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Abstract. This paper presents a new heuristic method for solving multi-mode resource constrained
project scheduling problems with renewable resources. Assumptions such as resource vacation and
activity splitting are also considered. The proposed heuristic determines one mode for the execution
of each activity first, so that the multi-mode problem is reduced to a single-mode one. Our method
is compared to two of the existing methods in terms of computational time and solution quality. The
results show that while it can outperform one of them (especially as the size of the problem grows),
it is outperformed by the other for tested instances with low complexity, but can yield good results
for tested instances with higher values of this parameters. This quality may be useful in real-world
scheduling problems. We also validate the first phase of our method, i.e., mode selection, with numerical
experiments. Our results indicate that better mode vectors selected in the first phase lead to better
makespans for the MRCPSP. Moreover, we correct some erroneous constraints in the mathematical
model of the problem. We implement the mathematical programming model of the problem in GAMS,
and show that solving it to optimality requires much more computational effort compared to our
method.
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1. Introduction

The multi-mode resource constrained project-scheduling problem (MRCPSP) aims to assign some resources
to a set of jobs or activities that have some precedence relations. A common objective of the MRCPSP is
minimizing the project makespan while satisfying the precedence relations among the activities. Also, there
are always resource constraints that have to be satisfied. Each activity can be performed in one out of several
different modes i.e., the activity duration in each mode would depend on the type and amount of resources
needed. For example, one skillful worker could finish an activity in 3 days (mode 1), whereas two normal workers
might finish the same activity in 2 days (mode 2).

There are three types of resources: Renewable, non-renewable and doubly constrained. Renewable resources
have a limited amount available for each period such as manpower and machine hours. Non-renewable resources
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have a fixed total capacity like the budget of a project. Doubly constrained resources have both types of
capacity limitations and can be covered by the two other resource categories [72] Real examples of MRCPSPs
are scheduling of engineering design activities in product development, scheduling of activities in financial audits
and assignment of coding activities in software development projects [21]

Activity splitting may significantly reduce a project makespan especially when resource availability levels
are low [21]. In this paper, we describe how activities can be split to achieve significant improvements on the
resource consumption level and the makespan of the project.

In some real world situations we may encounter such problems where resources are unavailable in some
periods during project execution. These times are known in advance. This unavailability could be due to the
absence of some staff and maintenance or overhauls of the equipment in some periods. This kind of resource
unavailability is called resource vacation herein [21]

In recent years the growing number of published ISI articles shows that more attention has been paid to
scheduling. There are also many extensions to the MRCPSP, such as minimal and maximal time lags between
activities (MRCPSP/Max), mode-dependent time lags, splitting and resource dependant processing times. For
example, Heilmann [37] presented a heuristic procedure for the MRCPSP with temporal constraints (time lags
between activities). His method is evaluated for problem instances with 100 activities and up to 5 modes per
activity. Hartmann [35] presented a genetic algorithm along with a local search. In reference [38] the ability
of the branch-and-bound algorithm in solving the MRCPSP is evaluated. In reference [48], Parallel and serial
scheduling generation schemes (SGS) are given for the MRCPSP. Serial SGS’s move forward activity by activity
until all activities are scheduled while parallel ones move from one scheduled time period to the next [21].
In references [15, 64] it was shown that meta-heuristic methods can provide good solutions for medium-sized
problems with both renewable and non-renewable resources in a reasonable time. Ballestin et al. [7] presented an
algorithm for the MRCPSP/Max which chooses the mode first and then uses simulated annealing to solve the
resulting RCPSP instance. They also imply that predetermining the modes in the MRCPSP/Max problem can,
while reducing complexity, help determine good-quality solutions for the problem. In reference [1], a branch-
and-bound algorithm is presented for resource leveling in MRCPSP which yields exact solutions for small-sized
instances.

There are other generalizations of the MRCPSP such as energy aware scheduling, speed scaling and resource
aware scheduling. Chakrabarti et al. [25] considered the problem of finding near-optimal solutions for a variety of
NP-hard scheduling problems. They presented improved on-line algorithms for more realistic scheduling models.
In reference [34], two techniques for the design of approximation algorithms for NP-hard scheduling problems
were presented: The first used a list-scheduling rule while the second yielded on-line algorithms. List scheduling
is a method of scheduling by making an ordered list of processes by assigning them some priorities [51]. In
reference [55], the authors gave the first constant-factor approximation algorithms for single and parallel machine
models. They also presented a list scheduling algorithm for converting preemptive schedules to nonpreemptive
ones while only increasing the completion time by a small constant factor. For a set of real-time tasks with
precedence constraints executed on a distributed system, Mishra et al. [52] proposed static and dynamic power
management schemes. In reference [24], α-point scheduling techniques (discussed later) were used to compute
approximate solutions for a general class of scheduling problems with each job having a convex non-decreasing
cost function. Agrawal and Rao [2] showed that energy-aware scheduling is a generalization of the makespan
minimization scheduling problem. Other papers on energy-aware scheduling include references [4, 5, 43, 59].

Kalyanasundaram and Pruhs [42] first introduced the concept of resource augmentation (discussed later).
and presented on-line algorithms for two on-line scheduling problems. Phillips et al. [56] studied two dynamic
scheduling problems and exhibited how to use linear programming relaxations to develop an online algorithm for
them. Bansal et al. [12] gave an online speed scaling algorithm for the objective of weighted flow time plus energy
which also minimizes the wighted flow time subject to an energy constraint. Using resource augmentation, Bansal
et al. [10] gave approximation algorithms for nonpreemptive minsum scheduling problems (with the objective
of total weighted flow time and total weighted tardiness), and presented an integer programming formulation
whose relaxation is sufficiently close to the integer optimum.
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There are also other papers on speed scaling and scheduling such as Bansal et al. [11] where policies for
determining the speed of the processor for a minimum energy schedule were studied (the authors showed that
no deterministic online algorithm can have a better competitive ratio than the one they presented) and Bansal
et al. [13] which gave a lower bound on the competitive ratio for the speed scaling problem Bansal et al. [14]
studied online scheduling problems and considered more general power functions than the one popular in the
literature. Nguyen [53] studied online scheduling problems in the resource augmentation/speed scaling models.
He presented analyses to prove known facts on the competitiveness of existing algorithms, and also presented
competitive algorithms for different settings and objective functions.

In Carrasco [22], the authors allow more general energy cost functions that can be job-dependent in a
special setting. They give approximation algorithms for minimizing a scheduling metric and the total energy
consumption cost. They use the linear relaxation of the integer programming model to compute a schedule. They
introduce the concept of α-speeds, which extend the α-points technique to the case of multiple speeds. They
consider “resource cost aware scheduling” (later discussed). For this setting, the authors give more approximation
algorithms. They also considerarbitrary speed functions and job-dependent resource cost function. They use
resource augmentation techniques in this paper.

“Resource dependent processing times”, related to the resource and energy aware scheduling, is also widely
studied. Janiak and Kovalyov [39] presented an approximation scheme for a scheduling problem with the pro-
cessing time of each job linearly dependent on the resource allocated to the job. In [27], a bicriterion problem of
scheduling jobs on a single machine was studied. The dependence structure for processing times was similar to
that of the previous paper. Grigoriev et al. [32] used rounding techniques for parallel machine scheduling with
discrete renewable resources. For a more comprehensive review of the literature on resource dependent process-
ing times, the reader is referred to [22] The resource aware scheduling literature also includes [75] (presenting
new resource aware scheduling schemes for Hadoop-MapReduce as a popular distributed computing model, [57])
(giving a resource-aware scheduling technique for MapReduce multi-job workloads) and [60] (dealing with time-
and volume-dependent cost of resources).

Using a serial SGS, Buddhakulsomsiri and Kim [21] presented a priority rule-based heuristic for the MRCPSP
with resource vacations and activity splitting. Their heuristic has problems with the number of activity splitting
which increases the solution time. Therefore, it tries to minimize the number of activity splittings In this paper,
we mainly continue their line of research, presenting a heuristic which makes use of activity splitting while
exhibiting reasonable solution times. We also make use of a simple technique which converts the MRCPSP
instance to an RCPSP one, reducing complexity significantly. Here, we assume that all resources are renewable.
Our method is compared to two of the existing methods in the literature, i.e., [21,64], and has shown significant
advantages over the former while showing acceptable results in comparison to the latter.

In Section 2, we will describe the literature of the MRCPSP in more detail. Note that some of the references
mentioned in this paper were conference or working papers which were later published in journals, and there
might be slight differences between the published versions and the previous versions used herein.

2. Literature review

Widely studied in the literature, the RCPSP is an NP-hard problem. In general, finding optimal solutions for
such problems using a branch-and-bound method involves a huge amount of computation [38,40]. The efficiency
of the branch and bound method is hampered as the problem size grows. In particular, due to the complexity
of the integer programming model, the method fails to find the optimal solution for problems with tightly
constrained resources with 30 activities and five modes within 1000 s [38]. The aforementioned paper shows
that using exact methods to solve the integer programming model for the MRCPSP becomes impractical for
finding the optimal schedule as the network size grows beyond 50 activities and five modes, especially when
resource availability levels are low

There are many papers on the RCPSP, such as Kolisch [44] which considers parallel and serial scheduling
methods and provides theoretical results on each method. The author also carries out a computational study
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which yields that the parallel method cannot be generally considered as superior. Berthold et al. [16] propose a
strong hybrid approach for solving the RCPSP with renewable resources, integrating integer programming, con-
straint programming and satisfiability testing into a branch-and-bound scheme. Their approach improves some
previous lower bounds of the PSPlib [46] instances. Bansal and Pruhs [9] present a randomized polynomial-time
algorithm for the general scheduling problem with each job having an arbitrary release time and cost function.
The objective is to find a preemptive schedule of minimum total cost. Wêglarz [72] deals with continuously di-
visible and doubly constrained resources. The author assumes the performing speeds to be continuous functions
of resource amounts. He also considers the minimum resource consumption ensuring minimum project duration
for a given level of resource usage, and the minimum level of resource usage ensuring minimum project duration
for a given level of resource consumption. For a survey on the works done on the RCPSP, see [36].

