tc}^k(G) > 0$, then $\gamma_{tc}^r(G) = 0$ for each $r \geq k + 1$. Suppose to the contrary that $\text{diam}(G) \geq 3k$. Let $x_0, x_1, x_2, \ldots, x_{2k}$ be a diametrical path in G such that $d = 3p + t$ with an integer $0 \leq t \leq 2$, and let L_t be the set of leaves of G adjacent to x_i for $1 \leq i \leq d - 1$. Let B be the subset of vertices x_{3i} such that $|L_{3i}| = 0$ for $i = 1, 2, \ldots, p - 1$, and define the set A by

$$A = \{x_0, x_3, \ldots, x_{3(p-1)}, x_d\} \cup L_{3i} \setminus B.$$

Then $S = V \setminus A$ is a $TO(p + 1)$-CDS for G. Since $p + 1 \geq k + 1$, we obtain a contradiction to the hypothesis, and the proof is complete.

Theorem 2.6. Let G be a connected graph G of order $n \geq 3$. Then $\gamma_{tc}^2(G) = 0$ if and only if $G \in \{P_3, C_4, C_5, K_n\}$.

Proof. First notice that $\gamma_{tc}^1(K_n) = \gamma_{tc}^1(P_3) = \gamma_{tc}^1(C_4) = 2$, $\gamma_{tc}^1(C_5) = 3$, and $\gamma_{tc}^k(K_n) = \gamma_{tc}^k(P_3) = \gamma_{tc}^k(C_4) = \gamma_{tc}^k(C_5) = 0$ for any $k \geq 2$. Let G be a graph of order at least three and $\gamma_{tc}^2(G) = 0$. Since G is connected, we have $\gamma_{tc}^k(G) > 0$. By Lemma 2.5, $\text{diam}(G) \leq 2$. If $\text{diam}(G) = 1$, then clearly G is a complete graph. Thus assume that $\text{diam}(G) = 2$. Let x, y be two diametrical vertices with $d(x, y) = \text{diam}(G) = 2$.

Assume first that $\text{deg}(x) \geq 3$. We show that $G[N(x)]$ is complete. Assume there are two non-adjacent vertices a, b in $N(x)$. Since $V - \{a, b\}$ is not a $TO2$-CDS, we obtain that there is a vertex z such that $N(z) \subseteq \{a, b\}$. If $z \neq y$, then $V - \{y, z\}$ is a $TO2$-CDS for G, a contradiction. So $z = y$. Let $c \in N(x) - \{a, b\}$. Then $V - \{y, c\}$ is a TOk-CDS for some $k \geq 2$, and by Lemma 2.4, G has a $TO2$-CDS, a contradiction. We deduce that $G[N(x)]$ is complete. Now $N(x)$ is a $TO2$-CDS for G, a contradiction. Thus $\text{deg}(x) \leq 2$. We also have $\text{deg}(y) \leq 2$. First assume that $\text{deg}(x) = 1$. Let $w \in N(x)$. If $\text{deg}(w) \geq 3$, then $V - \{x, y\}$ is a $TO2$-CDS for G, a contradiction. Thus $\text{deg}(w) = 1$, and so $G = P_3$. Assume thus that $\text{deg}(x) = 2$ and $\text{deg}(y) = 2$. Let $N(x) = \{a, w\}$, where $w \in N(y)$. If $a \in N(w)$, then $V - \{x, y\}$ is a $TO2$-CDS for G, a contradiction. So $a \not\in N(w)$. If there is a vertex $z \in N(a) - \{x, y\}$ such that $z \not\in N(y)$, then $V - \{y, z\}$ is a $TO2$-CDS for G, a contradiction. Thus each vertex of $N(a) - \{x, y\}$ is adjacent to y. Similarly, each vertex of $N(w) - \{x, y\}$ is adjacent to y. If $|N(a) - \{x, y\}| \geq 2$ or $|N(w) - \{x, y\}| \geq 2$, then $V - \{x, z\}$ is a $TO2$-CDS for G, where $z \in N(a) - \{x, y\}$ or $z \in N(w) - \{x, y\}$, a contradiction. Thus $|N(a) - \{x, y\}| \leq 1$ and $|N(w) - \{x, y\}| \leq 1$. Let $N(a) - \{x, y\} = \{z\}$. If $a \in N(y)$, then $V - \{x, z\}$ is a $TO2$-CDS for G, a contradiction. So assume that $a \not\in N(y)$. If $w \in N(z)$, then $V - \{x, y\}$ is a $TO2$-CDS for G, a contradiction. Thus assume now that $w \not\in N(z)$. Then $G = C_5$ or $N(w) - \{x, y\} = \{z_1\}$ with $z_1 \neq z$. However, then $V - \{x, y\}$ is a $TO2$-CDS for G, a contradiction. Since $\text{diam}(G) = 2$ we deduce that $a \in N(y)$. If $N(w) - \{x, y\} = \{z\}$, then we observe that then $V - \{x, z\}$ is a $TO2$-CDS for G, a contradiction. Thus $|N(w) - \{x, y\}| = 0$. Hence $G = C_4$. □
In the following we obtain the total outer-k-connected component domination number of a disconnected graph G in terms of the total outer-k-connected component domination numbers of its components. For this purpose we define $\gamma_{tc}^0(G) = |V|$.

