GENERALIZATION OF THE TOTAL OUTER-CONNECTED DOMINATION IN GRAPHS

Nader Jafari Rad ${ }^{1}$ and Lutz Volkmann ${ }^{2}$

Abstract

Let $G=(V, E)$ be a graph without an isolated vertex. A set $S \subseteq V$ is a total dominating set if S is a dominating set, and the induced subgraph $G[S]$ does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total dominating set of G. A set $D \subseteq V$ is a total outer-connected dominating set if D is a total dominating set, and the induced subgraph $G[V-D]$ is connected. The total outer-connected domination number of G is the minimum cardinality of a total outer-connected dominating set of G. In this paper we generalize the total outer-connected domination number in graphs. Let $k \geq 1$ be an integer. A set $D \subseteq V$ is a total outer- k-connected component dominating set if D is a total dominating and the induced subgraph $G[V-D]$ has exactly k connected component(s). The total outer- k-connected component domination number of G, denoted by $\gamma_{t c}^{k}(G)$, is the minimum cardinality of a total outer- k-connected component dominating set of G. We obtain several general results and bounds for $\gamma_{t c}^{k}(G)$, and we determine exact values of $\gamma_{t c}^{k}(G)$ for some special classes of graphs G.

Mathematics Subject Classification. 05C69.
Received May 18, 2015. Accepted June 1, 2015.

1. Introduction

For notation and terminology in general we follow [4]. Let $G=(V, E)$ be a simple graph of order $n=|V(G)|=$ $|V|$ and size $e=|E(G)|=|E|$. We denote the open neighborhood of a vertex v of G by $N_{G}(v)$ or just $N(v)$, and its closed neighborhood by $N_{G}[v]=N[v]$. For a vertex set $S \subseteq V, N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=\cup_{v \in S} N[v]$. The degree $\operatorname{deg}(x)$ of a vertex x denotes the number of neighbors of x in G. The maximum degree and minimum degree of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The distance between two vertices of a graph is the number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between it and any other vertex. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the maximum eccentricity among all vertices of G. A set of vertices S in G is a dominating set, if $N[S]=V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. If S is a subset of V then we denote by $G[S]$ the subgraph of G induced by S. A dominating set S of G is a total dominating set if $G[S]$ has no isolated

[^0]vertex. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G.

Total outer-connected domination in graphs was introduced by Cyman in [1]. If G is without an isolated vertex, then a set $D \subseteq V$ is a total outer-connected dominating set (TOCDS) of G if D is a total dominating set of G and the subgraph induced by $V \backslash D$ is connected. The minimum cardinality of a total outer-connected dominating set in G is the total outer-connected domination number denoted $\gamma_{t c}(G)$. A minimum TOCDS of a graph G is called a $\gamma_{t c}(G)$-set. Cyman in [1], Hattingh and Joubert in [3] obtained a lower bound for the total outer-connected domination number of a tree in terms of the order of the tree, and characterized trees achieving equality. Cyman and Raczek in [2] characterized trees with equal total domination and total outer-connected domination numbers. They also gave a lower bound for the total outer-connected domination number of a tree in terms of the order and the number of leaves of the tree, and characterized extremal trees. Jiang and Kang in [5] studied Nordhaus-Gaddum Typebounds for the total outer-connected domination number of a graph.

We generalize the total outer-connected domination number of a graph. Let G be a graph with no isolated vertex. For an integer $k \geq 1$, a subset S of the vertices of G is a total outer- k-connected component dominating set, or just TO k CDS, if S is a total dominating set of G and $G[V-S]$ has k connected components. The total outer- k-connected component domination number of G, denoted by $\gamma_{t c}^{k}(G)$, is the minimum cardinality of a TOkCDS of G. In the case that there is no TOkCDS of G, we define $\gamma_{t c}^{k}(G)=0$. We also refer a $\gamma_{t c}^{k}(G)$-set in a graph G as a TOkCDS of cardinality $\gamma_{t c}^{k}(G)$. Note that a TOCDS S is a TO1CDS if $|S|<|V|$, and thus the concept of total outer- k-connected component domination is a generalization of the concept of total outer-connected domination.