As an extension to the RCPSP, the MRCPSP is strongly NP-hard [41]. Here we present a review on the
literature of the MRCPSP and some of its different extensions.

Drexl and Gruenewald [30] present a stochastic scheduling method for the non-preemptive MRCPSPs in which
job durations are discrete functions of renewable, nonrenewable and doubly-constrained resources, solving the
problems to sub-optimality. Their method was computationally shown to be superior to other deterministic
scheduling rules. They also discussed extensions to time-varying job-specific (demand) resource profiles and
time-varying supply resource profiles. Kolisch et al. [47] consider duration-dependent resource requirements.
Sprecher and Drexl [61] propose an exact branch-and-bound method for the MRCPSP which exhibits superior
performance and heuristic capabilities.

A simulated annealing approach is presented in [41] for the MRCPSP. Feasible solutions are represented based
on a precedence-feasible list of activities and mode assignment. In [20], the authors present a simulated annealing
algorithm for the RCPSP and also the MRCPSP. Their efficient method takes into account the specificity of
the solution space of scheduling problems.

Zhu et al. [78] present a branch and cut algorithm while deriving lower bounds on the distance between each
pair of precedence-constrained activities. These bounds are used to reduce the number of variables in the model
and to generate cuts that tighten the linear programming relaxation. They also use a branching scheme and
a bound-tightening scheme along with a neighborhood search strategy. Their algorithm is exact rather than
heuristic in nature. Numerical results were reported for instances of sizes 20 and 30, showing that the solutions
found for at least 506 out of the 552 30-activity instances are optimal while others are better than the solutions
reported in the literature.

Sabzehparvar and Seyed-Hosseini [58] present a mathematical model for the MRCPSP with mode-dependent
time lags and renewable resources. This modeling method has been inspired by the rectangle packing problem.
Jarboui et al. [40] present a “combinatorial” particle swarm optimization (PSO) algorithm for the MRCPSP,
as they note that PSO has not been widely used to solve integer programming problems.

Coelho and Vanhoucke [29] split the problem into two phases of mode assignment and single mode project
scheduling, as we do. The former is solved by a satisfiability problem solver while the latter is solved using an
existing efficient meta-heuristic procedure for the RCPSP. However, the two phases are executed in one run.
Their procedure can yield similar or better solutions than found by other methods, although it often requires a
higher CPU time. In reference [1], an exact branch-and-bound algorithm has been presented for resource leveling
in the MRCPSP. Instances with up to 12 jobs are solved with an average solution time of about 424 s.

In the literature, heuristic and meta-heuristic methods have been successfully employed to find suitable
solutions for the MRCPSP in an acceptable computational time. Heilmann [37] presents a multi-pass priori-
tyrule heuristic method whose performance is evaluated for instances with 100 activities and up to 5 modes.
Hartmann [35] presented a genetic algorithm whose encoding was based on a precedence-feasible list of activities
and mode assignment. A local search was then used to improve the obtained schedules. Alcaraz et al. [3] solve
the MRCPSP and its single-mode version with genetic algorithms. In reference [48] parallel and serial SGS’s
are used and multi-pass priority rule heuristics are designed. In van Peteghem and Vanhoucke [64], a genetic
algorithm was presented for both preemptive and non-preemptive MRCPSP, which gave extremely good results
for instances of 30, 50 and 100 activities. Their algorithm was known as the most powerful heuristic developed
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until 2011 [73] Papers such as [29, 70, 71] have been published after [64] but have not been able to give better
results. For example, the results of [71] are not even close to those of [64] in many cases (see [66]). In Section 5.5,
we compare our results to some of the results in [64].

In [15], it is shown that genetic algorithms can provide good solutions for problems with 30, 50, and 100 ac-
tivities, both renewable and non-renewable resources and temporal constraints in 2−4 s. The authors solve the
problem in two phases of mode selection and single-mode scheduling, using genetic algorithms for both. This
two-phased method is a common way of solving the MRCPSP/Max. For more information, see the literature
review in reference [15]. Similarly to the aforementioned paper the same authors in reference [7] solve the MR-
CPSP/Max in the two phases mentioned. They use simulated annealing for the first phase Their second phase
is solving an instance of RCPSP/Max using an existing evolutionary algorithm [6]. Again the authors consider
both renewable and non-renewable resources. Their method outperforms the state-of-the-art algorithms for the
MRCPSP/Max Ballestin et al. [7] also imply that predetermining the modes in the MRCPSP/Max can help
both reduce the complexity and determine good-quality solutions for the problem. As it will be seen in Section 5,
the same can be mentioned for the MRCPSP. It is worth mentioning that neither [7] nor [15] consider renewable
resources in their first phase.

Buddhakulsomsiri and Kim [21] present a priority rule-based heuristic with a serial SGS for the MRCPSP with
activity splitting. All resources considered therein are renewable and may be unavailable at some times during
the project horizon due to resource vacations. A new concept called moving resource strength (MRS), a dynamic
measure of resource tightness, is developed which would lead to more reduction in the project makespan.The
concept has been built in the heuristic to control activity splitting during scheduling. The heuristic has problems
with the number of activity splitting which increases the solution time significantly. Hence, it tries to minimize
this number. Computational experiments demonstrate the effectiveness of the heuristic in reducing the project
makespan while minimizing activity splitting. Multiple comparisons have been made on the efficiency of various
priority rules. For a more extensive literature review on the MRCPSP, the reader is referred to [73].

In this paper, the main objective is to minimize the project makespan assuming that all resources are renew-
able and may not be available at all times (due to resource vacations). We propose a new heuristic procedure for
solving the MRCPSP by converting it to the single-mode case using a simple technique, and solving the result-
ing RCPSP instance with a suitable dispatching rule. This conversion reduces the complexity and the solution
time for the problem, allowing us to take advantage of activity splitting unlimitedly. The performance of our
heuristic is compared with that of reference [21]. We show that better results are obtained in remarkably less
computational time using our method. We have been able to solve large-scale problem instances as shown in
Section 5 We also compare our results to [64] and show that although their algorithm outperformed ours for
tested instances with low complexity, our method yielded good results for higher values of this parameter.

There are also other extensions to the RCPSP and MRCPSP, such as in energy aware and resource aware
scheduling, where the former is an example of the latter [22] In these two settings, energy and resource con-
sumptions are also taken into account besides scheduling performance measures [22]. In energy-aware scheduling,
for example, for a set of real-time tasks with precedence constraints executed on a distributed system, Mishra
et al. [52] propose static and dynamic power management schemes in multi-computers. The on-line dynamic
power management technique further explores the idle periods of processors. The static scheme can save an
average of 10% more energy. When combined with dynamic schemes, energy savings is significantly improved.

Goiri et al. [31] present a dynamic job scheduling policy for energy-aware resource allocation in a datacenter.
This policy tries to integrate workloads from separate machines into a smaller number of nodes while satisfying
the amount of hardware resources needed to fulfill the service level. This allows turning off the extra servers
which reduces the overall power consumption. Young et al. [76] study the problem of energy-constrained static
resource allocation of a collection of communicating tasks to a computing environment. They maximize the
probability that the collection of tasks completes by a deadline and that an energy constraint is satisfied.
They consider task execution times and communication times to be stochastic. They design and evaluate a
set of heuristics for allocating resources in their system. Their approach can improve the performance of the
aforementioned system.
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Scheduling of tasks on a multi-machine system to reduce the makespan, while satisfying the precedence
constraints between the tasks, is known to be an NP-hard problem, similarly to the RCPSP. Agrawal and
Rao [2] propose a new formulation and show that energy-aware scheduling is a generalization of the makespan
minimization scheduling problem. They propose three effective algorithms for energy-aware scheduling. The
first is a genetic algorithm that searches for an energy reducing schedule. The second uses cellular automata to
generate low energy schedules, while using a genetic algorithm to find good rules for the cellular automata. The
third is a heuristic which gives preference to high-efficiency machines in allocation.

Some other approaches have been used in energy- and resource- aware scheduling such as integer relaxations of
models, α-points, and list scheduling algorithms. In reference [34], two techniques for the design of approximation
algorithms for NP-hard scheduling problems with the objective of minimizing the weighted sum of job completion
rimes are given. The first approach uses an optimal solution to a linear programming relaxation in order to guide
a list scheduling rule while the second yields on-line algorithms. The approach of applying a list scheduling rule
in which jobs are ordered based on solving a linear program can easily be extended to a wide range of scheduling
problems. Preemption has also been considered, and the concept of α-points is used: the α-point of a job is
defined as the earliest time at which an α fraction of the job has been completed in the linear relaxation of the
integer scheduling problem [24]. This notion is used to derive an upper bound for the expected completion time
of the jobs. In reference [56], the objective is to minimize the average completion time of the set of arriving
jobs. The authors give the first constant-factor approximation algorithms for preemptively scheduling parallel
machines with release dates. Many of the algorithms presented in [55] are based on relationships between
preemptive and nonpreemptive schedules and linear programming relaxations of both. The authors use a list
scheduling algorithm which converts preemptive schedules to nonpreemptive ones while only increasing the
total (weighted) completion time by a small constant factor. These results give some insight into the power of
preemption (the improvement preemption makes in the average completion time).

Phillips et al. [54] consider the problem of scheduling some jobs with release dates on identical parallel
machines; they present a list scheduling algorithm, and prove that the ratio of the average completion time
of the optimal nonpreemptive schedule to that of the optimal preemptive one is at most 7

3 . They also give an
improved bound on the quality of the linear programming relaxation of the problem given in [34]. Chakrabarti
et al. [25] consider the problem of finding near-optimal solutions for a variety of NP-hard scheduling problems.
They give improved bounds on the power of preemption in scheduling jobs with release dates on parallel
machines. They present improved on-line algorithms for more realistic scheduling models, such as environments
with parallelizable jobs, jobs contending for shared resources, etc. The authors improve and extend the same
technique of list scheduling in the order determined by solving a linear program. They also improve a result of
reference [33], an earlier version of reference [34].

Carrasco et al. [23] present several new approximation algorithms for energy aware scheduling problems with
general job-dependent energy cost functions in the non-preemptive setting. They also consider maintenance and
replacement costs. They extend their algorithms to approximating weighted tardiness, a problem that had not
been addressed in the literature before. Their methodology extends the idea of α-points to the energy aware
setting by developing the α-speeds concept, related to speed scaling (to be discussed in more detail in a few
paragraphs).