Theorem 2.7. Let G be a disconnected graph with m connected components G_1, G_2, \ldots, G_m, and let $k \geq m$. Then

$$\gamma_{tc}^k(G) = \min \left(\sum_{i=1}^{m} \gamma_{tc}^{l_i}(G_i) \right)$$

where $l_i \in \{0, 1, 2, \ldots, k\}$.

Proof. Let G be a disconnected graph with m connected components G_1, G_2, \ldots, G_m, and let $k \geq m$. Let S_i be a $\gamma_{tc}^{l_i}(G_i)$-set for $i = 1, 2, \ldots, m$ if G_i has a TOkCDS, where $0 \leq l_i \leq k - m + 1$ and $\sum_{i=1}^{m} l_i = k$. It is obvious that $\bigcup_{i=1}^{m} S_i$ is a TOkCDS for G. This implies that

$$\gamma_{tc}^k(G) \leq \min \left(\sum_{i=1}^{m} \gamma_{tc}^{l_i}(G_i) \right).$$

On the other hand let S be a TOkCDS for G. Let $S_i = S \cap V(G_i)$ for $i = 1, 2, \ldots, m$. If l_i is the number of components of $G_i - S_i$, then S_i is a TOl_iCDS for G_i. This completes the proof. \[\square\]

We next obtain lower bounds for the total outer-k-connected component domination number of a graph G.

Theorem 2.8. Let G be a graph of order n and size e, and let $k \geq 2$. If $\gamma_{tc}^k(G) > 0$, then

$$\gamma_{tc}^k(G) \geq \frac{2e - (n - k + 1)(n - k)}{2(k - 1)}$$

Proof. Let S be a $\gamma_{tc}^k(G)$-set of cardinality s. If G_1, G_2, \ldots, G_k are the components of $G[V - S]$ such that $|V(G_i)| = n_i$ for $i = 1, 2, \ldots, k$, then

$$e \leq \sum_{i=1}^{k} \frac{n_i(n_i - 1)}{2} + \frac{s(s - 1)}{2} + \sum_{i=1}^{k} sn_i.$$

The right hand side of this inequality becomes maximum when $n_1 = n_2 = \ldots = n_{k-1} = 1$ and $n_k = n - s - (k-1)$. Therefore we obtain

$$e \leq \frac{(n - s - k + 1)(n - s - k)}{2} + \frac{s(s - 1)}{2} + s(n - s)$$

$$= \frac{(n - k + 1)(n - k)}{2} + s(k - 1),$$

and this leads to the desired bound immediately. \[\square\]

Let k, p, s be integers such that $p \geq 1$ and $k, s \geq 2$. Now let the graph H consist of the disjoint union of K_s, K_p and $k - 1$ isolated vertices $v_1, v_2, \ldots, v_{k-1}$ such that all vertices of K_s are adjacent to all vertices of K_p and $v_1, v_2, \ldots, v_{k-1}$ are adjacent to all vertices of K_s. Then it is straightforward to verify that

$$\gamma_{st}^k(H) = s = \frac{2e(H) - (n(H) - k + 1)(n(H) - k)}{2(k - 1)}.$$

This family of examples show that the bound of Theorem 2.8 is sharp. Since $\alpha(H) = k$, we see that the bound $\alpha(G) \geq k$ in Observation 2.1 is sharp too.
Theorem 2.9. For a graph G of order n, size e and $\gamma_{tc}^k(G) > 0$, $$\gamma_{tc}^k(G) \geq \left\lceil \frac{4n - 2k - 2e}{3} \right\rceil.$$

Proof. Let S be a $\gamma_{tc}^k(G)$-set of cardinality s, and G_1, G_2, \ldots, G_k be the connected components of $G[V - S]$. Suppose that $|V(G_i)| = n_i$ for $1 \leq i \leq k$. Since S is a dominating set of G, any vertex in G_i has at least one neighbor in S for $1 \leq i \leq k$. On the other hand G_i is connected and so has at least $n_i - 1$ edges for $i = 1, 2, \ldots, k$. Also $G[S]$ has no isolated vertex. Thus, we obtain

$$e \geq \sum (n_i - 1) + \sum n_i + \frac{s}{2}.$$

Since $\sum n_i = n - s$ we have $e \geq 2n - \frac{3}{2} - k$. This implies that $s \geq \frac{4n - 2k - 2e}{3}$, and the proof is complete. \hfill \Box

An immediate consequence of Theorem 2.9 with $k = 1$ is the following corollary for trees which is a main result of [1].

