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THE PRIZE-COLLECTING CALL CONTROL PROBLEM ON WEIGHTED LINES
AND RINGS
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Abstract. Given a set of request calls with different demands and penalty costs, the prize-collecting
call control (PCCC) problem is to minimize the sum of the maximum load on the edges and the total
penalty cost of the rejected calls. In this paper, we prove that the PCCC problem on weighted lines
is NP -hard even for special cases, and design a 1.582-approximation algorithm using a randomized
rounding technique. In addition, we consider some special cases of the PCCC problem on weighted
lines and rings.
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1. Introduction

Due to extensive applications in various realistic areas such as bandwidth allocation, interval packing, multi-
commodity flow and scheduling, the unsplittable flow problem (UFP) on lines receives significant attention
in recent years. Given an undirected line G = (V, E) with V = {1, 2, . . . , n} and E = {ei = (i, i + 1)|
i = 1, 2, . . . , n − 1} and a set P of K request calls, each edge ei ∈ E has a capacity ci, and each request
call in P is specified by a subpath Pk between the source (i.e. leftmost) vertex sk ∈ V and the sink (i.e. right-
most) vertex tk ∈ V , a demand dk > 0, and a profit pk > 0. The UFP on lines is to find a subset P ′ ⊆ P of
request calls with maximum total profit

∑
k:Pk∈P′ pk, such that for each edge, the sum of the demands of all

request calls in P ′ that use this edge does not exceed its capacity.
Throughout this paper, we call that a polynomial-time algorithm is a ρ-approximation algorithm for a mini-

mization (or maximization) problem if it always outputs a feasible solution with objective value at most ρOPT
(or at least OPT/ρ), where OPT denotes the optimal value. A polynomial time approximation scheme (PTAS)
is a family of algorithms such that it can produce a (1 + ε)-approximation solution, for any fixed real number
ε > 0. A fully polynomial time approximation scheme (FPTAS) is a PTAS whose running time is polynomial
in 1/ε.

The UFP on lines is NP -hard even when G = (V, E) is a single edge, as it specializes to the knapsack
problem. When all edge capacities as well as all demands are 1, the UFP on lines corresponds to the maximum
weight independent set on interval graphs, which can be solved in polynomial time. If all edges have a uniform
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Figure 1. Comparison.

capacity (i.e. UCUFP), the UFP on lines is equivalent to the resource allocation problem [6], which is NP -hard.
Calinescu et al. [10] presented a (2 + ε)-approximation algorithm for the UCUFP on lines.

As mentioned in [5], since the general UFP on lines is hard to approximate, most of the previous works have
made some extra assumptions in order to obtain a reasonable approximation. With the no-bottleneck assumption
which requires that maxk dk ≤ mini ci, Chakrabarti et al. [11] presented the first constant-factor approximation
algorithm. Chekuri et al. [12] presented the currently best known (2+ε)-approximation algorithm, which matches
the best known result for the UCUFP on lines [10]. If all the demands, edge capacities, and profits are quasi-
polynomial in the number of request calls, Bansal [4] presented a quasi-polynomial time approximation scheme
for the UFP on lines. Bansal [5] presented a polynomial-time O(log n)-approximation algorithm for the UFP on
lines without any assumption. Very recently, Bonsma et al. [8] introduced several novel algorithmic techniques
and presented the currently best-known (7 + ε)-approximation algorithm for the UFP on lines without any
assumption, and a (2 + ε)-approximation algorithm for the UFP on lines wherein the capacities can be slightly
violated.

When generalizing the UFP on lines to rings, if all the demands are 1, Adamy et al. [1] presented a PTAS for
the UFP on rings, while the NP -hardness still be open. When all demands and profits are 1, Adamy et al. [1]
presented a strongly polynomial-time optimal algorithm for the UFP on rings. Assuming that maxk dk ≤ mini ci,
Chekuri et al. [12] presented the currently best known (2 + ε)-approximation algorithm for the UFP on rings.
Bansal [5] presented a polynomial-time O(log n)-approximation algorithm for the UFP on rings without any
assumption. When generalizing the UFP on lines to other graphs, we refer to [3, 5, 8, 13–15].