In reference [24], resource augmentation (to be discussed in more detail later) and α-point scheduling tech-
niques have been combined to compute approximate solutions for a general class of scheduling problems, yielding
a very good performance. Each job has a convex non-decreasing cost function and the goal is to compute a
schedule that minimizes the total cost subject to arbitrary precedence constraints Without loss of generality,
scheduling is done non-preemptively.

The concept of α-points has also been used in [8], where MapReduce, a prominent programming model,
is used for power aware scheduling under a given budget of energy. The authors present a polynomial time
approximation algorithm. They propose a convex programming formulation to combine with list scheduling
policies. Other papers on energy-aware scheduling include [5] (scheduling of periodic tasks to reduce CPU
energy consumption through dynamic voltage scaling and computing the optimal speed [43]), (energy-efficient



A HEURISTIC FOR THE MULTI-MODE RESOURCE CONSTRAINED PROJECT SCHEDULING WITH SPLITTING 97

scheduling of periodic real-time tasks with deadlines on chip multi-core processors with an algorithm that
determines a globally energy-efficient frequency and saves up to 55% more power compared to an existing
method) [59], (presenting a methodology to obtain an energyoptimal voltage assignment) and [4] (proposing
an energy aware, offline, probability-based scheduling algorithm for multiprocessor systems, to minimize the
number of processors used, maximize the utilization of the processors, and optimize the energy consumption).

Now we study the literature of speed scaling in detail Nowadays, microprocessors chips are produced with
dynamically scalable speeds in order to save energy. In the last few years there has been a great deal of research
on scheduling problems that arise in this issue. Generally we want to optimize both a scheduling quality of
service and a powerrelated criterion. Scheduling algorithms for such problems have two parts: a job selection
policy to determine which job to run and a speed scaling policy to determine the speed at which the processor is
run. Almost all of the theoretical speed scaling research has assumed that the power function, which expresses
the power consumption P as a function of the processor speed s, is of the form P = sα, where α > 1 is some
constant. Bansal et al. [14], however, consider more general power functions. They investigate online scheduling
problems with speed scaling where the speeds may be discrete. They develop competitive algorithms for the
problem minimizing the total or fractional flow (the time lag between when a job is released to the system and
when it is done) plus energy. They also allow preemption in their setting.

Bansal et al. [12] state that an operating system must have a speed scaling policy. They give an online speed
scaling algorithm for the objective of weighted flow time plus energy. This algorithm also efficiently constructs a
schedule for minimizing the weighted flow time subject to an energy constraint. There are also other papers on
speed scaling and scheduling such as [13] which gives a lower bound on the competitive ratio for this problem,
and [11] which studies policies for determining the speed of the processor for a minimum energy schedule. The
authors provide a tight bound on the competitive ratio of a previously presented algorithm with respect to
energy. They then propose a new online algorithm and show that no deterministic online algorithm can have a
better competitive ratio.

A concept used in speed scaling is resource augmentation which we describe here in detail The idea of
resource augmentation is that we compare the optimal solution to the output of the algorithm considering we
have additional resources [22]. Kalyanasundaram and Pruhs [42] introduce this concept and apply it to two
on-line scheduling problems: the uniprocessor CPU scheduling and the best-effort firm real-time scheduling
problems. They show that there are simple on-line scheduling algorithms for these problems. Phillips et al. [56]
study two problems in dynamic scheduling - scheduling to meet deadlines in a preemptive multiprocessor setting
and scheduling to provide good response time in some scheduling environments. The authors show how to use
linear programming relaxations to develop an online algorithm for scheduling a single machine preemptively.
Some theoretical results for list scheduling algorithms are also presented. Moreover, the authors study existing
algorithms and provide optimality conditions for them. This paper gives the first results in the literature for
optimization of the average flow time. Again, using resource augmentation, Bansal et al. [10] give polynomial-
time approximation algorithms for several nonpreemptive minsum scheduling problems where jobs arrive over
time and must be processed on one machine. The authors present an integer programming formulation the
relaxation of which is sufficiently close to the integer optimum. Nguyen [53] studies online scheduling problems
in the resource augmentation/speed scaling models. He considers a possibly non-convex relaxation and uses its
Lagrangian dual to have an objective value within a factor of the primal optimum. He proves some known facts
on the competitiveness of some existing scheduling algorithms. He also considers different settings and objective
functions and presents some competitive algorithms.

In Carrasco [22], the problem of scheduling with non-renewable resources is considered; in special settings, the
authors allow more general energy cost functions that can be job-dependent. They give approximation algorithms
for minimizing a scheduling metric and the total energy consumption cost. They use the solution of the linear
relaxation of the integer programming model to compute a schedule. They introduce the concept of α-speeds,
which extend the α-points technique to the case of multiple speeds. Their model considers job-dependent
energy costs and they further generalize the results to the setting where multiple resources are available, and
the consumption level of all resources determine the speed at which jobs are processed. This is called “resource
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cost aware scheduling” For this setting, the authors give approximation algorithms for minimizing a scheduling
metric and resource consumption cost. They also generalize the resource dependent processing times literature
by consideringan arbitrary speed function. They also consider an arbitrary job-dependent resource cost function
The authors also use resource augmentation in this paper for some of the algorithms.

“Resource dependent processing times” is a topic directly related to the resource and energy aware scheduling
problems, but it was developed independently [22]. Janiak and Kovalyov [39] study the problem of scheduling
jobs on a single machine. The processing time of each job is a linear decreasing function of the amount of a
common resource allocated to the job. An approximation scheme is presented for the problem with discrete
resource. In [27], a bicriterion problem of scheduling jobs on a single machine is presented, with the maximal
or total (weighted) resource consumption and a regular scheduling metric as the two criteria. The processing
times have similar dependence structure as the previous paper. General schemes for the construction of the
Pareto set are presented. There are also papers such as [32] considering discrete renewable resources for parallel
machine scheduling and using linear programming rounding techniques − based on relaxation of the problem −
to allocate resources to jobs and assign jobs to machines. The authors also use list scheduling to present an
approximation algorithm for the problem Cheng et al. [28] present a review on resource dependent processing
times.

There are many other papers in resource aware scheduling, such as [68] (proposing distributed scheduling al-
gorithms for large volumes of arbitrarily divisible loads being processed at cluster/grid systems [75]), (presenting
new resource aware scheduling schemes for Hadoop-MapReduce as a popular distributed computing model [57]),
(giving a resource-aware scheduling technique for MapReduce multi-job workloads − the technique is guided
by user-provided completion time goals for each job) and [60] (dealing with resource cost aware scheduling and
time and volumedependent cost of resources; lower bounds2 on the cost and different linear and mixed integer
programming models as well as greedy algorithms are presented). More examples of resource-aware scheduling
can be found in reference [63, 77].

The rest of this paper is organized as follows: in Section 3, we present the mathematical model of the MRCPSP
with activity splitting and describe the erroneous constraints therein. Section 4 describes the proposed heuristic
solution procedure. Section 5 shows the computational experiments which comprise solving small instances to
optimality, comparing our method to that of reference [21], solving very large-sized instances, implementing our
method for standard instances, comparing it to the method in [64] and validating the two-phased structure of
our method. Finally, Section 6 concludes the paper.

3. Problem description and corrected model

In this section, we first present a mixed integer programming formulation for the MRCPS with activity
splitting and then correct some erroneous mistakes in it.

3.1. Notations and Problem formulation

Let us assume that a project consists of J activities (jobs), labeled with j = 1, 2, 3, . . . , J . The activities are
shown on nodes (AON representation), and arcs denote the precedence relations. There is a unique dummy
source (start activity) with j = 1 and a unique dummy sink (end activity) with j = J . In essence, each activity
cannot be started unless all its predecessors have been finished and all the required resources are available for the
duration of the activity. This assumption is too restrictive and may lead to extension of the project makespan.
If activities can be split when resources are unavailable, the resulting schedule could be significantly improved.
It is worth mentioning that splitting and preemption should be treated differently. Pausing an ongoing activity
because of resource unavailability and resuming it later may have small financial or time impact. However,
interrupting an ongoing activity by switching to another activity can result in a high penalty such as setup time
lost, re-configuring complicated equipment settings, etc. A preempted activity is an activity for which there

2Used for bounding or pruning during optimization.
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is at least one time period after the start of the activity wherein the activity is eligible (resource feasible for
renewable resources and precedence feasible) to be processed but is not being processed. However, a split activity
is an activity that is not processed in consecutive time periods. A preempted activity is a split activity, but
the converse is not necessarily true. The cases wherein activities are split may result from insufficient resources
rather than by choice [26]. In general, activity splitting could considerably reduce the project makespan when
resources are scarce. Buddhakulsomsiri and Kim [21] note that activity splitting poses no additional duration.
Mode switching is not allowed when activities are resumed after splitting.

In the proposed algorithm, we take advantage of activity splitting in discrete time whenever there are not
enough resources to complete an activity. The availability schedule of each renewable resource is known in
advance. Each activity j can be processed in one of Mj possible modes. The total duration of each activity in
each mode is fixed and is not increased due to splitting.

The notations used in this paper are as follow:

J : The total number of activities of the project.
Mj : The number of modes of activity j, j = 1, . . . , J .
R : The number of renewable resources of the project.
djm : The duration of activity j when executed in mode m, j = 1, . . . , J, m = 1, . . . , Mj which is an integer.

T : The upper bound for the project makespan, i.e., T =
J−1∑
j=2

maxMj

m=1 djm.

Pj : The set of all activities that precede activity j, j = 1, . . . , J .
Sj : The set of all activities that succeed activity j, j = 1, . . . , J .
ESj : The earliest start time of activity j, j = 1, . . . , J .
LFj : The latest finish time of activity j, obtained through the critical path method (CPM) calculations by

setting LFJ = T j, j = 1, . . . , J .
kjmr : The amount of resource of type r required per period to execute activity j in mode m, j = 1, . . . , J, m =

1, . . . , Mj , r = 1, . . . , R.
Krt : The amount of resource of type r available for period t, r = 1, . . . , R, t = 1, . . . , T .
M : A very large positive number.