In Section 2, we present some general results and bounds for the total outer- k-connected component domination number of graphs. In Section 3, we determine exact values of the total outer- k-connected component domination number for some special classes of graphs.

All graphs we consider in this paper are without isolated vertices and have at least three vertices. We recall that a leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. A pendant edge is an edge which at least one of its end-points is a leaf. We denote by $L(G)$ and $S(G)$ the set of all leaves and all support vertices of G, respectively.

With K_{n} we denote the complete graph on n vertices, with P_{n} the path on n vertices, with C_{n} the cycle of length n, and with W_{n} the wheel with $n+1$ vertices. A bipartite graph is a graph whose vertex set can be partitioned into two sets of pair-wise non-adjacent vertices. We denote by $K_{m, n}$ the complete bipartite graph which one partite set has cardinality m and the other partite set has cardinality n. The corona $\operatorname{cor}(G)$ of a graph G is the graph obtained from G by adding a pendant edge to any vertex of G. By $\alpha(G)$ we denote the independence number of a graph G.

2. GEnERAL RESULTS AND BOUNDS

We begin with the following observation.
Observation 2.1. Let $k \geq 1$ be an integer, and let G be a graph without isolated vertices. If $0<\gamma_{t c}^{k}(G)<n$, then $\alpha(G) \geq k$, and $\delta(G) \leq n-k$.

Proof. Assume that $0<\gamma_{t c}^{k}(G)<n$ for some integer k. Let S be a $\gamma_{t c}^{k}(G)$-set, and $G_{1}, G_{2}, \ldots, G_{k}$ be the components of $G[V-S]$. Let x_{i} be a vertex in $V\left(G_{i}\right)$ for $i=1,2, \ldots, k$. Then clearly $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is an independent set, implying that $\alpha(G) \geq k$. To complete the proof, note that, since x_{1} is not adjacent to any x_{i}, $i=2,3, \ldots, k$, then $\delta(G) \leq \operatorname{deg}\left(x_{1}\right) \leq(n-1)-(k-1)=n-k$.

Lemma 2.2. If $\gamma_{t c}^{k}(G)=0$ for some integer k, then for every $m>k, \gamma_{t c}^{m}(G)=0$.
Proof. Let $\gamma_{t c}^{k}(G)=0$ for some integer k and $m>k$ be an integer. Suppose to the contrary that $\gamma_{t c}^{m}(G) \neq 0$. Let S be a $\gamma_{t c}^{m}(G)$-set, and let G_{1}, G_{2}, \ldots, and G_{m} be m connected components of $G[V-S]$. It is obvious that
$S_{1}=S \cup V\left(G_{k+1}\right) \cup \ldots \cup V\left(G_{m}\right)$ is a $\mathrm{TO} k \mathrm{CDS}$ for G and $G\left[V-S_{1}\right]$ has k connected components. This implies that $\gamma_{t c}^{k}(G)>0$, a contradiction.
Lemma 2.3. Let k be the maximum integer such that $\gamma_{t c}^{k}(G)>0$. If S is a TOkCDS, then every connected component of $G[V-S]$ is a complete graph.

Proof. Let k be the maximum integer such that $\gamma_{t c}^{k}(G)>0$, and let S be a TOkCDS. Suppose to the contrary that there is a connected component G_{1} of $G[V-S]$ such that G_{1} is not complete. Let x, y be two non-adjacent vertices in G_{1}. Then $S \cup\left(V\left(G_{1}\right)-\{x, y\}\right)$ is a $\mathrm{TO}(k+1) \mathrm{CDS}$ for G, a contradiction.

Lemma 2.4. If a graph G has a TOk CDS, then it has a TOtCDS for any integer $t<k$.
Proof. Let S be a TOkCDS for a graph G, where $k>1$, and let $G_{1}, G_{2}, \ldots, G_{k}$ be the components of $G[V-S]$. Let $t<k$. Then $S \cup V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup \ldots \cup V\left(G_{k-t}\right)$ is a TOtCDS for G.

Lemma 2.5. Let G be a connected graph. If k is the maximum integer such that $\gamma_{t c}^{k}(G)>0$, then $\operatorname{diam}(G) \leq$ $3 k-1$.

