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A PARTHENO-GENETIC ALGORITHM FOR DYNAMIC 0-1
MULTIDIMENSIONAL KNAPSACK PROBLEM ∗
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Abstract. Multidimensional Knapsack problem (MKP) is a well-known, NP-hard combinatorial op-
timization problem. Several metaheuristics or exact algorithms have been proposed to solve stationary
MKP. This study aims to solve this difficult problem with dynamic conditions, testing a new evolu-
tionary algorithm. In the present study, the Partheno-genetic algorithm (PGA) is tested by evolving
parameters in time. Originality of the study is based on comparing the performances in static and
dynamic conditions. First the effectiveness of the PGA is tested on both the stationary, and the dy-
namic MKP. Then, the improvements with different random restarting schemes are observed. The PGA
achievements are shown in statistical and graphical analysis.
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1. Introduction

Hard optimization problems are roughly defined as “problems that cannot be solved to optimality, or to
any guaranteed bound, by any exact (deterministic) method within a “reasonable” time limit” [7]. Multiple
Knapsack Problem (MKP) is a well-known hard and combinatorial optimization problem. It is accepted as
NP-hard [11, 13, 14, 16]. Combinatorial optimization problems involve finding optimal solutions from a discrete
set of feasible solutions [31]. Evolutionary Algorithm (EA), a sub-group of metaheuristics, is one of the most
preferred methods to solve hard optimization problems [6, 31]. EA is a general term for some nature inspired
optimization algorithms such as Genetic Algorithms (GAs), Evolution Strategies, Evolutionary Programming
and Genetic Programming.

GAs have been widely used in different forms to solve stationary combinatorial optimization prob-
lems [10, 11, 14, 22, 32]. However, many real life problems are actually dynamic, for this reason a solution approach
is expected to be adaptive to environmental changes [4]. In a changing environment, the problem-specific fitness
evaluation function and constraints of the problem, such as design variables and environmental conditions, may
change over time [45]. Evolutionary optimization in dynamic environments has become one of the most active
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research areas in the field of evolutionary computation [21, 37] and investigating the performance of GAs in
dynamic environments has attracted a growing interest from GA’s communit [45, 46].

Compared with static extensions, there are relatively far less reported publications about dynamic multiple
knapsack problems [4]. This is one of the main motivations of the present study. Secondly, to the best of
our knowledge, this is the first study that investigates the PGA for multiple knapsack problem in dynamic
environments.

The paper is organized as follows: in Section 2 we give a brief explanation of the Multiple Knapsack Problem
and the related work. Standard genetic algorithm and the PGA are described in Section 3. Experimental setup
for static and dynamic environments are explained in Section 4. We present the results of the experiments in
Section 5. Finally, some concluding remarks and future recommendations are given in Section 6.

2. Problem definition and related work

In this section we outline the Multidimensional Knapsack Problem in dynamic environment and give the
related work on GAs in dynamic environments.

2.1. Definition of multidimensional knapsack problem

Before introducing the dynamic version of the problem, it may be helpful to review the static one. The MKP
is widely studied combinatorial optimization problem. Both theoreticians and practitioners are interested in
the problem; theoreticians think that the simple structured MKPs can be used as sub problems to solve more
complicated ones, and practitioners think that these problems can model many industrial opportunities such as
cutting stock, cargo loading and the capital budgeting [25].

There are some other names given to this problem in the literature such as the multi constraint knapsack
problem, the multi-knapsack problem, the multiple knapsack problem, m-dimensional knapsack problem, and
some authors also include the term zero-one in their name for the problem [11]. Basically, the MKP can be
formulated as follows [30]:

maximize f =
n∑

j=1

pjxj (2.1)

subject to
n∑

j=1

ri,jxj ≤ bi, i = 1, . . . , m, (2.2)

xj ∈ {0, 1}, j = 1, . . . , n, (2.3)
with pj > 0, ri,j ≥ 0, bi > 0. (2.4)

In this formulation; the MKP consists of m knapsacks of capacities b1, b2, . . ., bm and n objects, each of which
has a profit pj . If the j th object is included in the solution then the decision variable xj equals to 1, otherwise
it equals to 0. Unlike the simple version of the knapsack problem in which the weights (resource consumptions)
of the objects are fixed, the weight of the jth object takes m values [25].

In fact, any 0/1 integer problem with non-negative coefficients can be formulated as a MKP [26]. Several
effective algorithms (i.e., exact algorithms, and heuristic or metaheuristic algorithms) have been developed to
tackle this stationary type of problem [8,17,18,24,41]. For a good review of these algorithms, we refer the reader
to [20].

2.2. Dynamic MKP

According to Simoes [35] “When the environment changes over time, resulting in modifications of the fitness
function from one cycle to another, we say that we are in the presence of a dynamic environment”. In other words,
in a dynamic optimization problem; the objective function, the problem instance, or constraints may change
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over time, and thus the optimum of that problem might change as well [21]. Literature includes benchmark
generators that translate well known static problems into dynamic versions (refer to [4]).