Motivated by the recent increasing research on the prize-collecting combinatorial optimization problems, such
as the prize-collecting Steiner tree problem [2, 7] and the min-sum clustering problem with penalties [17], we
consider the prize-collecting call control (PCCC) problem on weighted lines, which is equivalent to the prize-
collecting UFP on weighted lines. Given a weighted line G = (V, E, w) and a subset P = {Pk| k = 1, 2, . . . , K}
of K request calls (paths), each edge ei ∈ E has a positive weight wi, and each path Pk connecting a source vertex
sk ∈ V and a sink vertex tk ∈ V has a positive demand dk and a positive penalty cost pk. The PCCC problem
on weighted lines is to find a set P ′ ⊆ P of paths such that the sum of the total penalty cost

∑
k:Pk∈P\P′ pk of

the rejected paths and the maximum load of the edges in E is minimized, where the load of edge ei ∈ E is the
total demand of the accepted paths which contain ei multiplied by wi.

In the previous conference version [20], we studied the PCCC problem on weighted lines where all weights
of the edges are 1. Indeed, if the weights of the edges are different, the optimal solution for the PCCC problem
on weighted lines will be changed. Consider an example with n = 6 and K = 3. All three paths P1 = {e1, e2},
P2 = {e4, e5}, and P3 = {e2, e3, e4} have the same demand 2. The penalty costs are p1 = 4, p2 = 4 and p3 = 1,
respectively. If all weights of the edges are 1, the optimal solution is to select P1 and P2 with objective value
2+1 = 3, as depicted in Figure 1a. If the weights of edges are 2, 1, 2, 1 and 2, respectively, the optimal solution
is to select all three paths with objective value 4, where the load of every edge is 4, as depicted in Figure 1b.

When generalizing the PCCC problem on weighted lines to rings, we must find out the difference between
lines and rings. Indeed, if there is an edge ei in the ring such that every path in P does not contain it, the ring
is equivalent to the line obtained by cutting ei, as depicted in Figure 2a. If every edge is used by at least one
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Figure 2. Rings.
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Figure 3. Reductions.

path in P , the PCCC problem on weighted rings is more complicated than that on weighted lines, as depicted
in Figure 2b.

This paper is organized as follows. In Section 2, we prove that the PCCC problem on weighted lines is
NP -hard, and then design a 1.582-approximation algorithm. In Section 3, we prove that the PCCC problem
on weighted rings possesses a PTAS when all demands are 1, and possesses an optimal algorithm in polynomial
time when all demands and penalty costs are 1. In Section 4, we conclude our work with some remarks and
discussion about future research directory.

2. The PCCC problem on weighted lines

In this section, we first prove that the PCCC problem on weighted lines is NP -hard even for two special
cases, and then design two approximation algorithms. Finally, we design an optimal algorithm in polynomial
time when all demands are 1.

2.1. NP-hardness

Although line is a very simple graph, we find that the PCCC problem on weighted lines is NP -hard even for
two particular cases.

Theorem 2.1. The PCCC problem on weighted lines is NP -hard, even when all weights of edges are 1.

Proof. We construct a polynomial reduction from the partition problem [16]. Given an instance I consisting of a
set S = {a1, a2, . . ., an} of positive numbers and a =

∑n
k=1 ak/2 of the partition problem, construct an instance
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τ(I) with 3 vertices and n+1 paths of the PCCC problem on weighted lines as follows. For each k = 1, 2, . . . , n,
the path Pk = {(1, 2)} has a demand dk = 2ak and a penalty cost pk = ak. The path Pn+1 = {(2, 3)} has a
demand dn+1 = 2a and a penalty cost pn+1 = 4a, as depicted in Figure 2a.

We claim that instance I of the partition problem has a feasible solution if and only if there is a feasible
solution for instance τ(I) of the PCCC problem on weighted lines with objective value at most 3a.