Proof. If k is the maximum integer such that $\gamma_{t c}^{k}(G)>0$, then $\gamma_{t c}^{r}(G)=0$ for each $r \geq k+1$. Suppose to the contrary that $\operatorname{diam}(G) \geq 3 k$. Let $x_{0} x_{1} x_{2} \ldots x_{d}$ be a diametrical path in G such that $d=3 p+t$ with an integer $0 \leq t \leq 2$, and let L_{i} be the set of leaves of G adjacent to x_{i} for $1 \leq i \leq d-1$. Let B be the subset of vertices $x_{3 i}$ such that $\left|L_{3 i}\right|=0$ for $i=1,2, \ldots, p-1$, and define the set A by

$$
A=\left\{x_{0}, x_{3}, \ldots, x_{3(p-1)}, x_{d}\right\} \bigcup_{i=1}^{p-1} L_{3 i} \backslash B
$$

Then $S=V \backslash A$ is a $\mathrm{TO}(p+1) \mathrm{CDS}$ for G. Since $p+1 \geq k+1$, we obtain a contradiction to the hypothesis, and the proof is complete.

Theorem 2.6. Let G be a connected graph G of order $n \geq 3$. Then $\gamma_{t c}^{2}(G)=0$ if and only if $G \in$ $\left\{P_{3}, C_{4}, C_{5}, K_{n}\right\}$.

Proof. First notice that $\gamma_{t c}^{1}\left(K_{n}\right)=\gamma_{t c}^{1}\left(P_{3}\right)=\gamma_{t c}^{1}\left(C_{4}\right)=2, \gamma_{t c}^{1}\left(C_{5}\right)=3$, and $\gamma_{t c}^{k}\left(K_{n}\right)=\gamma_{t c}^{k}\left(P_{3}\right)=\gamma_{t c}^{k}\left(C_{4}\right)=$ $\gamma_{t c}^{k}\left(C_{5}\right)=0$ for any $k \geq 2$. Let G be a graph of order at least three and $\gamma_{t c}^{2}(G)=0$. Since G is connected, we have $\gamma_{t c}^{1}(G)>0$. By Lemma 2.5, $\operatorname{diam}(G) \leq 2$. If $\operatorname{diam}(G)=1$, then clearly G is a complete graph. Thus assume that $\operatorname{diam}(G)=2$. Let x, y be two diametrical vertices with $d(x, y)=\operatorname{diam}(G)=2$.

Assume first that $\operatorname{deg}(x) \geq 3$. We show that $G[N(x)]$ is complete. Assume that there are two non-adjacent vertices a, b in $N(x)$. Since $V-\{a, b\}$ is not a TO2CDS for G, we obtain that there is a vertex z such that $N(z) \subseteq\{a, b\}$. If $z \neq y$, then $V-\{y, z\}$ is a TO2CDS for G, a contradiction. So $z=y$. Let $c \in N(x)-\{a, b\}$. Then $V-\{y, c\}$ is a TOkCDS for some $k \geq 2$, and by Lemma 2.4, G has a TO2CDS, a contradiction. We deduce that $G[N(x)]$ is complete. Now $N(x)$ is a TO2CDS for G, a contradiction. Thus $\operatorname{deg}(x) \leq 2$. We also have $\operatorname{deg}(y) \leq 2$. First assume that $\operatorname{deg}(x)=1$. Let $w \in N(x)$. If $\operatorname{deg}(w) \geq 3$, then $V-\{x, y\}$ is a TO2CDS for G, a contradiction. Thus $\operatorname{deg}(w)=2$, and so $G=P_{3}$. Assume thus that $\operatorname{deg}(x)=2$ and $\operatorname{deg}(y)=2$. Let $N(x)=\{a, w\}$, where $w \in N(y)$. If $a \in N(w)$, then $V-\{x, y\}$ is a TO2CDS for G, a contradiction. So $a \notin N(w)$. If there is a vertex $z \in N(a)-\{x, y\}$ such that $z \notin N(y)$, then $V-\{y, z\}$ is a TO2CDS for G, a contradiction. Thus each vertex of $N(a)-\{x, y\}$ is adjacent to y. Similarly, each vertex of $N(w)-\{x, y\}$ is adjacent to y. If $|N(a)-\{x, y\}| \geq 2$ or $|N(w)-\{x, y\}| \geq 2$, then $V-\{x, z\}$ is a TO2CDS for G, where $z \in N(a)-\{x, y\}$ or $z \in N(w)-\{x, y\}$, a contradiction. Thus $|N(a)-\{x, y\}| \leq 1$ and $|N(w)-\{x, y\}| \leq 1$. Let $N(a)-\{x, y\}=\{z\}$. If $a \in N(y)$, then $V-\{x, z\}$ is a TO2CDS for G, a contradiction. So assume that $a \notin N(y)$. If $w \in N(z)$, then $V-\{x, y\}$ is a TO2CDS for G, a contradiction. Thus assume now that $w \notin N(z)$. Then $G=C_{5}$ or $N(w)-\{x, y\}=\left\{z_{1}\right\}$ with $z_{1} \neq z$. However, then $V-\{x, y\}$ is a TO2CDS for G, a contradiction. Since $\operatorname{diam}(G)=2$ we deduce that $a \in N(y)$. If $N(w)-\{x, y\}=\{z\}$, then we observe that then $V-\{x, z\}$ is a TO2CDS for G, a contradiction. Thus $|N(w)-\{x, y\}|=0$. Hence $G=C_{4}$.

