
RAIRO-Oper. Res. 49 (2015) 821–844 RAIRO Operations Research

DOI: 10.1051/ro/2015007 www.rairo-ro.org

ROBUST INVESTMENT MANAGEMENT
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Abstract. We consider a problem where an investment manager must
allocate an available budget among a set of fund managers, whose asset
class allocations are not precisely known to the investment manager. In
this paper, we propose a robust framework that takes into account the
uncertainty stemming from the fund managers’ allocation, as well as
the more traditional uncertainty due to uncertain asset class returns,
in the context of manager selection and portfolio management when
short sales are not allowed. A key application area is university en-
dowments funds. We assume that only bounds on the fund managers’
holdings (expressed as fractions of the portfolio) are available, and frac-
tions must sum to 1 for each fund manager. We define worst-case risk as
the largest variance attainable by the investment manager’s portfolio
over that uncertainty set. We propose two exact approaches (of dif-
ferent complexity) and a heuristic one to solve the problem efficiently.
Numerical experiments suggest that our robust model provides better
protection against risk than the nominal model when the fund man-
agers’ allocations are not known precisely.
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1. Motivation and literature review

Institutional investors, such as pension funds, university endowments and in-
surance companies, actively manage their portfolio by investing money in outside
fund managers with the expectation of generating superior returns while keeping
risk at an acceptable level. Fund managers might have quite different risk and re-
turn profiles regarding their strategy and investment process, and the investment
manager (institutional investor) must decide how to allocate his budget among
them given a high-level idea of each fund’s strategy, as expressed in its prospectus,
but without knowing the fund managers’ allocation exactly. While a rich body
of literature exists on portfolio management, starting with the pioneering work
of Markowitz [27] on mean-variance allocation and while the issue of uncertainty
in stocks’ expected returns and covariances has received significant attention in
the operations research community, the double uncertainty – from an institutional
investor’s perspective – stemming from both asset returns and managers’ alloca-
tion, has to the best of our knowledge received no attention at all in terms of
quantitative decision-making models. The purpose of this paper is to address such
a gap.

1.1. Literature review

Performance attribution

The reader is referred to Maginn et al. [25], Swensen [34] for introductions
to the management of investment portfolios. Methods developed in finance to
explain fund managers’ performance versus a benchmark index such as the return
of the S&P 500 are called fund performance attribution analysis. Previous research
has focused on evaluating fund managers’ skills by decomposing observed fund
returns into several components. Brinson et al. [9] suggest a method to decompose
the manager’s added value into three parts: (1) asset allocation, (2) stock selection
and (3) intersection between the two. This method has the following drawbacks: it
does not incorporate the fact that over-weighting a portfolio in a negative market
that has outperformed the overall benchmark should still have a positive effect,
and it fails to distinguish between the static manager and the dynamic manager,
who is trying to capture opportunity when the market is up in one sector and thus
over-weighs his portfolio in that sector. Hsu and Myers [20], Lo [24] both propose
approaches to capture the static and dynamic contributions of a fund manager’s
performance. In their models, weights are considered to be a stochastic process
as opposed to fixed parameters. The dynamic component is measured by the sum
of the covariances between returns and portfolio weights. The fund return is split
into an active management component (reflecting the fund manager’s skill) and a
passive management component (reflecting stock performance). Reed et al. [29]
investigate downside risk management from institutional investors’ perspectives
and present a decomposition that separate the risk contributions of individual
securities from that of investment decisions.
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Fund returns can also be decomposed into systematic and unsystematic
components. Such a decomposition was first presented in the Capital Asset
Pricing Model, where the unsystematic component can be considered as the
value added by the manager’s performance. It was further developed in Jensen
[21, 22], Sharpe [31], Treynor [36], who also provide risk-adjusted performance
measures such as the Sharpe Ratio, Treynor Ratio and Information Ratio to
evaluate the fund manager’s performance. These measures are all static mea-
sures, based on the characteristics of returns in a single time period. Treynor
and Mazuy [38] propose a method to measure the fund managers’s ability
to capture the up market by introducing the quadratic term in the excess
return (Rmt − Rf )2. Arnott et al. [1], Treynor [37] also consider the covariance
between portfolio weights and returns but this is only discussed in the context
of providing capitalization-indifferent equity market indexes that deliver superior
mean-variance performance. Grinblatt and Titman [19] point out that the positive
covariance between portfolio weights and returns should bring benefit to investors,
and propose a measure that exhibits this property.