Corollary 2.10 [1]. For a tree T of order n, $\gamma_{tc}(T) \geq \frac{2n}{3}$.

It is obvious that $\gamma_{tc}^k(G) \leq n - k$. To characterize graphs achieving equality for the upper bound of the above inequality, we need to introduce a family of graphs. For $k > 1$, let \mathcal{G}_k be the class of all graphs G such that $G \in \mathcal{G}_k$ if and only if $V = A \cup B$ such that $|A| = n - k$, $G[A]$ has no isolated vertex, $G[B] = \overline{K}_k$, and no subset $S \subseteq A \cup B$ with $|S| < n - k$ is a total outer-k-connected component dominating set for G. The following is a characterization for graphs G with $\gamma_{tc}^k(G) = n - k$. The proof is straightforward and is omitted.

Theorem 2.11. For a connected graph G of order n, $\gamma_{tc}^k(G) = n - k$ if and only if $G \in \mathcal{G}_k$.

3. Exact values

In this section we determine the total outer-k-connected component domination number for some special classes of graphs.

Proposition 3.1. For $n \geq 3$, $\gamma_{tc}^k(K_n) = \begin{cases} 2 & \text{if } k = 1 \\ 0 & \text{if } k \geq 2. \end{cases}$

Proof. Let $n \geq 3$. If S is a TOkCDS in K_n, then $k = 1$, since $K_n[V - S]$ contains exactly one connected component. Thus $\gamma_{tc}^1(K_n) = 0$ if $k \geq 2$. Now it is obvious that $\gamma_{tc}^1(K_n) = \gamma_t(K_n) = 2$. \hfill \Box

Proposition 3.2. For $2 \leq m \leq n$, $\gamma_{tc}^k(K_{m,n}) = \begin{cases} 0 & \text{if } n < k \\ 2 & \text{if } n = k \\ m + n - k & \text{if } n \geq k, k \geq 2. \end{cases}$

Proof. Let $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_n\}$ be the two partite sets of $K_{m,n}$. Assume that $\gamma_{tc}^k(K_{m,n}) > 0$. So $k \leq n$. If $k = 1$, then $\gamma_{tc}^1(K_{m,n}) = \gamma_t(K_{m,n}) = 2$. So we assume that $k \geq 2$. Let S be a $\gamma_{tc}^k(K_{m,n})$-set. Since $K_{m,n}[X \cup Y - S]$ is disconnected, it follows that either $X \subseteq S$ or $Y \subseteq S$. Therefore $K_{m,n}[X \cup Y - S]$ consists of isolated vertices. As $K_{m,n}[X \cup Y - S]$ has exactly k connected components, we deduce that $|S| \geq m + n - k$. On the other hand $X \cup \{y_1, y_2, \ldots, y_{n-k}\}$ is a TOkCDS for $K_{m,n}$ of cardinality $m + n - k$. This completes the proof. \hfill \Box

For $n \geq 3$, we have the following.
Theorem 3.3. \(\gamma_{tc}^k(P_n) = \begin{cases} 0 & \text{if } n < 3k - 2 \\ 2k - 2 & \text{if } 3k - 2 \leq n \leq 4k - 4 \\ 2k - 1 & \text{if } n = 4k - 3 \\ 2k & \text{if } 4k - 2 \leq n \leq 4k - 1 \\ 2k + 1 & \text{if } n = 4k \\ 2k + 2 & \text{if } n = 4k + 1 \\ n - 2k & \text{if } n \geq 4k + 2. \end{cases} \)

Proof. Let \(V(P_n) = \{v_1, v_2, \ldots, v_n\} \), where \(v_i \) is adjacent to \(v_{i+1} \) for \(i = 1, 2, \ldots, n - 1 \). Assume that \(\gamma_{tc}^k(P_n) > 0 \). Let \(S \) be a \(\gamma_{tc}^k(P_n) \)-set, and let \(G_1, G_2, \ldots, G_k \) be the connected components of \(G - S \). Then \(G[S] \) has at least \(k - 1 \) components. Since any component of \(G[S] \) has at least two vertices, we obtain \(n \geq k + 2(k - 1) = 3k - 2 \).