In the following we obtain the total outer- k-connected component domination number of a disconnected graph G in terms of the total outer- k-connected component domination numbers of its components. For this purpose we define $\gamma_{t c}^{0}(G)=|V|$.

Theorem 2.7. Let G be a disconnected graph with m connected components $G_{1}, G_{2}, \ldots, G_{m}$, and let $k \geq m$. Then

$$
\gamma_{t c}^{k}(G)=\min _{\sum l_{i}=k} \sum_{i=1}^{m} \gamma_{t c}^{l_{i}}\left(G_{i}\right)
$$

where $l_{i} \in\{0,1,2, \ldots, k\}$.
Proof. Let G be a disconnected graph with m connected components $G_{1}, G_{2}, \ldots, G_{m}$, and let $k \geq m$. Let $S_{i}^{l_{i}}$ be a $\gamma_{t c}^{l_{i}}\left(G_{i}\right)$-set for $i=1,2, \ldots, m$ if G_{i} has a $\mathrm{TO} l_{i} \mathrm{CDS}$, where $0 \leq l_{i} \leq k-m+1$ and $\sum_{i=1}^{m} l_{i}=k$. It is obvious that $\bigcup_{i=1}^{m} S_{i}^{l_{i}}$ is a TOkCDS for G. This implies that

$$
\gamma_{t c}^{k}(G) \leq \min _{\sum l_{i}=k} \sum_{i=1}^{m} \gamma_{t c}^{l_{i}}\left(G_{i}\right)
$$

On the other hand let S be a TOkCDS for G. Let $S_{i}=S \cap V\left(G_{i}\right)$ for $i=1,2, \ldots, m$. If l_{i} is the number of components of $G_{i}-S_{i}$, then S_{i} is a $\mathrm{TO} l_{i} \mathrm{CDS}$ for G_{i}. This completes the proof.

We next obtain lower bounds for the total outer- k-connected component domination number of a graph G.
Theorem 2.8. Let G be a graph of order n and size e, and let $k \geq 2$. If $\gamma_{t c}^{k}(G)>0$, then

$$
\gamma_{t c}^{k}(G) \geq \frac{2 e-(n-k+1)(n-k)}{2(k-1)}
$$

Proof. Let S be a $\gamma_{t c}^{k}(G)$-set of cardinality s. If $G_{1}, G_{2}, \ldots, G_{k}$ are the components of $G[V-S]$ such that $\left|V\left(G_{i}\right)\right|=n_{i}$ for $i=1,2, . ., k$, then

$$
e \leq \sum_{i=1}^{k} \frac{n_{i}\left(n_{i}-1\right)}{2}+\frac{s(s-1)}{2}+\sum_{i=1}^{k} s n_{i}
$$