In [35], on 0/1 dynamic knapsack problem, they used three types of changes in the capacity of knapsack:
periodic changes between two values, three values and non-periodic changes between 3 different capacities. In
each of the periodic experiments they started a total capacity C1 and after half a cycle the constraint was
switched to C2. When using three values, after a complete cycle the capacity was changed to third value C3.
Cycle lengths were 30, 100, 200 and 300 generations.

The term “cycle lengths” has the same meaning with “simulation time units” [4]. The less number of sim-
ulation time units yield more frequent changes and vice versa. In [4], a series of 1000 iterations were adopted
as the frequency of changes. A benchmark problem that includes 100 items and 10 dimensions was used as the
basis environment. After a change occurs, as in [9], the parameters were updated as stated below [4]:

pj = pj ∗ (1 + N(0, σp)),
ri,j = ri,j ∗ (1 + N(0, σr)), (2.5)
bi = bi ∗ (1 + N(0, σb)).

In (2.5), ri,j denote the weights of the objects and bi denote the capacities of knapsacks, all standard deviations
are assumed to be equal and set to 0.05. While Branke et al. in [9] restricted the dynamic changes to a fixed
interval, neither lower nor upper bounds for those dynamic parameters were employed in [4]. Additionally, in [4],
the best error to optimum was used as the performance measure. According to this measure, the average values
of the best solution achieved for each environments on 30 runs are considered. The optimum of each environment
was obtained using GAMS CPLEX solver.

Mori and Kita [29] surveyed the methods for applying the adaptation of GA to dynamic environments. They
reported the characteristics of dynamic environments, and also surveyed the major kinds of GAs designed to
cope with the dynamic environment. They categorized the GAs into two types: (i) the search-based approach
and (ii) the memory-based approach.

Yang [45] proposed a hybrid memory and random immigrants scheme for genetic algorithms in dynamic
environments. Results of an experimental study, based on systematically constructed dynamic environments,
showed that memory-based immigrants scheme efficiently improved the performance of genetic algorithms in
dynamic environments.

Branke et al. [9] compared and analyzed three different representations (i.e., weight coding, binary represen-
tation and permutation representation) on the basis of a dynamic multidimensional knapsack problem. They
concluded that the representation could have a tremendous effect on EA’s performance in dynamic environ-
ments. They stated binary representation with penalty was extremely poor, because of slow improvement and
feasibility considerations.

Uyar and Uyar [40] briefly outlined the environmental change methods, discussed their shortcomings and
proposed a new method that could generate changes for a given severity level more reliably. Then presented the
experimental set up and results for the new method and compared the new method with existing methods.

Yuan and Yang [46] tested a hybrid genetic algorithm by different functional dimensions, update frequencies,
and displacement strengths in different types of dynamics. Also they compared with some other existing evo-
lutionary algorithms for dynamic environments. The hybrid genetic algorithm had been illustrated its better
capability to track the dynamic optimum, based on the results.

Ünal [39] compared two different approaches using GAs to adapt the changing environments for multiple
knapsack problems. These approaches were named random immigrants based approach and memory based
approach respectively. It was concluded that the memory based approach was more effective to adapt the
changing environments.

Baykasoǧlu and Ozsoydan [4] proposed an improved firefly algorithm (FA) to solve dynamic multidimensional
knapsack problem. In order to evaluate the performance of the proposed algorithm, the same problem was also
modelled and solved by genetic algorithm, differential evolution and original FA. Based on the computational
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results and convergence capabilities they concluded that improved FA was a very powerful algorithm for solving
the multidimensional knapsack problems for both static and dynamic environments.

3. Methodology

GAs sometimes fail adapt to a dynamic environment [29]. GAs tendency to converge prematurely in sta-
tionary problems and their lack of diversity in tracking optima are deficiencies that need do be addressed for
dynamic environments [3]. Maintenance of the diversity is an essential requirement to apply the GA to dynamic
environments [29].

There are several techniques that have been used to enhance the performance of the standart genetic algo-
rithm in dynamic environments to maintain diversity [3, 21]. A new genetic algorithm named partheno-genetic
algorithm (PGA) overcomes the premature convergence problem and keeps the diversity of the population [34].
For this reason we tested the PGA, with different reinitializing schemes. Based on this explanation, we give a
brief review about standard genetic algorithm, partheno-genetic algorithm and techniques for maintaining the
diversity.

3.1. Standard genetic algorithm (SGA)

In 1970s, John Holland and his students, set theoretical foundations of genetic algorithms [1]. GAs are
nature inspired optimization techniques based on the evolutionary process of biological organisms. Through
generations, the most fitted individuals will survive and less fitted ones will be eliminated. This process is based
on the principles of natural selection and “survival of the fittest” [1, 11].

In a standard GA, each individual represents a possible solution of the problem to be solved. Randomly
generated initial population, which composed of individuals, evolves toward better solutions through gener-
ations, using genetic operators (crossover and mutation) and selection procedures. An objective function is
used to evaluate the fitness of each individual. The basic steps of a simple genetic algorithm are illustrated in
Algorithm 1.