The decision variables are:

xjmt :
{

1, if job j is executed in mode m in period t,
0, otherwise.

yjm :
{

1, if job j is executed in mode m,
0, otherwise.

STj : The start time of activity j
FTj : The finish time of activity j

Mixed Integer mathematical programming models have been developed in many references such as [21] or [47].
Using the aforementioned notations, the mathematical model as expressed in [21] − is as follows:

min FTJ (3.1)

s.t.

Mj∑
m=1

yjm = 1 ∀j ∈ {1, . . . , J} (3.2)

LFj∑
t=ESj

xjmt = djm × yjm ∀j ∈ {1, . . . , J}, ∀m ∈ {1, . . . , Mj} (3.3)
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xjmt × t � FTj ∀j ∈ {1, . . . , J}, ∀m ∈ {1, . . . , Mj}, ∀t ∈ {ESj , . . . , LFj} (3.4)

xjmt × t + (1 − xjmt) × M � STj ∀j ∈ {1, . . . , J}, ∀m ∈ {1, . . . , Mj}, ∀t ∈ {ESj, . . . , LFj} (3.5)

FTi � STj − 1 ∀j ∈ {1, . . . , J}, ∀i ∈ Pj (3.6)

J−1∑
j=2

Mj∑
m=1

kjmr × xjmt � Krt ∀r ∈ {1, . . . , R}, ∀t ∈ {1, . . . , T} (3.7)

xjmt ∈ {0, 1} ∀j ∈ {1, . . . , J}, ∀m ∈ {1, . . . , Mj}, ∀t ∈ {ESj , . . . , LFj} (3.8)

yjm ∈ {0, 1} ∀j ∈ {1, . . . , J}, ∀m ∈ {1, . . . , Mj} (3.9)

STj, FTj � 0 ∀j ∈ {1, . . . , J}. (3.10)

The objective function − equation (3.1) − minimizes the makespan of the project. Constraints (3.2) show that
activity j is executed in one and only one mode. Constraints (3.3) assure that activity j is executed only one
time, and the total number of periods in which activity j is being executed is equal to its duration in mode m.
Constraints (3.4) and (3.5) show the finish and start times of activity j constraints (3.6) represent the precedence
relations and constraints (3.7) are capacity constraints.

In Section 5.2, we will solve a number of instances of the model (3.1)−(3.10) in order to evaluate the solution
times needed for solving the integer programming model of the MRCPSP.

3.2. The corrected model

The model contains some erroneous constraints since it disregards a point about the last dummy activity J .
Since the duration of this activity is zero in all modes, constraints (3.3) will yield zero for each xJmt, m =
1, . . . , MJ , t = 1, . . . , T . Therefore, based on constraints (3.4), FTJ will also be zero as a result of the fact that
the objective function is the minimization of FTJ . Hence, we get a makespan of zero. Similarly, because of
constraints (3.5) and again all the x variables related to J being equal to 0, we have STJ � M . While FTJ is
equal to zero, STJ goes to its upper bound M . It even drags the finish time of direct predecessors of J to M −1
(due to constraints (3.6)). In order to avoid having a makespan of zero, we change the objective function (3.1)
to STJ , and exclude the dummy activities from constraints (3.3)−(3.5) so that the model yields correct answers.
There are other ways of correction too, but this was the easiest suggested by one of the reviewers. Moreover, in
order to avoid computational problems with the index t in constraints (3.4) and (3.5) − while there may not
be any − we start the scheduling from t = 1.

We implemented the model in GAMS for instances of size 16 in the PSPlib [46]. Without the correction, the
yielded makespan is equal to zero and for some instances, the start and finish times of activities are different
from what they would be with the correction; i.e., for some instances, the yielded start and finish times will be
incorrect without the correction. One should notice that the corrections do not affect the heuristic procedure
presented in reference [21].
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4. The proposed solution procedure

In this paper, we present a new heuristic solution procedure (NHSP) which can solve very large problem
instances consisting of several thousand activities. In order to assess the performance of the heuristic method,
an analysis of its computational time as well as the quality of the solutions found is very important. Our central
idea for obtaining a good solution for project scheduling is to allow activity splitting while keeping the solution
time reasonable. This could lead to a major reduction in the project makespan and better usage of resources.
Another key idea used herein is to convert the problem to the single mode case, i.e., an instance of RCPSP
which would highly reduce the solution time. To do this, we must determine one mode out of Mj possible modes
for each activity j. A simple technique is presented in the next subsection for this issue. This idea of conversion
is validated and justified in Section 5.5.

4.1. Converting to a single mode problem

In the proposed solution procedure, the conversion from MRCPSP to RCPSP is done first. To select an
activity mode, a weight will be calculated for each mode. These weights specify the proportion of utilized
resources for each activity and each mode. The main point of having these weights is to project the limitations
of resources. The single mode will be selected such that the usage of resources with less availability is minimized.
In this paper, these weights are denoted by ωjm (weight of activity j in mode m, ∀j = 1, . . . , J, m = 1, . . . , Mj)
and are computed as follows:

AR(r) =

T∑
t=1

Krt

T
(4.1)

RR(r) =

J∑
j=1

Mj∑
m=1

kjmr

J∑
j=1

Mj

(4.2)

WR(r) =
RR(r)
AR(r)

Normalized−−−−−−−−→ NWR(r) =
WR(r)

R∑
r=1

WR(r)
(4.3)

ωjm =
R∑

r=1

(
d2

jm × k
NWR(r)
jmr

)
. (4.4)

Equation (4.1) shows the average amount of resource r that is available per period. Equation (4.2) gives the
average of resource requirements of activities in different modes equation (4.3) estimates the weight of resource
r which is the proportion of the resource requirements to resource availability ((4.2) divided by (4.1)). WR is
normalized and changed to NWR; therefore it will be between 0 and 1. More availability of each resource or a
less required amount of it yields a smaller value of NWR(r). Equation (4.4) calculates the weights for each mode
of jobs. The single mode for activity j is selected as the minimum value of ωjm, ∀j = 1, . . . , J,∀m = 1, . . . , Mj.
After performing mode selection for each activity, the problem is converted to an instance of RCPSP.

We will see in Section 5 that this simple conversion technique yields good results. However, in 3 out of
640 instances of the PSPlib [46] for size 30, the resulting RCPSP is infeasible in the sense that the amount of
resources needed in that mode cannot be available in any time for at least one activity. Therefore, a correction
to this method is needed. We implement this correction by using a notion similar to the Shortest Feasible Mode
(SFM) rule [18] which is shown to be one of the most robust mode selection rules [21]3. In the aforementioned

3As it appears, the authors in [21] have used the SFM rule during scheduling, not as a mode selection rule in order to convert
the problem to the single mode case, as we do. For more information, see [21].
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three instances, the selected mode is shifted to the next shortest feasible mode until the resulting RCPSP is
feasible in the sense mentioned.

For a full analysis of this mode selection rule, see Section 5.5.

4.2. Dispatching rules

Buddhakulsomsiri and Kim [21] developed three priority rule-based heuristics that include some activity
priority and mode priority rules for solving the MRCPSP. The three heuristics applied therein are:

• deterministic multi-pass priority rule-based heuristics (DM),
• stochastic multi-pass priority rule-based heuristics with biased random sampling (BRS) and,
• stochastic multi-pass priority rule-based heuristics with regret-based random sampling (RBRS).

For more information on these heuristics, the reader is referred to [21]. The heuristic proposed herein uses a
dispatching rule for scheduling the activities in the RCPSP while allowing preemption. This heuristic must
specify an activity to be performed in each period of time. A decision point (t) is defined for each activity
in which that activity will be checked for the possibility of scheduling. A set of eligible jobs is determined
at any decision point composing of those activities which can be started at that time, meaning that all their
predecessors have been done and their required resources are available at least for that time.

To start scheduling, the decision point is initially set to t = 1. In a decision point (t), if there is no activity
that can be scheduled, we move to the next decision point (t+1). To choose an activity for scheduling from the
set of eligible jobs, dispatching rules are employed. This work examines the performance of three dispatching
rules for scheduling an RCPSP instance with splitting. One of them is WLST (weighted latest start time) that
was used in [69] and the two others are GNS (Greatest number of successors) and RPW (Rank positional weight)
which were examined in [74] These dispatching rules are described as follows:

• WLST : Priority is given to the activity that has the largest value of weighted latest start time

WLST =
1

(LSj + dj)
· (4.5)

• GNS: Priority is given to the activity that has the largest number of successor activities.
• RPW: Priority is given to the activity whose duration plus the durations of all its successors has the largest

value.

Using the dispatching rules above one job from the eligible jobs set (EJ) is selected and is called a selected
job (SJ). Then, this selected activity is evaluated in terms of how far it can be executed based on resource
availability. The activity is split if there are not enough resources. The duration of the split activity is then
changed to the remaining duration.

We do not impose any limitation on the number of activity splitting unless physical constraints force us to
do so. Activity splitting leads to a better utilization of available resources (this becomes increasingly important
when resources are expensive) and could entail a significant reduction of the project makespan. For those
activities with high setup costs, the number of allowable splitting could be limited in the algorithm.