The right hand side of this inequality becomes maximum when $n_{1}=n_{2}=\ldots=n_{k-1}=1$ and $n_{k}=n-s-(k-1)$. Therefore we obtain

$$
\begin{aligned}
e & \leq \frac{(n-s-k+1)(n-s-k)}{2}+\frac{s(s-1)}{2}+s(n-s) \\
& =\frac{(n-k+1)(n-k)}{2}+s(k-1)
\end{aligned}
$$

and this leads to the desired bound immediately.
Let k, p, s be integers such that $p \geq 1$ and $k, s \geq 2$. Now let the graph H consist of the disjoint union of K_{s}, K_{p} and $k-1$ isolated vertices $v_{1}, v_{2}, \ldots, v_{k-1}$ such that all vertices of K_{s} are adjacent to all vertices of K_{p} and $v_{1}, v_{2}, \ldots, v_{k-1}$ are adjacent to all vertices of K_{s}. Then it is straighforward to verify that

$$
\gamma_{s t}^{k}(H)=s=\frac{2 e(H)-(n(H)-k+1)(n(H)-k)}{2(k-1)}
$$

This family of examples show that the bound of Theorem 2.8 is sharp. Since $\alpha(H)=k$, we see that the bound $\alpha(G) \geq k$ in Observation 2.1 is sharp too.

Theorem 2.9. For a graph G of order n, size e and $\gamma_{t c}^{k}(G)>0$,

$$
\gamma_{t c}^{k}(G) \geq\left\lceil\frac{4 n-2 k-2 e}{3}\right\rceil
$$

Proof. Let S be a $\gamma_{t c}^{k}(G)$-set of cardinality s, and $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of $G[V-S]$. Suppose that $\left|V\left(G_{i}\right)\right|=n_{i}$ for $1 \leq i \leq k$. Since S is a dominating set of G, any vertex in G_{i} has at least one neighbor in S for $1 \leq i \leq k$. On the other hand G_{i} is connected and so has at least $n_{i}-1$ edges for $i=1,2, \ldots, k$. Also $G[S]$ has no isolated vertex. Thus, we obtain

$$
e \geq \sum\left(n_{i}-1\right)+\sum n_{i}+\frac{s}{2}
$$

Since $\sum n_{i}=n-s$ we have $e \geq 2 n-\frac{3 s}{2}-k$. This implies that $s \geq \frac{4 n-2 k-2 e}{3}$, and the proof is complete.
An immediate consequence of Theorem 2.9 with $k=1$ is the following corollary for trees which is a main result of [1].

Corollary 2.10 [1]. For a tree T of order $n, \gamma_{t c}(T) \geq \frac{2 n}{3}$.
It is obvious that $\gamma_{t c}^{k}(G) \leq n-k$. To characterize graphs achieving equality for the upper bound of the above inequality, we need to introduce a family of graphs. For $k>1$, let \mathcal{G}_{k} be the class of all graphs G such that $G \in \mathcal{G}_{k}$ if and only if $V=A \cup B$ such that $|A|=n-k, G[A]$ has no isolated vertex, $G[B]=\overline{K_{k}}$, and no subset $S \subseteq A \cup B$ with $|S|<n-k$ is a total outer- k-connected component dominating set for G. The following is a characterization for graphs G with $\gamma_{t c}^{k}(G)=n-k$. The proof is straightforward and is omitted.

Theorem 2.11. For a connected graph G of order $n, \gamma_{t c}^{k}(G)=n-k$ if and only if $G \in \mathcal{G}_{k}$.

3. Exact values

In this section we determine the total outer- k-connected component domination number for some special classes of graphs.

Proposition 3.1. For $n \geq 3, \gamma_{t c}^{k}\left(K_{n}\right)=\left\{\begin{array}{cc}2 & \text { if } k=1 \\ 0 & \text { if } k \geq 2 .\end{array}\right.$
Proof. Let $n \geq 3$. If S is a TO $k \mathrm{CDS}$ in K_{n}, then $k=1$, since $K_{n}[V-S]$ contains exactly one connected component. Thus $\gamma_{t c}^{k}\left(K_{n}\right)=0$ if $k \geq 2$. Now it is obvious that $\gamma_{t c}^{1}\left(K_{n}\right)=\gamma_{t}\left(K_{n}\right)=2$.