Algorithm 1. A pseudo code for simple GA.
1: Generate initial population;
2: Evaluate fitness values of individuals in population;
3: repeat
4: Select parents from the population for mating;
5: Recombine parents to produce offspring;
6: Mutate the resulting offspring;
7: Evaluate fitness of the offspring;
8: Replace some or all the population by the offspring;
9: until a termination criterion is satisfied //e.g., a predefined iteration number

10: Results and visualization.

There is a huge amount of GA literature including books, theses and articles. For this reason only necessary
explanation (used techniques in this paper) is given about genetic algorithms. We refer the reader to [15,36] for
detailed information.

The first step of designing a genetic algorithm is creating an initial population that consists of individuals
(chromosomes) [39]. This initial population can be generated randomly. Sometimes, a hybrid application of
metaheuristics and Branch and Bound (in particular memetic algorithms), can be used to obtain a good starting
solution [38]. To generate an initial population, individuals must be represented in a proper way. Direct or
indirect representation schemes can be used. “A representation is called direct if it can be interpreted directly
as a solution to the problem” [9]. In this representation, an individual consists of zeros and ones. If an item
is included in the solution, the value of the corresponding position in the chromosome is 1. A simple example
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1 0 0 0 1 1 0

Figure 1. A simple example for binary representation, n = 7.

3 7 1 4 2 6 5

Figure 2. A simple example of permutation representation, n = 7.

for binary representation for an individual is shown in Figure 1. In this individual; the 1st, the 5th and the
6th items are included in the solution. If any of the knapsack’s capacity is not exceeded, this is also a feasible
solution.

The main drawback of the binary (direct) representation is the difficulty to maintain feasibility [9]. To
maintain feasibility a number of procedures are encouraged to be implemented [11]: (i) to use a representation
that ensures all solutions are feasible; (ii) to separate the evaluation of fitness and infeasibility; (iii) to use a
heuristic operator to transform any infeasible solution into a feasible one; (iv) to apply a penalty function.

Unlike the direct representation, it is not necessary to design complicated repair mechanisms or to use penalty
functions to ensure feasibility in indirect representations [9]. Priority based encoding technique [4], permutation
representation, and real valued representation with weight coding [9] can be used as indirect representations.
Figure 2 represents a simple permutation representation. In this representation, the 3rd item must be included in
the solution firstly and the 7th item must be included secondly, and so on so forth. Inclusions of successive items
must be held by considering the knapsack capacities. In this paper we used the permutation representation.

“For selection phase of genetic algorithms, several methods are used such as roulette wheel, stochastic univer-
sal sampling, sigma scaling, rank selection, tournament selection and steady state selection” [39]. For a detailed
explanation of these methods, reader should refer to [27]. Additionally, a mathematical analysis of tournament
selection, truncation selection, linear and exponential ranking selection, and proportional selection is carried
out in depth in [5].

We used tournament selection in this study. In tournament selection, a predefined number of individuals
are chosen randomly from the population and the best of them is copied from this group into the immediate
population [5]. The pseudo code for the tournament selection is shown in Algorithm 2.

Algorithm 2. A pseudo-code for tournament selection.
1: currentpopulation← P
2: selectedmatrix← zeros
3: tournamentsize← k
4: set t := 0;
5: while t < populationsize do
6: t← t + 1
7: Select k individuals from P and evaluate
8: row t of selectedmatrix ← the best of k individuals
9: end while

After implementing the selection, the next phase is recombining the population. During recombination pro-
cess, a new individual solution is created from the information contained within two or more parent solutions.
Several recombination operators can be implemented for permutation representations. Eiben and Smith in [12]
describe these operators in detail. We use cycle crossover in this paper. In this operator, new offspring is created
by dividing the parents into cycles. The procedure for constructing cycles is as follows [12]:

(1) Start with the first unused position and allele of Parent 1.
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(a)

(b)

Figure 3. Cycle Crossover (a) Step 1: identification of cycles, (b) Step 2: construction of
offspring [12].

Figure 4. Insert mutation [12].

(2) Look at the allele in the same position in Parent 2.
(3) Go to the position with the same allele in Parent 1.
(4) Add this allele to the cycle.
(5) Repeat steps 2 through 4 until you arrive at the first allele of Parent 1.

An example illustration of cycle crossover is shown in Figure 3.
Following the recombination operator, the next step is mutating the population. Swap mutation, insert

mutation, scramble mutation or inversion mutation can be implemented as a mutation operator for permuta-
tion representations [12]. Mutation operator is often interpreted as a “background operator” supporting the
crossover [25] and it is implemented with small probabilities compared to crossover [11]. In this paper, we
use insert mutation. It is a simple and effective operator. It works by randomly selecting two positions in the
chromosome and moving one next to the other. An example for insert mutation is shown in Figure 4. In this
example, the 5th gene is inserted next to the 2nd one, and the others are shifted right.

After the mutation step, a fraction of the best individuals of the current population can be directly inherited
to the next generation, if desired. This is called elitism. Using elitism may help maintaining the diversity.