4.3. Statement of the proposed algorithm

We summarize our proposed solution procedure in Figure 1 (besides the notations of the model (3.1)−(3.10),
consider the following: mj is the mode chosen for activity j = 1, . . . , J through (4.4), DPj is the decision
point of activity j = 1, . . . , J , EJ is the set of eligible jobs determined at each point t = 1, . . . , T (an index t
is necessary but is omitted for the sake of brevity), K̃r(t) = Krt −

∑
j is being executed in t

kjmr is the remaining

amount of resource r at time t, ∀r ∈ 1, . . . , R, ∀t ∈ 1, . . . , T , NEJ(t) is the set of activities that are not eligible
in t = 1, . . . , T (some activities may be added to this set in each iteration), SchedAct is the set of activities
that are already scheduled and Succj is the set of the successors of activity j = 1, . . . , J − the notations and
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presentation of the algorithm are inspired by the one in [21]):

Initialization: calculate wjm, mj = min
m

{wjm}, ∀j = 1, . . . , J ,

t = 1, SJ = 1, DPj = max{t + 0, DPj}, ∀j ∈ Succ1,

while j < J ,
If j /∈ SchedAct,

EJ = {EJ ∪ {j}|DPj � t},EJ = EJ\NEJ(t)
If EJ = ϕ,

t = t + 1, Continue
End
Select SJ ∈ EJ using a dispatching rule
For t′ = t to t + dSJ ,

If k(SJ)mr � K̃r(t′), ∀r ∈ 1, . . . , R,

Schedule SJ without splitting, DPj = max{t + dSJ , DPj}, ∀j ∈ SuccSJ

K̃r(t′) = K̃r(t′) − k(SJ)r, ∀r ∈ 1, . . . , R

Else if ∃r ∈ 1, . . . , R : k(SJ)mr > K̃r(t′) and SJ cannot be split,

EJ = EJ\{SJ},NEJ(t) = NEJ(t) ∪ {SJ}, break
Else if SJ can be split,

Schedule SJ up to when enough resources exist; change the duration to the remaining

duration, K̃r(t′′) = K̃r(t′′) − k(SJ)r, ∀r ∈ 1, . . . , R,∀t′′ until enough resources exist

End
End
If SJ ∈ NEJ(t),

If EJ = ϕ
t = t + 1, Continue

End

End
End
End

Figure 1. The proposed solution procedure.

5. Computational results

In this section, we present the computational results of our investigations. In Section 5.1, the parameter
settings of the generated test problems are explained. In Section 5.2, we try to solve some of these generated
test problems to optimality using GAMS. Sections 5.3 and 5.4 exhibit our computational results and compare
them to those of [21] for medium and large-sized instances. For large-sized instances, no comparison is possible
since Buddhakulsomsiri and Kim [21] did not report any results on such instances. Section 5.5 implements our
method for instances of standard libraries such as the PSPlib [46], the Boctor multi-mode dataset [17] and the
MMLIB library [66]. Finally, Section 5.6 verifies the two-phased nature of our method.

5.1. Generated problems

In order to compare our results to those of reference [21], some random test problems were generated using
a modified version of ProGen developed by Kolisch et al. [47]. Resource vacation parameters mentioned in [21]
have also been added to the test problems and thus, our results are comparable to those of that paper. For this
comparison, the instances found in standard libraries such as the PSPlib [46] are not eligible since they do not
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Table 1. PROGEN assumptions.

NC RF RS V P V L
Min 1.5 0.5 0.25 0.1 0
Max 2.0 1 0.5 0.3 1

Table 2. Other problem assumptions 1.

Modes Duration Short vacation range Long vacation range
Min 4 1 1 3
Max 4 10 2 5

Table 3. Other problem assumptions 2.

# of # of
# of resource # of activity1 activity j activity J activity j
resources requirement successors successors predecessors predecessors

Min 4 1 2 1 2 1
Max 4 4 5 5 5 5

match the instances of Buddhakolsomsiri and Kim [21] in terms of parameter settings. Testing our method on
these standard instances is left for Section 5.5.

A brief description of each modified ProGen parameter is given below:

• Network complexity (NC) is a measure of the complexity of the precedence relations, calculated as the
average number of non-redundant arcs per node.

• Resource factor (RF ) is the average number of resources which are required per activity. If it is normalized,
RF = 0 shows that no activities require any resources while RF = 1 implies that each activity requires the
same amount of each resource.

• Resource strength (RS) is a measure which indicates the tightness of resources. Again, when we normalize
it to be between 0 and 1, RS = 0shows that resource availability is the minimum amount guaranteeing the
existence of a feasible schedule while RS = 1 indicates that resource availability is not a constraint. We
will see in Section 5.5 that if the resource availability is excessive, the value of this parameter can be more
than 1.

• The percentage of resource unavailability (V P ) is the percentage of total possible resources that are unavail-
able (because of vacation).

• The vacation length factor (V L) exhibits the density of vacations. V L is also between 0 and 1. A small V L
value indicates that there are more frequent but shorter resource vacations.

These parameters, along with the parameters related to the size of instances and other parameters, are set to
the same amounts as those of Budhakolsomsiri and Kim [21] (shown in Tabs. 1−3. The first table is about
ProGen parameter settings and the other two tables are for the other parameters) It is also worth mentioning
that the network complexity can also be described by the order strength, which is defined as the number of
precedence relations divided by the theoretical maximum number of precedence relations [49, 65].

We generated some random problem instances with parameters between the minimum and maximum levels
given in the three tables above. The numbers of activities are set to 30, 60 and 90. The numbers of instances
with 30 activities are 500. Because of the computational time needed for problem generation the numbers of
instances with 60 and 90 activities are decreased to 200, as the authors in [21] did These instances are then
solved using our heuristic method in order to be compared to the method in [21].
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Table 4. Summary of computation time (s).

# of instanc

30 60

Multimod Single mode (converted through (4.4)) Single mode (converted through (4.4))

Computation Makespan Computation Makespan Computation Makespan

time time time

1 − − 6.325 39 − 46 (85.89%)

2 − − 7.273 44 − 62 (83.11%)

3 − − 12.678 43 − −
4 − − 8.821 18 − 40 (87.94%)

5 − 114.64 41 − 28 (91.42%)

6 − − 8.157 28 out of memor −
7 − − 59.159 22 − −
8 − − 21.711 41 − −
9 − − 8.565 28 − 47 (84.57%)

10 − − 52.786 22 − −
11 out of memor 589.691 25

12 − − − −
13 − − 16.567 35

14 − − 15.552 38

15 − − 29.711 36

16 − − 7.429 28

17 − − 47.663 22

18 − − 43.239 51

19 out of memor − 537.613 25

20 − − 18.765 41

Averag − − 84.54447368 33 − −

5.2. Exact solutions

It was already mentioned that the (M) RCPSP is (strongly) NP-hard. Before testing our heuristic method, we
wish to evaluate the computational time needed for solving the MRCPSP to optimality. Therefore, we implement
the optimization problem (3.1)−(3.10) in GAMS 23.6 with CPLEX 12 as solver Sets of instances generated using
the modified ProGen were solved for this purpose. The results of the solution times and objective functions for
20 instances of size 30 and 10 instances of size 60 are given in Table 4 (note that a hyphen means that the
corresponding instance did not converge to optimality within 1200 s). Since no optimal solutions for instances
of sizes 30 and 60 were found, there is no need to test instances of size 90.

As it can be seen, the optimal solution to none of the MRCPSP instances can be found in a reasonable time.
Based on the advice of one of the reviewers, in order to evaluate the results obtained by our heuristic − regardless
of the mode selection method − the aforementioned generated instances are solved with GAMS for the optimal
modes selected through (4.4). The average solution time for instances of size 30 is about 84 s, and 19 out of 20
instances reach optimality. This average solution time is large compared to the average solution times of our
heuristic method (see Sects. 5.3 and 5.4) for instances of size 30. For instances of size 60, the converted RCPSP
is still impossible to solve within 1200 s; it was only able to find feasible solutions with large optimality gaps
(shown in percentages in Tab. 4) in 5 out of 10 instances. Therefore, our algorithm outperforms this method
(solving the single-mode instance converted through (4.4)) in terms of computational time for instances of size
60 and more, at least when resource vacations are present We also aim to evaluate the quality of the solutions
derived through our heuristic method, i.e., the average deviation of the solution from the lower bound of the
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Table 5. Summary of the project makespan.

# of activity
Proposed Heuristic Competing Heuristic

WLST GNS RPW DM BRS RBRS

30 (Average)
49.0 50.3 49.8 55.8 46 46.2

45.5 46.6 46.1 50.5 43.2 42.9

No split (Max) 95 94 91 − − − −
Split (Max) 80 84 94 − − − −
60 (Average)

63.5250 63.8900 64.8200 101.3 82.2 83.9

56.3950 57.4700 59.3700 90.7 77.7 78.3

No split (Max) 110 110 118 − − − −
Split (Max) 98 95 110 − − − −
90 (Average)

69.5500 69.0400 72.0700 128.2 104.5 105.5

60.5800 61.1900 65.8250 117.9 102.7 102.7

No split (Max) 119 110 122 − − −
Split (Max) 101 89 120 − − −

problem (which is found by considering minimal durations in the CPM). This is thoroughly investigated in
Section 5.5.

We would also like to analyze what the drawback of predetermining the modes is. This issue is detailed in
Section 5.6.

5.3. Medium-sized problems

In this subsection, computational experiments are collected and compared in two categories. The first set is
the proposed heuristic of this paper, which is evaluated in terms of the project makespan, computational time
and number of activity splitting using three dispatching rules (WLST, GNS and RPW). Another set is the
competing heuristics, which are the results of [21].

In Table 5, summary of the results for the project makespan is shown which is the main objective of the
proposed solution procedure. The results of the proposed heuristic are comparable to the best results of the
competing heuristics (RBRS) and are even better when the number of activities has been increased For each
size 30, 60 and 90, the results are given in two rows: with and without splitting the activities (the first row is
without splitting). The worst case results (the maximum objective function values) are also given.

It is worth noting that since in both the optimization model (3.1)−(3.10) and in [21], the latest start time
of activity J is set equal to the upper bound T , we tried to do the same in our heuristic procedure. However,
setting the latest start time of J equal to its earliest start time decreased the makespan. Therefore, we preferred
the second way.

The results shown in Table 5 indicate that the best makespan values in instances with 30 activities are
obtained by using the RBRS. Comparing our results with that heuristic shows that the results for project
instances with 30 activities are very close to those of the RBRS and get much better as the number of activities
increases to 60 and 90.

We can understand from the results in Table 4 that preempting generally reduces the makespan when no
nonrenewable resources are considered, as reported by reference [64].

Computational time is also a significant criterion for evaluating the proposed heuristic. The results for this
performance measure are reported in Table 6.

The proposed heuristic both with and without splitting was run on MATLAB on a personal computer with
a processor core 2 Duo at 2.8 GHz. The average computation times shown in Table 6, indicate that the solution
times of the proposed heuristic are negligible when compared with those of the competing heuristics, and of
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Table 6. Summary of computational time (s).