Proposition 3.2. For $2 \leq m \leq n, \gamma_{t c}^{k}\left(K_{m, n}\right)=\left\{\begin{array}{cl}0 & \text { if } n<k \\ 2 & \text { if } k=1 \\ m+n-k & \text { if } n \geq k, k \geq 2\end{array}\right.$.
Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the two partite sets of $K_{m, n}$. Assume that $\gamma_{t c}^{k}\left(K_{m, n}\right)>0$. So $k \leq n$. If $k=1$, then $\gamma_{t c}^{1}\left(K_{m, n}\right)=\gamma_{t}\left(K_{m, n}\right)=2$. So we assume that $k \geq 2$. Let S be a $\gamma_{t c}^{k}\left(K_{m, n}\right)$-set. Since $K_{m, n}[X \cup Y-S]$ is disconnected, it follows that either $X \subseteq S$ or $Y \subseteq S$. Therefore $K_{m, n}[X \cup Y-S]$ consists of isolated vertices. As $K_{m, n}[X \cup Y-S]$ has exactly k connected components, we deduce that $|S| \geq m+n-k$. On the other hand $X \cup\left\{y_{1}, y_{2}, \ldots, y_{n-k}\right\}$ is a TOkCDS for $K_{m, n}$ of cardinality $m+n-k$. This completes the proof.

For $n \geq 3$, we have the following.

Theorem 3.3. $\gamma_{t c}^{k}\left(P_{n}\right)=\left\{\begin{array}{c}2 k-1 \text { if } n=4 k-3 \\ 2 k \quad \text { if } 4 k-2 \leq n \leq 4 k-1 \\ 2 k+1 \text { if } n=4 k \\ 2 k+2 \text { if } n=4 k+1 \\ n-2 k \text { if } n \geq 4 k+2 .\end{array}\right.$
Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where v_{i} is adjacent to v_{i+1} for $i=1,2, \ldots, n-1$. Assume that $\gamma_{t c}^{k}\left(P_{n}\right)>0$. Let S be a $\gamma_{t c}^{k}\left(P_{n}\right)$-set, and let $G_{1}, G_{2}, \ldots, G_{k}$ be the connected components of $G-S$. Then $G[S]$ has at least $k-1$ components. Since any component of $G[S]$ has at least two vertices, we obtain $n \geq k+2(k-1)=3 k-2$. We deduce, in particular, that $\gamma_{t c}^{k}\left(P_{n}\right)=0$ if $n<3 k-2$.

Assume that $n \geq 4 k+2$. Any component of $G[V-S]$ has at most two vertices, so $|V-S| \leq 2 k$. This implies that $|S| \geq n-2 k$. On the other hand $\left\{v_{4 i+1}, v_{4 i+2}: 0 \leq i \leq k-1\right\} \cup\left\{v_{j}: j \geq 4 k+1\right\}$ is a $\mathrm{TO}(n-2 k) \mathrm{CDS}$ for P_{n}, and thus $\gamma_{t c}^{k}\left(P_{n}\right)=n-2 k$.

Next we assume that $3 k-2 \leq n \leq 4 k-4$. It is obvious that $G[S]$ has at least $k-1$ components, and each component of $G[S]$ has at least two vertices. Thus $|S| \geq 2(k-1)=2 k-2$. Let $D=\left\{v_{3 i+2}, v_{3 i+3}: 0 \leq i \leq k-2\right\}$. Then D is a TO k CDS for $P_{3 k-2}$ of cardinality $2 k-2$. If $t=n-3 k+2$, then we subdivide the edges $v_{3 i+3} v_{3 i+4}$ for $i=1,2, \ldots, t$ to obtain a path P_{n} from $P_{3 k-2}$. Then D is still a TOkCDS for P_{n}. Thus $\gamma_{t c}^{k}\left(P_{n}\right) \leq 2 k-2$ and the result follows.