3.2. Partheno-genetic algorithm

Parthenogenesis is a special mode of reproduction that occurs without the male contribution [23,34]. In this
process, an egg cell from female parent produces new individuals without being penetrated by a sperm cell [23].
In a standard genetic algorithm, traditional crossover operators are used in order to produce offspring. This
standard process need to use two or more parents to produce children. The PGA is a variant of the GA [42–44]
and it simulates the partheno-genetic process of primary species in the nature [23].

Compared with the SGA, the PGA acts on single chromosome [19]. Crossover and mutation operators are
replaced by partheno-genetic operators, named “swap”, “reverse”, and “insert”. Several advantages of the PGA
are stated in the literature: (i) complicated crossover operators (such as partially mapped crossover, ordered
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(a) (b)

(c)

Figure 5. Partheno-genetic operators, (a) swap, (b) reverse, (c) insert.

crossover and cycle crossover) are avoided in the optimization process [2, 23, 34]; (ii) the PGA restrains the
immature convergence phenomenon [2]; (iii) the population diversity is guaranteed [34]. As stated earlier, main-
taining the diversity is a critical issue on adapting the dynamic environments. The procedure of the PGA is
summarized in Algorithm 3.

Algorithm 3. A pseudo code for the PGA.
1: Generate initial population;
2: Evaluate fitness values of individuals in population;
3: repeat
4: apply selection
5: apply the swap operator;
6: apply the reverse operator;
7: apply the insert operator;
8: until a termination criterion is satisfied //e.g., a predefined iteration number
9: Results and visualization.

Partheno-genetic operators are comparatively easy to implement. In the swap operator, a pair of positions
on a chromosome is selected randomly. Then the contents of these two points are swapped with a predefined
probability to produce a new chromosome. This operator is especially useful for permutation representations.
A simple illustration is shown in Figure 5a.

In the reverse operator, a sub-string is selected from the chromosome randomly, the positions of the genes
in this sub-string are reversed to generate a new chromosome with a given probability. An example for this
procedure is shown in Figure 5b.

In the insert operator, a substring of a chromosome is selected randomly. Then the last value in this substring is
transferred to the first position of the substring, and all the other positions in the substring are moved backwards
to generate a new chromosome with a predefined probability. An example illustration is shown in Figure 5c.
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Table 1. Parameters for the SGA and the PGA.

Attribute SGA PGA
# of generations 3000 3000
Population (randomly generated) size 600 600
Crossover (cycle) rate 0.7 –
Mutation (insert) rate 0.01 –
Elitism rate 0.01 0.01
Insert rate – 0.3
Reverse rate – 0.3
Swap rate – 0.3

3.3. Techniques for adapting the dynamic environments

There are several approaches to enhance the performance of the SGA in dynamic environments (for a de-
tailed survey see [37]). The most straightforward approach to increase the diversity is to restart the algorithm
completely by reinitializing the population after each environmental change [3]. But, sometimes the informa-
tion on hand, gained from the current population, can be useful. This situation is more likely to happen if
the environmental change is not considerably severe. In this case, partial random restarting approach can be
implemented. In other words, a fraction of the new population is seeded with old solutions, rather than complete
reinitialization.

4. Experimental setup

Shuai et al. [34] stated that the PGA overcomes the problem of the premature convergence of GAs, and in
addition it was guaranteed to keep the diversity of the population in the conditions of the lower diversifying
of initial population. This leads us to test the PGA in dynamic environments by solving the MKP. Firstly, we
solved the stationary MKP to measure the performance of the PGA. Secondly, we conducted some comparative
computational experiments in dynamic environments employing both the SGA and the PGA. Finally, we tested
different reinitialization schemes in dynamic environments using the PGA.

4.1. Setup on static environment

In order to test the performance of the PGA in stationary environment, we compared the SGA and the
PGA on 12 different benchmark problems available on the OR-LIBRARY web-site3. These problems were also
previously used by Boussier et al. [8] and Hanafi and Wilbaut [18]. Four problem sets include; 10 constraints-250
variables, 5 constraints-500 variables, 10 constraints-500 variables and finally 30 constraints-250 variables. At
each set we solved 3 representative problems with different difficulty levels. The parameters for the SGA and the
PGA were set as shown in Table 1. For each algorithm and each problem, 5 independent runs with 3000 iterations
were executed using Python programming environment, with a personal computer bundled with Intel i5 1.6 GHZ
processor and 8 GB RAM. Pseudo-codes of the problem specific SGA and the PGA are shown in Algorithms 4
and 5, respectively.

4.2. Setup on dynamic environment

In a dynamic environment, some factors such as frequency or periodicity of changes
(cyclic/periodical/recurrent or not), and components that change (objective functions, constraints, etc.)
are important issues [37]. In real life problems, changes in parameters of any problem have a stochastic nature.
On the other hand, environmental changes typically may not alter the problem completely and may affect only
some part of the problem at a time [3].