We deduce, in particular, that \(\gamma_{tc}^k(P_n) = 0 \) if \(n \leq 3k - 2 \).

Assume that \(n \geq 4k + 2 \). Any component of \(G[V - S] \) has at most two vertices, so \(|V - S| \leq 2k \). This implies that \(|S| \geq n - 2k \). On the other hand \(\{v_{4i+1}, v_{4i+2} : 0 \leq i \leq k - 1\} \cup \{v_j : j \geq 4k + 1\} \) is a \(\text{TO}(n - 2k) \)-CDS for \(P_n \), and thus \(\gamma_{tc}^k(P_n) = n - 2k \).

Next we assume that \(3k - 2 \leq n \leq 4k - 4 \). It is obvious that \(G[S] \) has at least \(k - 1 \) components, and each component of \(G[S] \) has at least two vertices. Thus \(|S| \geq 2(k - 1) = 2k - 2 \). Let \(D = \{v_{3i+2}, v_{3i+3} : 0 \leq i \leq k - 2\} \). Then \(D \) is a \(\text{TO}k \)-CDS for \(P_{3k - 2} \) of cardinality \(2k - 2 \). If \(t = n - 3k + 2 \), then we subdivide the edges \(v_{3i+3}v_{3i+4} \) for \(i = 1, 2, \ldots, t \) to obtain a path \(P_n \) from \(P_{3k - 2} \). Then \(D \) is still a \(\text{TO}k \)-CDS for \(P_n \). Thus \(\gamma_{tc}^k(P_n) \leq 2k - 2 \) and the result follows.

Assume next that \(n = 4k - 3 \). Suppose that \(|S| \leq 2k - 2 \). For \(S \) to dominate maximum number of vertices, without loss of generality, we may assume that each connected component of \(G[S] \) is \(K_2 \), and each component of \(G[S] \) dominates two vertices of \(G[V - S] \). Then \(|N[S]| \leq 2(\frac{2k - 2}{2}) + |S| < n \), a contradiction. Thus \(|S| \geq 2k - 1 \).

On the other hand \(\{v_{4i+2}, v_{4i+3} : 0 \leq i \leq k - 2\} \cup \{v_{n-1}\} \) is a \(\text{TO} \)-CDS for \(P_n \) of cardinality \(2k - 1 \). Thus \(\gamma_{tc}^k(P_{4k - 3}) = 2k - 1 \).

Next assume that \(4k - 2 \leq n \leq 4k - 1 \). Suppose that \(|S| \leq 2k - 1 \). If each component of \(G[S] \) is a \(K_2 \), then \(|S| \leq 2k - 2 \) and \(S \) dominates at most \(4\frac{|S|}{2} \leq 4k - 4 < n \) vertices of \(P_n \), a contradiction. Thus \(|S| \geq 2k - 1 \).

On the other hand \(\{v_{4i+2}, v_{4i+3} : 0 \leq i \leq k - 2\} \cup \{v_n, v_{n-1}\} \) is a \(\text{TO} \)-CDS for \(P_n \) of cardinality \(2k \). Thus \(\gamma_{tc}^k(P_n) = 2k \).

The proof for \(n \in \{4k, 4k + 1\} \) is similar.

The following theorem can be proved in a similar manner as in the proof of Theorem 3.3, and so we omit the proof.

Theorem 3.4. \(\gamma_{tc}^k(C_n) = \begin{cases} 0 & \text{if } n < 3k \\ 2k & \text{if } 3k \leq n \leq 4k \\ n - 2k & \text{if } n \geq 4k + 1. \end{cases} \)

For a wheel and an integer \(k > 1 \) the center of the wheel is in any \(\text{TO}k \)-CDS. So the following is easily verified.

Theorem 3.5. Let \(k \geq 2 \) be a positive integer, and let \(W_n \) be a wheel with \(n \geq 3 \). Then

\[\gamma_{tc}^k(W_n) = \begin{cases} 0 & \text{if } n < 2k \\ k + 1 & \text{if } n \geq 2k. \end{cases} \]

We close with the following problems.

Problem 1. Find sharp upper and lower bounds for the total outer-\(k \)-connected component domination number of a graph.
Problem 2. Determine the complexity issue of the total outer-k-connected component domination number.

Problem 3. Determine the total outer-k-connected component domination number in grid graphs.

Acknowledgements. The authors would like to thank both referees for their careful review and valuable comments.

REFERENCES