If instance I has a feasible solutio S′ ⊆ S satisfying
∑

ak∈S′ ak = a, select Pn+1 and the paths in {Pk|ak ∈ S′}.
The total penalty cost of the rejected paths is a, and the maximum load of the edges is 2a. Thus, the objective
value is 3a.

If there is a feasible solution F for instance τ(I) with objective value at most 3a, the path Pn+1 must be
accepted in F . Therefore, the total penalty cost X of the rejected paths satisfies X ≤ 3a−2a = a, and the total
demand of the accepted paths Pk (k ≤ n) is 2(2a−X). Thus, the objective value of F is 2(2a−X)+X = 4a−X .
From the assumption, we have 4a − X ≤ 3a. Therefore, X = a, which implies that instance I has a feasible
solution S′ = {ak| Pk is rejected }.

Since the partition problem is NP -hard [16], so is the PCCC problem on weighted lines. �

Note that the single-source UFP [19] is NP -hard where all paths in P have the same source, even if G is
an edge. When all weights of edges are 1, it is easy to verify that P ′ = {Pk|dk < pk} is an optimal solution
for the single-source PCCC problem on unweighted lines. Not surprisingly, the single-source PCCC problem on
weighted lines is NP -hard, even if wi ∈ {1, 2} for 1 ≤ i ≤ n − 1.

Theorem 2.2. The PCCC problem on weighted lines is NP -hard, even when all paths in P have the same
source.

Proof. Similarly to the proof of Theorem 1, given an instance I of the partition problem, we construct an instance
τ(I) with 3 vertices and n + 1 paths of the PCCC problem on weighted lines as follows. For k = 1, 2, . . . , n,
the path Pk = {(1, 2)} has a demand dk = 2ak and a penalty cost pk = ak. The path Pn+1 = {(1, 3)} has a
demand dn+1 = 2a and a penalty cost pn+1 = 5a+1. The weights of edges are w1 = 1 and w2 = 2, respectively,
as depicted in Figure 2b. Similarly, it is easy to verify that instance I of the partition problem has a feasible
solution if and only if there is a feasible solution for instance τ(I) of the PCCC problem on weighted lines with
objective value at most 5a. Since the partition problem is NP -hard [16], so is the PCCC problem on weighted
lines. �

2.2. Approximation algorithms

For each edge ei ∈ E, let Ωi = {Pk|ei ∈ Pk} be the set of paths containing edge ei. We introduce a
binary variable xk for each Pk ∈ P , where xk = 1 if and only if Pk is accepted. Thus, the load of edge ei is
Load(ei) =

∑
k:Pk∈Ωi

widkxk. We formulate the PCCC problem on weighted lines as the following integer linear
program (ILP): ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min L +
K∑

k=1

pk(1 − xk)

Load(ei) =
∑

k:Pk∈Ωi

widkxk ≤ L, i = 1, 2, . . . , n − 1;

xk ∈ {0, 1}, k = 1, 2, . . . , K.

Replacing the constraints xk ∈ {0, 1} by 0 ≤ xk ≤ 1, we obtain the relaxation of the ILP, which is a linear
program, and can be solved in polynomial time. Let x∗ = (x∗

1, x
∗
2, . . . , x

∗
K) be an optimal solution for the

relaxation of the ILP. Consider the 0-1 vector (x̄1, x̄2, . . . , x̄K) for the ILP, where x̄k = 1 if and only if x∗
k ≥ 1/2.