3http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Algorithm 4. The pseudo-code for the SGA used in the stationary problem.
1: begin
2: maxiter := 3000
3: t := 0
4: generate random initial population (size = 600)
5: while t < maxiter do
6: t← t + 1
7: apply cycle crossover (Pc = 0.7)
8: apply insert mutation (Pm = 0.01)
9: decode the permutation and sort individuals w.r.t fitness values

10: apply tournament selection (tournamentsize = populationsize ∗ 0.1)
11: apply elitism elitismrate = 0.01
12: end while

Algorithm 5. The pseudo-code for PGA used in the static problem.
1: begin
2: maxiter := 3000
3: t := 0
4: generate random initial population (size = 600)
5: while t < maxiter do
6: t← t + 1
7: swap (Ps = 0.3)
8: reverse (Pr = 0.3)
9: insert (Pi = 0.3)

10: decode the permutation and sort individuals w.r.t fitness values
11: apply tournament selection (tournamentsize = populationsize ∗ 0.1)
12: apply elitism elitismrate = 0.01
13: end while

Based on this philosophy, we modelled the changing environment as a Poisson Process with parameter (λ),
by means of frequency of changes. To generate more frequent changes we set λ = 0.01 and on the contrary, for
rare changes compared with the previous approach, we set λ = 0.005. In addition to this, we modelled the type
of changes as a Markov chain. Again, we used 5 benchmark problems from the OR-LIBRARY. These problems
are Weish26 to Weish30, which are previously used by Shih [33]. Within these problems, only the knapsack
capacities are different from each other. It means that the problem landscape doesn’t change ultimately. These
problems constitute the states of an irreducible Markov Chain. At each change point, current problem changes
into another problem (or change into itself again) with equal transition probability of 0.2. Different transition
probabilities could be used, yet for simplicity we preferred equal transition probabilities.

The best error to the optimum was used as the performance measure. At each iteration, the difference between
the optimum value of corresponding environment and the best of generation fitness values were recorded. Then
these difference values were averaged over the generation number. Firstly, for each algorithm 15 replicates, each
had different environmental conditions, were executed and the performances of the SGA and the PGA were
compared. Secondly one representative environment for each change frequencies (number of changes are 8 and 15
for λ = 0.005 and 0.01, respectively) were selected, and then we tested the PGA’s behaviour with respect to the
different reinitialization schemes (i.e., 5 different reinitialization rates) on chosen environments through 30 runs.
Generation numbers were set to 1000 for each run with the population size of 150. All experiments were
conducted using Python. The pseudo-code for the PGA tested in dynamic environment in this study is shown
in Algorithm 6.

As mentioned earlier in Section 3, rapid convergence is a problem for GAs in dynamic environments. Once
converged, GAs can not adapt well to the changing environment [45]. For dynamic environments, an effective
algorithm is expected quickly adapt the new environment. For this reason, diversity must be maintained through
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Algorithm 6. The pseudo-code for the PGA used in the dynamic problem.
1: begin
2: maxiter := 1000
3: t := 0
4: define regenrate //regeneration rate
5: generate random initial population (size = 150)
6: substitute ← first (regenrate*popsize) elements of initial population
7: define change points using Poisson Process
8: while t < maxiter do
9: t← t + 1

10: swap (Ps = 0.3)
11: reverse (Pr = 0.3)
12: inverse (Pi = 0.3)
13: decode the permutation and sort individuals w.r.t fitness values
14: apply tournament selection (tournamentsize = populationsize ∗ 0.1)
15: apply elitism elitismrate = 0.01
16: record errors from optimum value of current environment
17: if changepoint = t then
18: change problem type randomly
19: insert substitute into current population starting from the first row
20: end if
21: end while

generations. We used the most straightforward approach to increase diversity: to restart the algorithm by reini-
tializing a predefined fraction of population after each environmental change. For example, if the reinitialization
rate is 0.5, then when an environmental change occurs, fifty per cent of the current population is replaced with
same proportion of the initial population. This approach can be considered as partial random restarts. We
tested the dynamic behaviour of the PGA for 5 different reinitialization schemes (treatments) (i.e., 0, 0.25, 0.5,
0.75, 1) in 2 different change frequencies (0.01 and 0.005). We used analysis of variance (ANOVA) in order to
compare the treatments.

5. Results and discussion

Results on stationary environment are shown in Table 2. In this table, the 2nd and the 3rd columns include
the best fitness values coupled with the CPU times which are previously achieved by Boussier et al. [8]. Fitness
values with asterisks are the optimum values. The best fitness values reached with in five runs are given in
boldface for the PGA and the SGA in the 5th, and the 7th columns, respectively. Time values in the 6th and
the 8th columns were produced using the Python’s time.clock () function for each run. On Windows�, this
function returns wall-clock seconds elapsed since the first call to this function, as a floating point number. The
resolution is typically better than one microsecond.