Decentralized investment management

A research area related to the present paper is decentralized investment
management, pioneered by Sharpe [32]. Barry and Starks [2] focus on risk-sharing
as a reason for the investor’s decision to employ multiple managers and provide
conditions under which a multi-manager allocation is optimal when managers’
specialization and diversification are not motives for the use of multiple man-
agers. Elton and Gruber [16] investigate how to set up a structure that would
lead, in a decentralized investment situation, to the optimal portfolio for the
centralized decision-maker. Specifically, the authors list the following four tasks for
a centralized decision-maker and explain that their paper focuses on the first two:
“(1) decide how much to invest in each portfolio, (2) give the outside managers
instructions that will result in their making optimum security allocations from the
point of view of the overall plan, (3) design incentive systems so that the managers
will behave optimally, and (4) evaluate and select the portfolio managers.” The
authors derive conditions under which a centralized decision-maker can form
an optimal overall portfolio by employing outside portfolio managers. Two key
factors are whether the centralized manager assigns informative value to negative
alphas when there are multiple active managers and whether short sales are
allowed.

Van Binsbergen et al. [40] also study a problem where a centralized decision-
maker employs multiple asset managers. In their setting, the decision-maker is un-
certain about the portfolio managers’ risk appetites. The authors show how a well-
chosen unconditional linear performance benchmark can better align the incentive
between the centralized decision-maker and the portfolio managers, when consid-
ering two asset classes (bonds and stocks) and three assets per class (for bonds:
government-rated bonds, Baa-rated corporate bonds and Aaa-rated corporate
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bonds, and for stocks: growth stocks, intermediate and value stocks). Blake
et al. [8] provide an empirical study in the pension fund industry, for which they
document two important trends: the switch from generalist balanced managers to
more specialized ones and, within asset classes, the switch from a single-manager
situation to settings with multiple competing managers.

These approaches offer investors valuable ways to evaluate fund managers, but
do not address the problem of creating a portfolio in presence of uncertainty on
the fund managers’ allocation.

Parameter uncertainty
Parameter uncertainty in classical mean-variance portfolio management has been
studied extensively (although not specifically in a decentralized investment man-
agement context) since Chopra and Ziemba [11] documented the impact of mean
and covariance estimation errors on mean-variance portfolios. Techniques sug-
gested to mitigate the impact of such errors include stochastic optimization (Pflug
and Wozabal [28]), robust statistic models (DeMiguel and Nogales [14], Garlappi
et al. [17]), shrinkage (a method that transforms the sample covariance ma-
trix by pulling the more extreme coefficients toward central values, see DeMiguel
et al. [13], Ledoit and Wolf [23]) and robust optimization, which models uncer-
tain parameters using range forecasts and optimizes the worst-case objective, here,
minimizes the worst-case variance, with the worst case being computed over that
uncertainty set (Ben-Tal et al. [3,4], Bertsimas et al. [6]). Applications of robust
optimization to classical portfolio management with uncertain parameters have
been presented in Ben-Tal et al. [3], Goldfarb and Iyengar [18], among others. In
particular, Goldfarb and Iyengar [18] investigate robust mean-variance portfolio
selection problems under a specific uncertainty structure that leads to second-
order cone problems and thus can be solved efficiently. Portfolio optimization with
uncertainty over a set of distributions has also been studied, for instance in El-
Ghaoui et al. [15], which assumes that only bounds on the mean and covariance
matrix are available in the context of worst-case value-at-risk optimization, and
in Delage and Ye [12], which incorporates ambiguity in both the distribution and
its moments in a tractable formulation applied to portfolio selection.