Assume next that $n=4 k-3$. Suppose that $|S| \leq 2 k-2$. For S to dominate maximum number of vertices, without loss of generality, we may assume that each component of $G[S]$ is K_{2}, and each component of $G[S]$ dominates two vertices of $G[V-S]$. Then $|N[S]| \leq 2\left(\frac{2 k-2}{2}\right)+|S|<n$, a contradiction. Thus $|S| \geq 2 k-1$. On the other hand $\left\{v_{4 i+2}, v_{4 i+3}: 0 \leq i \leq k-2\right\} \cup\left\{v_{n-1}\right\}$ is a TOkCDS for P_{n} of cardinality $2 k-1$. Thus $\gamma_{t c}^{k}\left(P_{4 k-3}\right)=2 k-1$.

Next assume that $4 k-2 \leq n \leq 4 k-1$. Suppose that $|S| \leq 2 k-1$. If each component of $G[S]$ is a K_{2}, then $|S| \leq 2 k-2$ and S dominates at most $4 \frac{|S|}{2} \leq 4 k-4<n$ vertices of P_{n}, a contradiction. Thus $G[S]$ has a component with more than two vertices. For S to dominate maximum number of vertices, without loss of generality, we may assume that a component of $G[S]$ is P_{3}, and the other components are K_{2}. Furthermore, the P_{3} component of $G[S]$ dominates at most five vertices of G, while any K_{2}-component of $G[S]$ dominates at most four vertices of G. We deduce that $|N[S]| \leq 5+4\left(\frac{2 k-1-3}{2}\right)<n$, a contradiction. Thus $|S| \geq 2 k$. On the other hand $\left\{v_{4 i+2}, v_{4 i+3}: 0 \leq i \leq k-2\right\} \cup\left\{v_{n}, v_{n-1}\right\}$ is a TO $k \operatorname{CDS}$ for P_{n} of cardinality $2 k$. Thus $\gamma_{t c}^{k}\left(P_{n}\right)=2 k$.

The proof for $n \in\{4 k, 4 k+1\}$ is similar.
The following theorem can be proved in a similar manner as in the proof of Theorem 3.3, and so we omit the proof.

Theorem 3.4. $\gamma_{t c}^{k}\left(C_{n}\right)=\left\{\begin{array}{cl}0 & \text { if } n<3 k \\ 2 k & \text { if } 3 k \leq n \leq 4 k \\ n-2 k & \text { if } n \geq 4 k+1 .\end{array}\right.$
For a wheel and an integer $k>1$ the center of the wheel is in any TOkCDS. So the following is easily verified.
Theorem 3.5. Let $k \geq 2$ be a positive integer, and let W_{n} be a wheel with $n \geq 3$. Then

$$
\gamma_{t c}^{k}\left(W_{n}\right)=\left\{\begin{array}{c}
0 \text { if } n<2 k \\
k+1 \text { if } n \geq 2 k
\end{array}\right.
$$

We close with the following problems.
Problem 1. Find sharp upper and lower bounds for the total outer- k-connected component domination number of a graph.

Problem 2. Determine the complexity issue of the total outer- k-connected component domination number.
Problem 3. Determine the total outer- k-connected component domination number in grid graphs.

Acknowledgements. The authors would like to thank both referees for their careful review and valuable comments.

References

[1] J. Cyman, Total outer-connected domination in trees. Discuss. Math. Graph Theory 30 (2010) 377-383.
[2] J. Cyman and J. Raczek, Total outer-connected domination numbers in trees. Discrete Appl. Math. 157 (2009) $3198-3202$.
[3] J.H. Hattingh and E. Joubert, A note on the total outer-connected domination number of a tree. Akce J. Graphs Combin. 7 (2010) 223-227.
[4] T.W. Haynes and S.T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998).
[5] H.X. Jiang and L.Y. Kang, Inequality of Nordhaus-Gaddum type for total outer-connected domination in graphs. Acta Math. Sinica, English Series 27 (2011) 607-616.

[^0]: Keywords. Total domination, total outer-connected domination.
 1 Department of Mathematics, Shahrood University of Technology, P.O. Box 3619995161, Shahrood, Iran. n.jafarirad@shahroodut.ac.ir

 2 Lehrstuhl II für Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany. volkm@math2.rwth-aachen.de