According to the results in Table 2, it is possible to say that the PGA is more effective than the SGA, with
given parameters, by means of the solution times and the best fitness values achieved. On the contrary, the PGA
is not effective at all compared with the results that are reported by Boussier et al., especially for relatively easy
problems (i.e., for 5.500 and 10.250). But, for harder problems (i.e., 10.500 and 30.250) the PGA can achieve
acceptable fitness values with reasonable solution times. Moreover, the PGA (and also the SGA) never runs
out of memory. In fact, meta-heuristics are strictly dependent to the parameters used. For example, it could
be possible to reach better fitness values by increasing the number of iterations. Then, a trade-off between the
solution times and the fitness values achieved must be taken into consideration. The convergence characteristics
of both the SGA and the PGA on the stationary environment (for 5.500.20 problem instance) are represented
in Figure 6.
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Table 2. Experimental results on stationary environment.

Boussier et al. [8] SGA PGA
Inst. Best CPU time Run Best Time (s) Best Time (s)
5.500.0 120 148∗ 40 (s) 1 98 753 1665.73 115 575 1646.58

2 99 308 1841.8 117 365 1654.36
3 100 164 1758.27 116 656 1650.28
4 100 896 1793.95 116 732 1656.36
5 101 678 1809.36 116 442 1681.24

5.500.10 218 428∗ 35 (s) 1 196 502 2926.27 215 078 2918.14
2 194 942 2951.47 215 973 2867.3
3 197 644 3811.89 215 251 2890.02
4 195 212 3080.28 215 350 2889.77
5 193 554 2964.97 216 079 2904.08

5.500.20 295 828∗ 0 (s) 1 279 814 4099.54 293 235 3953.4
2 280 098 4196.86 292 399 4003.18
3 279 204 6247.99 292 901 3970.20
4 281 950 4164.70 293 738 4028.37
5 278 849 4134.03 292 355 3996.76

10.250.0 59 187∗ 0 (s) 1 51 227 1298.34 57 229 2092.4
2 50 693 1297.29 57 477 1326.41
3 50 936 1298.82 57 903 1316.14
4 51 288 1264.93 57 362 1278.17
5 50 543 1250.03 57 943 1294.12

10.250.10 110 913∗ 336 (s) 1 102 386 2359.02 108 826 2304.58
2 98 830 2402.03 108 234 2338.95
3 100 887 2342.19 106 416 2320.25
4 99 473 2411.26 108 828 2318.28
5 101 401 2318.52 108 977 2366.28

10.250.20 151 809∗ 211 (s) 1 144 448 3365.25 150 728 3429.24
2 144 806 3329.11 150 383 5235.56
3 142 987 3394.98 150 108 3452.85
4 142 187 3349.07 149 921 3475.20
5 146 314 3597.74 150 608 3483.27

10.500.0 117 821∗ 24.5 (h) 1 101 539 2569.87 114 563 2506.83
2 99 541 2622.25 114 488 2542.94
3 99 270 2675.15 114 842 2520.3
4 98 423 2636.77 113 174 2602.56
5 99 187 2633.77 114 187 2554.77

10.500.7 118 344∗ 161.7 (h) 1 98 142 2606.73 114 404 2463.17
2 98 960 2590.43 113 383 2518.62
3 102 531 2681.26 115 282 2531.55
4 98 071 2724.78 114 496 2481.85
5 100 279 3690.61 114 847 2466.53

10.500.20 304 387∗ 6.6 (h) 1 287 077 6726.03 301 682 6631.94
2 285 036 6913.78 301 994 6693.94
3 287 679 6936.82 301 370 7413.24
4 289 481 6831.02 302 344 6770.35
5 288 520 6965.56 300 422 6670.93

30.250.0 56 842 39.7 (h) 1 49 340 3138.46 55 229 3140.97
2 48 046 3190.02 55 374 3042.05
3 47 230 3074.92 54 363 3067.34
4 50 185 3135.61 54 612 3051.15
5 46 128 3111.10 54 557 3130.98
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Table 2. Continued.

Boussier et al. [8] SGA PGA
Inst. Best CPU time Run Best Time (s) Best Time (s)
30.250.13 106 876 86.9 (h) 1 97 895 6100.31 104 536 6076.02

2 98 431 6095.72 104 621 6048.82
3 95 285 5963.57 105 642 5933.81
4 95 621 6059.43 105 326 5989.37
5 96 128 6005.22 105 587 6007.77

30.250.28 149 570 16.8 (h) 1 143 942 9068.53 147 653 8994.21
2 140 364 9051.11 148 333 9057.92
3 144 159 9079.86 148 549 9016.86
4 142 260 9123.31 148 289 9753.12
5 143 038 9176.41 148 415 9078.3

Figure 6. Behaviours of the PGA and the SGA in the stationary environment for 5.500.20
instance.

As it can be seen from Figure 6, the PGA rapidly reaches the near optimal value in the initial generations.
It has a very strong convergence capability. Using 3 operators (i.e., swap, reverse and insert) the PGA does not
stick to the local optimum and it converges the near optimal value rapidly. On the contrary, standard GA sticks
to the local optimum.

For dynamic environments, as mentioned in Section 4.2, we firstly implemented 15 replicates of the SGA and
the PGA for each of two λ values (i.e., rare changes and frequent changes). Comparisons of the results taken
are shown in Table 3 for λ = 0.01, and in Table 4 for λ = 0.005.