Theorem 2.3. The objective value of the solution (x̄1, x̄2, . . . , x̄K) is at most 2OPT , where OPT is the objective
value of the optimal solution.
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Proof. If x∗
k ≥ 1/2, we have x̄k = 1 ≤<< 2x∗

k, and 1− x̄k = 0 ≤<< 2(1− x∗
k). Otherwise, we have x̄k = 0 ≤<<

2x∗
k, and 1 − x̄k = 1 ≤<< 2(1 − x∗

k). Hence,

max
i

Load(ei) +
K∑

k=1

pk(1 − x̄k)

= max
i

∑
k:Pk∈Ωi

widkx̄k +
K∑

k=1

pk(1 − x̄k)

≤ 2
∑

k:Pk∈Ωi

widkx∗
k + 2

K∑
k=1

pk(1 − x∗
k)

≤ 2OPT,

where the last inequality follows from the fact that the optimal value of the relaxation of the ILP is a lower
bound on OPT . �

Chakrabarti et al. [11] proved that the nature linear programming (LP) formulation for the UFP on lines
suffers from an integrality gap Ω(n). Theorem 3 implies the integrality gap of the nature LP formulation for
the PCCC problem on weighted lines is at most 2. Moreover, we find a lower bound on the integrality gap of
the nature LP formulation.

Theorem 2.4. The integrality gap of the relaxation of the ILP is at least 4/3.

Proof. Consider an example with three vertices and two paths. All the weights of the edges are 1. The path
P1 = {(1, 2)} has a demand 1 and a penalty cost 10. The path P2 = {(2, 3)} has a demand 2 and a penalty
cost 1. It is no hard to verify that the optimal value of the relaxation of the ILP is 3/2, and the optimal value
of the ILP is 2. The integrality gap is 4/3. �

Theorem 4 implies that we can not obtain a feasible solution by rounding x∗ with approximation ratio less
that 4/3 for the ILP. Fortunately, a simple randomized rounding algorithm can produce a feasible solution with
objective value no more that 1.582OPT . We randomly choose a threshold α from the uniform distribution over
[1/e, 1]. If x∗

k > α, set x̂ = 1, and x̂ = 0, otherwise. Let x̂ = (x̂1, x̂2, . . . , x̂K) be the resulting solution.

Lemma 2.5. The expected objective value of the solution x̂ is at most e
e−1OPT .

Proof. Let L∗ = maxi

∑
k:Pk∈Ωi

widkx∗
k and L̂ = maxi

∑
k:Pk∈Ωi

widkx̂k. Clearly, for any α ∈ [1/e, 1], we have
x̂k ≤ x∗

k/α and L̂ ≤ L∗/α. Therefore,

E[L̂] ≤
∫ 1

1
e

L∗
α dα

1 − 1
e

=
eL∗

e − 1
ln α|11

e
=

e

e − 1
L∗.

If x∗
k ≤ 1

e , we have

E[pk(1 − x̂k)] = pk ≤ (1 − x∗
k)pk

1 − 1
e

=
e

e − 1
pk(1 − x∗

k).

If x∗
k > 1

e , we have

E[pk(1 − x̂k)] = pk · Pr[x∗
k ≤ α] + 0 · Pr[x∗

k > α]

= pk · 1 − x∗
k

1 − 1
e

=
e

e − 1
pk(1 − x∗

k).



44 W. LI ET AL.

Thus,

E

[
L̂ +

K∑
k=1

pk(1 − x̂k)

]
≤ e

e − 1

(
L∗ +

K∑
k=1

pk(1 − x∗
k)

)

≤ e

e − 1
OPT. �

Note that there are at most K critical values x∗
k, k = 1, 2, . . . , K, for the threshold parameters α, which

implies the randomized rounding algorithm can be derandomized in polynomial time. Therefore,

Theorem 2.6. There exists a determinate e
e−1 (≈1.582)-approximation algorithm for the PCCC problem on

weighted lines.

2.3. Two special cases

Although the PCCC problem on weight lines is NP -hard, it can be solved optimally in polynomial time for
some special cases.

Theorem 2.7. When dk ≡ 1, the PCCC problem on weighted lines admits a polynomial-time optimal algorithm.