# of activity
Proposed Heuristic Competeing Heuristic

WLST GNS RPW DM BRS RBRS

30 (Average)
0.011 0.009 0.012 1.33 62.93 63.08

0.012 0.010 0.013 3.12 156.09 153.56

No split (Max) 0.0275 0.022 0.0266 1.52 70.56 71.00

Split (Max) 0.028 0.0261 0.0311 3.94 203.36 195.92

60 (Average)
0.0293 0.0267 0.0300 4.02 189.69 189.29

0.0351 0.0335 0.0368 11.08 567.63 568.38

No split (Max) 0.0810 0.0549 0.0520 4.95 224.83 224.51

Split (Max) 0.0967 0.0616 0.0770 17.52 813.25 842.39

90 (Average)
0.0415 0.0393 0.0455 8.09 378.75 382.03

0.0490 0.0471 0.0555 24.99 1252.1 1263.17

No split (Max) 0.0556 0.0590 0.0838 9.30 423.83 430.39

Split (Max) 0.0809 0.0794 0.0997 40.56 2003.09 2074.11

Table 7. Summary of the average number of activities splitting.

# of activity
Proposed Heuristic Competeing Heuristic

WLST GNS RPW DM BRS RBRS

30 (Average) 3.09 3.02 2.94 4.6 4.5 4.5

Max 10 14 8 − − −
60 (Average) 7.1250 6.8450 6.6550 12.3 13 13.9

Max 16 15 18 − − −
90 (Average) 11.1450 10.3850 10.6950 19.3 21.2 20.4

Max 23 25 23 − − −

course with those of GAMS The computation times for instances of sizes 60 and 90 are less than 0.1 s while
the minimum average time taken by the competing heuristics is 4.02 s and the value found for the makespan is
still poor. It is also worth mentioning that the maximum of the computational times for our heuristic (0.0997 s)
is less than the minimum of the computational times of the competing heuristics (1.33 s) for all sets of 30, 60
and 90.

One last comparison we would like to highlight is on the average number of activity splitting which is given
in Table 7.

The average number of activity splitting done in the competing heuristics is more than that in the proposed
heuristic. In our heuristic, each activity can be split whenever it is necessary for scheduling and we do not need
to force any limitations on the number of activity splitting since the proposed algorithm is fast.

To sum up, each of these heuristics has some advantages and some shortcomings. However, the proposed
heuristic outperforms the competing heuristics by taking advantage of splitting, in terms of the project makespan
(mainly in instances with 60 and 90 activities), computational time and number of activity splittings.

5.4. Solving large scale problems

As seen in Section 5.3, our method tends to perform better as the number of activities grows larger. This
motivates us to implement our method for even larger instances, i.e., those with 100 to 5000 activities. Table 8
gives the results for randomly generated instances solved with the proposed heuristic using the WLST dispatch-
ing rule. In the case of instances with 100 activities, we generated 100 instances. In the case of instances with
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Table 8. Summary of large problems for the proposed heuristic with the WLST dispatching rule.

# of activity

Project Makespan Computation times (sec)

# of activity splittingno split no split
with split with split

100 (Average)
69.5900 0.0494

12.3600
60.2700 0.0583

No split (Max) 114.0000 0.0624 −
Split (Max) 102.0000 0.0977 26.0000

200 (Average)
79.48 0.114

24.06
66.32 0.129

No split (Max) 113 0.1517 −
Split (Max) 92 0.1632 42

500 (Average)
92.00 0.587

59.68
73.56 0.668

No split (Max) 119 0.7128 −
Split (Max) 97 0.7887 120

1000 (Average)
108.5 2.184

127.48
85.04 2.562

No split (Max) 151 2.5754 −
Split (Max) 120 3.0869 225

2000 (Average)
125.36 8.413

247.86
97.16 10.133

No split (Max) 201 12.2751 −
Split (Max) 146 14.2894 438

5000 (Average)
154.6 61.044

654.8
116.6 73.225

No split (Max) 174 73.0324 −
Split (Max) 131 84.5205 901

5000 activities, the number of randomly generated instances is 5 due to long computation times for problem
generation. The number of instances for other sizes (200, 500, 1000 and 2000) is 50.

These problems were generated with the same parameter settings used for smaller instances except for the
number of activities. It can be seen in Table 8 that the computation times for solving large problems are
reasonably good. For example when the number of activities is increased to 5000, the computation time is
about a minute which is a reasonable and acceptable time for large problems [69].

5.5. Comparison with one of the most powerful algorithms and the best results available

In Section 2, we mentioned that the genetic algorithm of van Peteghem and Vanhoucke [64] was reported to
give extremely good results for instances of sizes 30, 50 and 100. Their algorithm has been known as the most
powerful heuristic developed until 2011 [73]. Papers such as [29, 70, 71] have been published after [64] but have
not been able to give better results, as reported in [66]. An extensive version of the results of [64] is given in [67].
In this subsection, we compare our results to theirs for instances of sizes 30, 50 and 100. It is worth mentioning
that in order to make our results comparable to theirs, resource vacation parameters are not considered in this
section. This causes the makespans obtained through our method to be equal with and without splitting. We
must also remind that we do not consider non-renewable resources in our method.

Their results were implemented for instances of size 30 of the project scheduling library PSPlib [46] (herein
we may call them PSPlib30) and the Boctor multimode data set [17] instances which are of sizes 50 and 100.
Later in reference [66], the same authors gave the results of [64] for the MMLIB dataset instances. Reference [64]
is the only paper that solves the PSPlib30 instances both with and without non-renewable resources. Therefore,
we can compare our results merely to them since we have no non-renewable resources. The PSPlib instances
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Table 9. Comparison of our method to the one in [64] for PSPlib instances of size 30.

[64]: % deviation from the This paper: % deviation from the

lower bound by CPM lower bound by CPM

Preemptive Non- preemptive Preemptive Non- preemptive

Average 5.06% 5.60% 12.55% 12.55%

Max 76.00% 80.00% 120% 120%

Table 10. Comparison of our method to the one in [64] for Boctor instances of sizes 50 and 100.

# of activities Complexity of [64]: % deviation from the This paper: % deviation from the

the instances lower bound by CPM lower bound by CPM

Boctor50
Average 1.5885 21.52 47.3807

Max 1.9231 47.66 79.4258

Boctor100
Average 1.6083 21.91 46.7502

Max 1.8431 39.75 70.1266

Table 11. Summary of the properties of the PSPlib and Boctor datasets.

PSPlib30 Boctor100
Average Min Max Average Min Max

Order strength 0.46 0.34 0.61 0.87 0.79 0.93
Renewable resource strength 0.62 0.25 1 0.15 0.06 0.25
Renewable resource factor 0.75 0.5 1 0.88 0.67 1

have 3 modes for each activity and 2 renewable and 2 non-renewable resources. They can be downloaded from
here [45]. The results of our comparison are given in Table 9. Note that the results are given for 552 out of
640 instances of the PSPlib which are feasible.

The network complexity for all PSPlib instances is 1.8125. As it can be seen, although we exhibited the
superiority of our method to that of reference [21] in Section 5.3, the algorithm of [64] outperforms our method.
However, our deviation percentages are not large in comparison to theirs, either. Therefore, the performance of
our method is acceptable for PSPlib30. The ratios of our average deviations to theirs are 2.48 and 2.24 for the
preemptive and non-preemptive cases, respectively.

We also compare our results to the results in [64] for the instances in the Boctor multimode library [17] which
have 50 and 100 activities. This library consists of 120 instances for each of the sizes mentioned, which we call
Boctor50 and Boctor100 herein. They have 1, 2, or 4 renewable resources, no non-renewable resources and 1, 2
or 4 modes for each activity [66]. The Boctor instances can be downloaded from [19]. The results are given in
Table 10.

As seen in Table 10 for the Boctor dataset, the algorithm in [64] outperforms our method. The ratios of
average deviations are 2.2 and 2.13 for the Boctor50 and Boctor100 datasets, respectively. However, it must be
noted that the instances of the PSPlib and Boctor datasets are very limited in network complexity: as inferred
from Table 10, none of their complexities are more than 2. Moreover, it is mentioned in [66] that in the dataset
Boctor100, the average resource strength for each project is not larger than 0.25, which means that the resources
are almost not restricted. The order strength of the projects is between 0.8 and 0.95, which means that the
projects are mainly serial. The range for the values of the order strength (for PSPlib30 and Boctor100) is also
rather limited. Moreover, most algorithms can solve the PSPlib instances to (near-) optimality[49,64]. Table 11
gives a summary of the properties of the PSPlib and Boctor datasets (Tab. 4 in [66]).
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Table 12. Summary of the implementation of our method for the MMLIB.

# of
activities

Complexity of
the instances

MMLIB best results: % This paper: %
deviation from the lower deviation from the lower

bound by CPM bound by CPM

MMLIB50
Average 3.9882 23.32 16.3032

Max 5.2115 215.38 169.2308
Average 6.4780 23.64 17.1808

Max 7.9706 178.95 123.8095

MMLIB+ (first 1200 instances)
Average 3.9608 66.38 26.3967

Max 5.2115 626.32 137.0370

Table 13. Multivariate regression for the Boctor and MMLIB+ instances.

Factors
# of

resources
# of modes

Average
Network

complexity
Intercept R2resource

strength
t-statistics for Boctor50 5.018601* −0.19011 −2.2063 −7.56495* 12.25214* 0.596022
t-statistics for Boctor100 5.187229* 5.487345* −2.47922 −8.04583* 8.441775* 0.658656
t-statistics for MMLIB+ 28.9001* −6.14365* −6.96471* −19.3192* 18.93756* 0.541181

It is worth mentioning that the results given in Table 4 of [66] for the network complexity of Boctor100 are
actually for Boctor50.