For the 4th column of Table 3, there are 14 environmental changes through 1000 iterations. The positions
of the changes and corresponding problem types between these positions for this environment are depicted in
Figure 7. In this Figure, “0” represents Weish26, and “4” represents Weish30 problem type. Until the first
point of change, the problem type is Weish26, and following the first point of change (i.e., 47th iteration) the
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Figure 7. Points of change and the problem types for the 4th column of Table 3.

Figure 8. Comparison of the PGA and the SGA for a selected dynamic environment.

problem type turns into Weish30, and the process keeps on in a similar fashion. As a representative example,
we compared the behaviours of the first entries of the PGA and the SGA graphically in Figure 8 (i.e., 538.87,
and 3505.69, respectively).

As shown in Figure 8, the PGA yields lower error values. Moreover, the PGA has lower mean error values (μ)
compared with the corresponding SGA counterpart as shown in Tables 3 and 4 for all environmental conditions.
Additionally, the mean error values in Table 4 are less than the mean error values in Table 3 on the average.
This is an expected result, since the algorithm has more time to decrease the error value when the environment
has lower number of changes.

Regarding the comparison of different reinitialization schemes, it is not proper at all to compare the efficiency
of treatments with the data only shown in Tables 3 and 4 since the environments are not the same. In order
to compare the treatments, we selected one representative environmental condition from each of these tables,
namely the 12th environment (with 15 environmental changes) from Table 3, and the 6th (with 8 environmental
changes) from Table 4. Then we executed the algorithm 30 times for each treatment. Results are shown in
Tables 5 and 6. Each entry within these tables represents the error value averaged over 1000 iterations.

In order to detect whether the treatment schemes differ among each other, analysis of variance (ANOVA)
was implemented for the data given in Tables 5 and 6. ANOVA results are given in Tables 7 and 8, respectively.
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Table 5. Comparison of treatments (λ = 0.01). Number of changes is equal to 15.

Treatments
Replicates 1.0 0.75 0.5 0.25 0.0
1 921.57 500.58 504.64 553.63 469.27
2 908.12 517.69 547.32 456.22 517.77
3 916.64 472.27 411.90 476.93 498.96
4 868.27 584.71 390.88 470.83 431.14
5 1041.53 564.61 631.56 537.99 459.99
6 941.06 480.18 581.09 422.70 527.60
7 843.92 611.40 436.97 441.51 433.14
8 889.08 563.26 483.18 463.73 464.72
9 870.91 489.07 515.57 568.65 458.06
10 842.49 530.95 494.66 471.92 433.47
11 842.81 519.50 550.37 454.08 559.21
12 918.27 567.57 433.24 511.01 487.79
13 844.20 493.77 444.12 461.47 447.42
14 946.54 421.53 501.82 510.72 420.11
15 1017.61 677.17 552.90 509.52 517.67
16 976.55 632.87 407.01 461.19 472.19
17 911.97 494.36 545.99 494.59 474.68
18 844.88 496.40 526.24 482.03 472.96
19 916.82 531.70 506.63 532.91 464.36
20 909.72 560.99 595.15 489.33 442.18
21 845.87 595.95 547.38 476.10 436.15
22 824.58 495.85 592.05 502.88 526.68
23 999.71 447.22 575.80 503.73 525.81
24 1009.21 520.09 526.15 484.49 487.53
25 865.64 536.83 502.91 499.63 500.85
26 829.10 458.23 456.92 561.06 453.54
27 945.44 541.06 475.32 507.05 468.82
28 895.13 489.91 498.34 538.27 489.93
29 915.82 561.52 516.64 446.92 552.10
30 964.53 525.56 542.19 452.04 473.63
Mean 908.93 529.43 509.83 491.44 478.92

According to the first ANOVA summarized in Table 7, when λ = 0.01 and the number of changes is 15, since
the P −value = 0.000, it can be concluded that there is a significant difference between at least one pair of each
treatment types by means of their effect on the average solution. A multiple comparison method (i.e., Fisher’s
Least Significance Difference Method, LSD) was performed to isolate the specific differences [28]. For an α level
of 0.05, the LSD value for these data is equal to LSD = 26.04. The differences and significance of all pairwise
comparisons are shown in Table 9.

According to this comparison there is a significant difference between the first (i.e., 100% reinitialization) and
all the others. When the algorithm uses the knowledge on hand, it is easier to adapt the new environment. On
the other hand it is interesting that while using the information on the current population has a positive effect
on adapting the dynamism, there is not a specific rate for information usage. But it is clear that the complete
random restarting is not an effective way of adapting the new environment.

Similar procedures were applied for the data shown in Table 6. For these environments, the number of
environmental changes and average errors are lower compared with the situation that λ = 0.01. Analysis of
variance is summarized in Table 8. For an α level of 0.05, the LSD value for these data is equal to LSD = 14.62.
The differences and significance of all pairwise comparisons are shown in Table 10. According to these results,
similar to the previous case, it can be concluded that there is a significant difference between at least one pair of
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Table 6. Comparison of treatments (λ = 0.005). Number of changes is equal to 8.