Proof. Given an instance I of the PCCC problem on weighted lines, let L be the maximum load of the edges
in the optimal solution. For each edge ei, i = 1, 2, . . . , n − 1, set ci = �L/wi	. Consider the corresponding
instance τ(I, L) of the UFP on lines, where the capacity of edge ei is ci, the profit of path Pk is pk, and all
demands of paths are 1. Although the UFP on lines is strongly NP -hard even if all edge capacities are uniform
and all demands are either 1, 2, or 3 [8], when all demands are 1, the UFP on lines can be solved optimally
in polynomial time by constructing an auxiliary instance for the minimum cost flow problem [1, 9]. For each
possible value L ∈ {wi, 2wi, . . . , Kwi|i = 1, 2, . . . , n − 1}, let OPTL be the optimal value for instance τ(I, L) of
the UFP on lines. Clearly, minL(L+

∑K
k=1 pk −OPTL) is the optimal value for instance I of the PCCC problem

on weighted lines. �

Theorem 2.8. When the number of vertices n is a fixed number, the PCCC problem on weighted lines admits
a FPTAS.

Proof. Using the method in [18] with small modifications, we can obtain the FPTAS for the PCCC problem on
weighted lines. We omit the details here. �

3. The PCCC problem on weighted rings

It is easy to verify that the approximation algorithms in the last section can be extended to general graphs,
including rings. We will consider two special cases of the PCCC problem on weighted rings.

Theorem 3.1. When dk ≡ 1, the PCCC problem on weighted rings admits a PTAS.

Proof. We transform the PCCC problem on weighted rings to the weighted call control problem [1] on rings
which is equivalent to the UFP on rings and defined as follows. Given a ring with edge capacities and a set of
weighted paths on a ring, compute a subset of the paths with maximum weight without violating the capacity.
For the weighted call control problem on rings, Adamy et al. [1] presented a polynomial-time algorithm A such
that it computes a solution with objective value at least OPT and the edge capacity violated at most one.

Given an instance I of the PCCC problem on weighted rings, for each possible value L, we construct an
instance τ(I, L) for the weighted call control problem on rings with edge capacity ci = �L/wi	 and the paths
set P , where the weight of the path Pk ∈ P is pk. For each L ∈ {wi, 2wi, . . . , Kwi|i = 1, 2, . . . , n−1}, implement
the algorithm A for the instance τ(I, L), and select a solution satisfying that L+

∑K
k=1 pk−OPTL is minimized,
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where OPTL is the objective value of the produced solution. Clearly, minL{L+
∑K

k=1 pk−OPTL} is the optimal
value for instance I of the PCCC problem on weighted rings. As algorithm A produces a solution violating the
edge capacity at most one, we obtain a solution with objective value at most OPT + 1.

To obtain a PTAS, for each L ≤ 1
ε , we use a substituted algorithm A1 for instance τ(I, L) which computes

a maximum-weight set of paths such that no edge is violated. As in [1], we enumerate in polynomial time all
subsets S1 consisting of at most L paths containing the edge e1. For each such subset S1, we can use the optimal
algorithm for the weighted call control problem on lines [1,9] to compute a maximum weight set S′

1 of paths not
containing e1 such that S1∪S′

1 is feasible. In the end, choose the solution S1∪S′
1 with maximum weight. Adamy

et al. [1] proved that this algorithm is polynomial and optimal. If OPT ≤ 1
ε , we obtain an optimal solution;

otherwise, we can obtain a solution with objective value at most OPT + 1 ≤ (1 + ε)OPT , as OPT > 1
ε . Thus,

the theorem holds. �

Theorem 3.2. When dk ≡ 1 and pk ≡ 1, the PCCC problem on weighted rings admits a polynomial-time
optimal algorithm.

Proof. We transform the PCCC problem on rings to the call control problem on rings where all profits are 1,
as in the proof of Theorem 3.1. When all weights are 1, the call control problem on rings admits a strongly
polynomial optimal algorithm [1]. Hence, as discussed before, the PCCC problem on weighted rings admits a
polynomial-time optimal algorithm, when dk ≡ 1 and pk ≡ 1. �

4. Conclusion

In this paper, we designed some polynomial-time algorithms for the PCCC problem on weighted lines and
rings. However, the existence of the PTAS for the PCCC problem on weighted lines (or rings) still be open.
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