For the reasons mentioned, van Peteghem and Vanhoucke [66] created the MMLIB multimode library [67]
which consists of three sets: MMLIB50, MMLIB100 and MMLIB+. The first is for instances of size 50 and the
second is for size 100. Each of these libraries contains 540 instances of the sizes mentioned, all of which we tested.
These libraries have 3 modes for each activity and 2 renewable and 2 non-renewable resources. The resource
strengths and resource factors of both types of resources are set to 0.25, 0.50 or 0.75 and 0.50 or 1, respectively.
MMLIB+ contains 3240 instances with 50 or 100 activities which have 3, 6 or 9 modes [50]. The instances have
2 or 4 renewable resources and 2 or 4 non-renewable ones. The resource strength of both resource types is set
at 0.25, 0.50 or 0.75. In order to keep the number of instances reasonable, the resource factors of both resource
types are set to 1. A feature of the MMLIB instances is that no modes can be excluded; therefore, the mode
reduction procedure of [62] cannot be used as it was in reference [64]. This method reduces the number of modes
by excluding the ones which are inefficient or non-executable. The authors in reference [62] define a mode to
be inefficient if there is another mode of the same activity with equal or smaller duration and equal or less
requirements of all resources. A mode is non-executable if it violates the resource constraints in any schedule.
We chose the first 1200 instances of the MMLIB+ library to test our method on. More details and the best
results for the MMLIB can be found in reference [67]. The results are given in Table 12.

Although the best known solutions for MMLIB are given for the case when both resource types are present4,
the deviations for our method are still small. Our results are particularly good for MMLIB+; the ratio of the
average deviation of our method to that of the best results is much smaller for the MMLIB+ instances (0.3976
compared to 0.6991 and 0.7268 for MMLIB50 and MMLIB100, respectively).

In order to see what causes the solution qualities to be good, we carry out a multivariate regression similarly
to what was done in [66]. We consider all the factors they did, except those related to non-renewable resources
which we omit and the order strength which we replace by network complexity. We carry out this test for the
MMLIB+ instances, like what they did. We also do this test for Boctor50 and Boctor100 as our worst results.
The results are given in Table 13.

The factors which are significant for a t-test with at a 0.01 level of confidence are marked with asterisks. The
R2 values, or coefficients of determination, are between 0.54 and 0.66, which shows that the relationship between

4No results excluding the non-renewable resources exist as far as we have investigated.
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Table 14. Parameters of standard instances.

Factors
Average # Average # Average resource Average
of resources of modes strength network

(Average-Min-Max) complexity
Boctor50 2.33 2.536 0.113-0-0.25 1.5885
Boctor100 2.33 2.47 0.09-0.02-0.18 1.6083
MMLIB+ (first 1200 instances) 2.9 4.95 ≈ 5 0.635-0.204-7.936 3.9608

the makespan and the factors is not very strong, as this was also the case in [66]. Table 13 shows that as the
number of resources increases, the makespan also increases (since the t-statistic is positive). For the other three
factors, however, the relation is reverse. Among these factors, the number of resources and network complexity
(and also number of modes in Boctor100) are the significant factors for Boctor instances, while the first two
have the greatest effects for the MMLIB+ solutions. A summary of the parameters of the standard instances
needed for evaluating the regression results is given in Table 145 (resource strength values of each instance are
averaged over all resources).

Now we give an analysis of Tables 13 and 14 in order to find out what caused the good results, especially
for the MMLIB+ instances, in comparison to the Boctor instances. The resource strength parameter is only
significant for the MMLIB+; therefore, it is excluded from our analysis. It can be seen for Table 13 that, with
an increase in the number of resources, the performance of the algorithm decreases (the makespan increases).
However, as seen in Table 14, the MMLIB+ − which exhibited better results − has a larger average number
of resources compared to the other two datasets. Considering the large amount of t-statistic (28.9), this factor
cannot be the reason for the good results of MMLIB+, since its effect is apparently overlapped by the effect
of other factors, such as the network complexity which is significant and negative for all datasets. As we can
see in Table 14, the average network complexity of the MMLIB+ is much larger than the same amount for the
other two datasets, which can imply that our algorithm works better on instances with higher complexities.
The number of modes is the last parameter, which is not significant for Boctor50 but is so for the other two
datasets. However, its statistic is positive for Boctor100 and negative for MMLIB+; i.e., the smaller number of
modes, the smaller the makespan for Boctor100 and the larger the number of modes, the smaller the makespan
for MMLIB+. We see in Table 14 that the average number of modes is small for Boctor100; however, we do not
get good results, while this average is large for MMLIB+ and we get good results. The latter confirms that the
number of modes can be another reason for the good solutions of the MMLIB+7. The intercept is significant
for all datasets, which has a positive relationship with the makespan [66].

It must be noticed that the sensitivity of the solutions to the project parameters is the largest for MMLIB+,
next for Boctor100, and then Boctor50 (except the intercept which is larger for Boctor50 than for Boctor100).
Take the number of resources, for example: the statistic for the MMLIB+ is about 29, while it is about 5 for
the Boctor datasets. This shows that with a certain amount of change in the number of resources, we should
expect more changes in the MMLIB+ solutions than in the solutions of Boctor datasets.

Based on these results, we can infer that our heuristic method works well with instances of higher complexity
and larger number of modes. This conclusion is based on comparison among the three datasets. For the MMLIB+
dataset considered solely, all of the factors indicated are significant.

It is worth mentioning that the best known solutions reported for MMLIB are slightly better than those
reported by [64] for this dataset. For the MMLIB+ instances, the method in [64] is able to yield feasible solutions

5The differences between the amounts of resource strength reported in Table 11 from [66] may be due to two different methods
of calculation for the parameter. For more information on this, see [65]. For the regression test (Tabs. 13 and 14), all the resource
strength values are calculated with the same method.

6The large values of resource strength for some instances of MMLIB+ result from excess resource availabilities in those instances.
7We cannot say this in comparison to the results for Boctor100, since the average number of modes was small for Boctor100 but

the results were bad. However, if MMLIB+ is considered solely, the average number of modes can be a reason for the good results
we obtained since it is a significant parameter.
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Table 15. Summary of the computation times for our method for standard datasets.

Dataset
Average computation time Maximal computation time

(No splitting − with splitting) (No splitting − with splitting)

PSPlib 30 0.025189 − 0.029991 0.0894 − 0.0919

Boctor50 0.12075 − 0.11851 0.18648 − 0.21567

Boctor100 0.24815 − 0.25333 0.37947 − 0.33894

MMLIB50 0.0217 − 0.02688 0.03262 − 0.04802

MMLIB100 0.04837 − 0.05327 0.06867 − 0.07672

MMLIB+ (first 1200 instances) 0.03304 − 0.03871 0.09254 − 0.10948

for 97.59% of the instances, although it should be emphasized that they consider non-renewable resources, too,
which may justify this defect [66].

It is true that our algorithm was outperformed by [64] for the Boctor dataset, and did not yield very good
results for the PSPlib30 dataset in comparison to that paper. However, the small average deviations obtained
by our heuristic for the MMLIB instances imply that our method has an acceptable performance for tested
instances with higher complexities. Therefore, our method can yield acceptable results, since its performance
was bad, acceptable and good for the Boctor, PSPlib30 and MMLIB instances, respectively. Our results are
especially good for the MMLIB+ instances.

The solution times of [64] are very reasonable−0.05, 0.24 and 2.46 s for size 30, for 1000, 5000 and 50 000 sched-
ules generated, respectively (these times are for the presence of non-renewable resources. The solution times for
the other case are not given). Our solution times are given in Table 15.

The solution times for the Boctor dataset are the largest among others. In essence, we can infer that our
heuristic method performs extremely well in comparison to [21], but does not work very well in comparison
with [64] for instances of low complexity. Instead, it works well for tested instances of high complexity regarding
their best known solutions. Our results are especially good for the MMLIB+ instances. The best known solutions
mentioned are slightly better than the results of [64] for the MMLIB instances; sometimes, their method fails
to find feasible solutions for the MMLIB+ instances, as mentioned. From Sections 5.3−5.5, we may say that
the greater the number of activities and the network complexity, the better our heuristic performs. This quality
may be useful in real-world scheduling problems.

5.6. The drawbacks of presetting the modes

In Section 5.2, we investigated our heuristic regardless of the mode selection method by solving the RCPSP
obtained through using (4.4) in GAMS. In this section, we verify the accuracy of our mode selection method
independently of that of our heuristic.

Characteristics of a good mode vector are time feasibility, short length of the critical path in the associated
project and resource feasibility [15]. A good (near-optimal and near-feasible) mode vector selected before apply-
ing the heuristic can make the heuristic method yield a good solution. In order to evaluate our mode selection
method, we consider the deviation of the project length associated with the selected modes (calculated via the
CPM) from the lower bound of the project. In terms of feasibility, we consider the percentage of total resource
requirements that cannot be satisfied to the total resource requirements, when activities are scheduled according
to the selected mode vector at their earliest start times.

We propose another scheme for choosing the optimal mode vector using the notion of the SFM rule [18].
We do this to show that a better mode vector for the first phase can yield better schedules for the MR-
CPSP. The pseudo-code of this mode selection method is presented in Figure 2 (besides the notations of the
model (3.1)−(3.10), (4.1)−(4.4) and the heuristic procedure presented in Section 4.3, consider the following:
Pr ed(j) is the set of predecessors of j = 1, . . . , J and K̃r(t) = Krt −

∑
j is being executed in t

kjmr is the remaining

amount of resource r availability at time t, r = 1, . . . , R, t = 1, . . . , T − the notations and presentation of the
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algorithm are inspired by the one in [21]):

Initialization: dj = Sort(dj), ∀j = 1, . . . , J in ascending manner
For j = 1, . . . , J,

If ∃m′, m′′ : djm′ = djm′′

If
R∑

r=1
k

NWR(r)
jm′ r <

R∑
r=1

k
NWR(r)
jm′′ r

Choose m′ as the mode with the smaller duration
Else

Choose m′′ as the mode with the smaller duration
End

End
End

ES1 = 0

For j = 2 to J

For i ∈ Pred (j)
If mi is already set

Continue
End

For u = 1 to Mi

Key = 0
For t = ESi to ESi + diu

If ∃r ∈ 1, . . . , R : kiur > K̃r(t)
Key = 1
Break

End
End
If Key = 0

mi = u

Break
End

End
If mi is not chosen yet

mi = arg min
u

{
R∑

r=1
k

NWR(r)
jur

}

End
For t = ESi to ESi + dim i

K̃r(t) = K̃r(t) − kim i r, ∀r ∈ 1, . . . , R

End

EFi = ESi + dim i

End

ESj = max
i

{EFi}
End

Figure 2. Another scheme for choosing the optimal mode vector using the notion of the SFM rule.