Treatments
Replicates 1.0 0.75 0.5 0.25 0.0
1 305.60 305.30 313.62 332.22 243.85
2 293.64 328.93 314.62 253.60 254.53
3 295.42 227.24 257.14 242.42 229.09
4 321.33 228.92 286.49 291.74 232.09
5 275.99 265.26 294.04 279.86 271.37
6 286.15 263.25 286.92 272.45 255.33
7 294.95 312.93 289.59 290.29 213.39
8 306.09 252.64 278.48 304.24 255.48
9 316.23 258.41 276.62 263.06 232.04
10 291.06 257.50 285.84 310.82 324.03
11 324.53 245.19 305.30 298.09 258.23
12 293.57 287.97 264.25 247.37 287.10
13 352.17 263.60 268.23 231.89 262.91
14 329.08 327.87 240.61 242.94 295.49
15 260.70 249.91 292.03 273.87 244.92
16 285.31 315.83 262.76 264.00 256.51
17 282.47 301.91 277.30 279.01 237.54
18 279.38 315.57 250.62 247.68 244.45
19 325.16 292.26 273.19 254.74 296.92
20 302.56 289.12 241.43 283.02 262.18
21 251.17 307.61 315.86 283.44 235.32
22 283.35 263.61 262.75 264.32 258.17
23 264.97 319.63 261.82 270.58 234.24
24 272.11 271.06 293.06 332.89 250.74
25 350.30 266.14 298.97 274.29 231.90
26 321.76 298.52 265.73 284.00 263.83
27 327.20 234.81 290.28 232.42 252.53
28 286.21 281.46 245.93 159.59 297.98
29 380.03 311.37 246.53 256.08 256.33
30 304.08 232.14 331.61 236.61 276.61
Mean 302.08 279.20 279.05 268.58 257.17

Table 7. ANOVA table, # of changes 15 (λ = 0.01).

Source of variation Degrees of freedom Sum of squares Mean square F P -value
Treatments 4 4 010 066.17 1 002 516.54 386.22 0.000
Error 145 376 379.91 2595.72
Total 149 4 386 446.08

Table 8. ANOVA table, # of changes 8 (λ = 0.005).

Source of variation Degrees of freedom Sum of squares Mean square F P -value
Treatments 4 33 063.95 8265.99 10.12 0.000
Error 145 118 433.19 816.78
Total 149 151 497.13
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Table 9. Pairwise comparisons of treatments (λ = 0.01). Differences larger than 26.04 are
significant at the α = 0.05 level and are indicated with an “∗”.

Treatments
1.00 0.75 0.50 0.25 0.00

1.00 0.00 379.51∗ 399.10∗ 417.50∗ 430.01∗

0.75 0.00 19.60 37.99∗ 50.50∗

0.50 0.00 18.40 30.91∗

0.25 0.00 12.51
0.00 0.00

Table 10. Pairwise comparisons of treatments (λ = 0.005). Differences larger than 14.61 are
significant at the α = 0.05 level and are indicated with an “∗”.

Treatments
1.00 0.75 0.50 0.25 0.00

1.00 0.00 22.89∗ 23.03∗ 33.50∗ 44.91∗

0.75 0.00 0.15 10.62 22.03∗

0.50 0.00 10.47 21.88∗

0.25 0.00 11.41
0.00 0.00

treatments. LSD procedure indicates that the first treatment type results in different means than all the other
four types. Parallel with the previous ANOVA, it can be said that using the information on hand increases the
efficiency of the algorithm adapting the new environment. There is not a specific more effective information
usage rate, however complete random restart is not suggested.

6. Conclusion

Dynamism in the business world encourages the analysis of change. Multidimensional Knapsack Problem
(MKP), an NP-hard combinatorial optimization problem, is used in several areas such as cutting stock, cargo
loading and the capital budgeting applications. Hence, analysis of MKP in a dynamic environment is one of the
motivating necessities of agile business exercises today. One of the analysis methods of MKP, GAs are criticized
in dynamic environments. That is why this original study aims to analyze MKP in a dynamic environment
using Partheno-Genetic Algorithm (PGA), an enhanced version of genetic algorithms.

First, the performance of PGA is benchmarked with the classical GA on different MKP problems. It is clearly
shown that PGA outperforms both by converging fast and finding near optimum. It is also observed that GA
easily sticks to the local optimum, which explains its weakness in dynamic environment. Second, we compared
the SGA and the PGA in dynamic environments. Again, the PGA outperformed the SGA by means of the mean
error values.

Later, a dynamic environment is constructed by using different parameter values for a Poisson initialization
to represent rare changes and frequent changes. PGA is used in the dynamic environment for five different
reinitialization schemes. The best performances in different environments are tested. ANOVA showed at least one
significant difference among the treatments. Fisher’s LSD has shown where the significant difference occurred.
It is concluded that it is easier to adapt the new environment when old information is used. It is shown that
complete random restart is not effective at all.

This study will be enhanced to compare the intelligent methods in the dynamic environment. The achieve-
ments will be enriched when the algorithms developed in this study will be implemented in real life exercises.
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