In step 3, the rule for choosing among the modes when all of them are infeasible is similar to the LCR (Least
Criticality Ratio) and LRP (Least Resource Proportion) rules (for more information, see [18]) We implement
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Table 16. Summary of the evaluation of the mode selection methods for generated instances.

# of Obj function % Deviation % Resource Obj function % Deviation % Resource

activity (no splitting of 1st phase infeasibility (no splitting of 1st phase infeasibility

− with splitting) from LB of 1st phase − with splitting) from LB of 1st phase

30 48.5300 − 44.9820 5.1171 22.3387 72.5960 − 60.8540 51.6313 17.7053

Max 85.0000 − 85.0000 35.2941 47.6117 135.0000 − 124.0000 166.6667 42.6843

60 65.0800 − 59.3900 5.6313 22.3959 96.9050 − 73.4600 43.9765 18.1591

Max 102.0000 − 101.0000 26.1905 42.6036 156.0000 − 128.0000 142.4242 38.5542

90 68.0300 − 58.5800 5.7394 23.5645 103.8100 − 76.4750 42.3993 18.8854

Max 115.0000 − 97.0000 21.8750 42.9660 164.0000 − 145.0000 94.1176 35.2970

Table 17. Summary of the evaluation of the first mode selection method for standard instances.

Dataset
Obj
function

% deviation of 1st % resource infeasibility

phase from LB of 1st phase

(average − maximum) (average − maximum)

PSPlib 30 33.49819 − 63 1.53733 − 20 7.215126 − 40.54054

Boctor50 337.4 − 433 8.9598 − 36.9565 18.7617 − 27.2982

Boctor100 663.9333 − 857 7.9438 − 26.1450 18.8897 − 27.5140

MMLIB50 34.0111 − 75 2.5743 − 25 11.3000 − 57.5198

MMLIB100 42.7593 − 100 2.3256 − 21.0526 12.7209 − 54.5499

MMLIB+ (first 1200 instances) 61.6758 − 231 0.2368 − 19.0476 16.5340 − 53.6810

both mode selection methods for the WLST dispatching rule in sets of instances with 30, 60 and 90 activities,
generated by the modified ProGen, for the parameter settings of Tables 1-3. 500 instances of size 30 and 200
instances of sizes 60 and 90 were evaluated. The results are shown in Table 16.

As it is seen in Table 16, the first mode selection method has much lower deviation percentages, and infeasi-
bility percentages very close to those of the second method. Moreover, the makespans obtained using the first
method are much better than the ones obtained using the second; this shows that, as mentioned, better (in
terms of deviation and resource infeasibility) mode vectors selected in the first phase lead to better makespans
for the MRCPSP. At a cost of only a few percentages of infeasibility, the first method gives drastically smaller
deviations from the lower bound for the first phase. Its results are also acceptable for a first phase solution in
terms of resource infeasibility. Interesting results are also given for standard instances in Table 17.

As it can be seen, our first mode selection method again yields very good results both in terms of deviation
from the lower bound and resource feasibility, especially for the PSPlib and MMLIB instances (for which our
algorithm had an acceptable and good performance, respectively − see Sect. 5.5). These small deviation amounts
such as 1.53733 for the PSPlib and 0.2368 for the MMLIB+ show that the chosen modes are very close to smallest
duration modes − similarly to the notion of the SFM rules.

Finally, it can be mentioned that predetermining the modes in the MRCPSP can, while reducing complexity,
help determine good-quality answers for the problem; just as mentioned for the MRCPSP/Max in [7]. These
results give rise to speculations such as whether the complexity arising from adding multiple modes to the
RCPSP is necessary at all, and whether the modes can be selected previously.

6. Concluding remarks

We presented a new heuristic solution procedure for multi-mode resource-constrained project scheduling
problems which allows activities to be split due to resource vacations. A method was also devised for selecting
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one execution mode among several modes for each activity in order to reduce the problem complexity. The
computational results showed that the proposed heuristic method significantly reduces the computational time.
It also improves the project makespan as compared with the existing ones in reference [21], especially as the
size of the problem grows larger.

We also validated the mode selection method by calculating the amounts of deviation from the lower bound
of the makespan and also resource infeasibility of the path associated with the selected mode vector. The results
showed that our mode selection method performs well. Our results also indicated that better mode vectors
selected in the first phase lead to better makespans for the MRCPSP. These results, along with those of similar
two-phase methods for the MRCPSP/Max, give rise to speculations such as whether the complexity imposed
on the problem by adding multiple modes to the RCPSP is necessary at all, and whether the modes can be
selected previously.

In order to have a base for evaluating our heuristic method, we also generated some instances with the
same parameters used for our heuristic and the competing heuristics, and tried to solve them with GAMS
commercial solver. Our heuristic significantly reduced the computational time in comparison with this solver
We also corrected some erroneous constraints in the mathematical model of the problem. Moreover, in order
to justify the use of our heuristic method, we also solved the second phase of our method with the commercial
software GAMS using the mode vector chosen in the first phase. It was shown that, even for medium-sized
instances of 60 activities, it was extremely hard and time-consuming to solve, at least when resource vacations
were present.

In essence, we can infer that our heuristic method performs very well in comparison to [21], but does not
work very well in comparison with [64] for tested instances of low complexity. Instead, it works well for tested
instances of higher complexity. Overall, we may conclude that the greater the number of activities and the
network complexity, the better our heuristic may perform. This quality may be useful in real-world scheduling
problems.

An avenue for extension of this work is implementing and doing convergence analysis for an algorithm which
re-solves the mixed integer optimization model to find the optimal modes with the order in the schedule found
using the heuristic.
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[52] R. Mishra, N. Rastogi, D. Zhu, D. Mossé and R. Melhem, R., Energy aware scheduling for distributed real-time systems,
in Proc. of the International Parallel and Distributed Processing Symposium. IEEE Computer Society (Washington), Nice,
France (2003) 21–29.

[53] K.T. Nguyen, Lagrangian Duality in Online Scheduling with Resource Augmentation and Speed Scaling. In Algorithms – ESA
2013. Vol. 8125 of Int. Lect. Notes Comput. Sci. Springer, Berlin Heidelberg (2013) 755–766.

[54] C.A. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein and J. Wein, Improved bounds on relaxations of a parallel machine scheduling
problem. J. Comb. Optim. 1 (1998) 413–426.

[55] C. Phillips, C. Stein and J. Wein, Minimizing average completion time in the presence of release dates. Math. Program. 82
(1998) 199–223.

[56] C. Phillips, C. Stein, E. Torng and J. Wein, Optimal time-critical scheduling via resource augmentation. Algorithmica 32
(2002) 163–200.

[57] J. Polo, C. Castillo, D. Carrera, Y.W.I. Becerra, M. Steinder, J. Torres and E. Ayguade, Resource-Aware Adaptive Scheduling
for MapReduce Clusters, in Proc. of Middleware’11 of the 12th ACM/IFIP/USENIX international conference on Middleware,
edited by F. Kon and A.M. Kermarrec. Springer-Verlag, Lisboa (2011) 187–207.

[58] M. Seyed-Hosseini and S.M. Sabzehparvar, A mathematical model for the multi-mode resource-constrained project scheduling
problem with mode dependent time lags. J. Supercomput. 44 (2008) 257–273.

[59] N. Sharma, V. Sahula and C.P. Ravikumar, Energy aware task scheduling for soft real time systems using an analytical
approach for energy estimation. Int. J. Comput. Sci. Eng. 1 (2012) 33–39.

[60] H. Simonis and T. Hadzic, A Resource Cost Aware Cumulative. In Recent Advances in Constraints: 14th Annual ERCIM
International Workshop on Constraint Solving and Constraint Logic Programming, CSCLP 2009, Barcelona, Spain, June
15-17, 2009, Revised Selected Papers. Springer-Verlag, Berlin Heidelberg (2011) 76–89.

[61] A. Sprecher and A. Drexl, Solving Multi-mode Resource-Constrained Project Scheduling Problems by a Simple, General and
Powerful Sequencing Algorithm. Part I: Theory. Working paper (1996).

[62] A. Sprecher, S. Hartmann and A. Drexl, An exact algorithm for the project scheduling with multiple modes. OR. Spektrum.
19 (1997) 195–203.

[63] M. Tillenius, E. Larsson, R.M. Badia and X. Martorell, Resource-aware task scheduling. ACM Trans. Embed. Comput. Syst.
14 (2015) Article no. 5.

[64] V. van Peteghem and M. Vanhoucke, A genetic algorithm for the preemptive and non-preemptive multi-mode resource-
constrained project scheduling problem. Eur. J. Oper. Res. 201 (2010) 409–418.

[65] V. van Peteghem and M. Vanhoucke, Using resource scarceness characteristics to solve the multi-mode resource-constrained
project scheduling problem. J. Heuristics 17 (2011) 705–728.

[66] V. van Peteghem and M. Vanhoucke, An experimental investigation of metaheuristics for the multi-mode resource-constrained
project scheduling problem on new dataset instances. Eur. J. Oper. Res. 235 (2014) 62–72.

[67] V. van Peteghem and M. Vanhoucke, Multiple Modes |Operations Research & Scheduling research Group (2011) Available
http://www.projectmanagement.ugent.be/?q=research/project_scheduling/multi_mode. Accessed 10 April 2015.

[68] S. Viswanathan, B. Veeravalli and T.G. Robertazzi, Resource-aware distributed scheduling strategies for large-scale computa-
tional cluster/grid systems. IEEE Trans. Parallel Distrib. 18 (2007) 1450–1461.

[69] S. Vob and A. Witt, Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements:
A real-world application. Int. J. Prod. Econ. 105 (2007) 445–458.

[70] L. Wang and C. Fang, An effective estimation of distribution algorithm for the multi-mode resource-constrained project
scheduling problem. Comput. Oper. Res. 39 (2012) 449–460.

[71] T. Wauters, K. Verbeeck, G. Vanden Berghe and P. De Causmaecker, Learning agents for the multi-mode project scheduling
problem. J. Oper. Res. Soc. 62 (2011) 281–290.
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