A key technique we will use is delayed constraint generation to address the is-
sue of scale in our robust formulations. Delayed constraint generation was first
introduced in Benders [5]. The use of this technique in the context of tractable
robust formulations is for instance presented in Thiele et al. [35], Zeng [41]. Im-
portant variations on Benders’ decomposition, still for robust optimization but
in the context of inventory management with basestock levels, are described in
Bienstock and Ozbay [7]. Further, Zhang [42] presents delayed constraint genera-
tion for multi-period pricing of perishable products under uncertainty.

1.2. Contributions

In this paper, our goal is to provide an optimization approach to construct a
portfolio of funds for the investment manager while taking into account that the
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funds’ tactical allocation is not precisely known. The methodology we will use to
achieve that goal is robust optimization. We will investigate this methodology in
the context of the well-known mean-variance framework, or Markowitz framework,
where we seek to minimize worst-case variance of the investment manager’s port-
folio (with the worst case computed over the parameters’ uncertainty set) subject
to a constraint on the expected return. Short sales are not allowed in our model.
They are usually prohibited in university endowment funds; in addition, allowing
short sales in this context would mean that the investment manager’s allocation
in certain fund managers might be negative, which would complicate the relation-
ship of the investment manager with those fund managers in a fluid industry where
employment can change frequently. Hence, we feel that human and practical con-
siderations make the no-short-sales assumption reasonable even beyond our core
application of university endowment funds.

Uncertainty in finance has been well studied in the context of stock returns, but
not regarding the asset allocation of fund managers. Our paper presents a new
framework that extends the traditional mean-variance model to the problem faced
by the investment (or fund of funds) manager. We also propose an efficient algo-
rithm to solve the problem and provide insights into the fund managers who are
chosen by the investment manager. Our numerical results indicate that uncertainty
in managers’ asset allocation does affect the investment manager’s optimal strat-
egy, and suggest that our robust model protects the investment manager against
(fund managers’) allocation risk.

Structure of the Paper
We present the general framework of the robust manager selection model in Sec-
tion 2. In Section 3, we propose two algorithms for solving this problem. In Section
4, we apply the two proposed approaches to the robust model in numerical exper-
iments and compare results with the nominal model. A heuristic method is also
presented in order to solve the problem efficiently. Finally, Section 5 contains some
concluding remarks.

2. Robust fund manager selection

2.1. Problem setup

We seek to minimize the worst-case portfolio risk (variance) of the invest-
ment manager, while guaranteeing that expected return achieves or beats a cer-
tain benchmark. Investment managers typically express their portfolio holdings
in terms of broad asset classes rather than specific assets; this is therefore the
practice that we will follow throughout this paper. From a mathematical stand-
point, it has also the advantage of keeping the problem size smaller, since assets
are grouped into a smaller number of asset classes. Each manager’s allocation in
each asset class is subject to ambiguity but is known to fall within a certain range.
Non-negative allocation weights model that short sales are not allowed. The fund
managers selected by the model will be those for whom the investment manager’s
allocation has strictly positive weights.
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We will use the following notation:
Decision Variables
xi: allocation in fund manager i

Parameters relate.d to fund managers’ allocations
wij : (uncertain) allocation of manager i in asset class j
w+

ij : upper bound of allocation of manager i in asset class j

w−
ij : lower bound of allocation of manager i to asset class j

wij : nominal allocation of manager i to asset class j

Other parameters
n: number of fund managers
m: number of asset classes
r̄j : expected return from asset class j
cov(rj , rl): covariance between the returns of asset class j and asset class l
τ : portfolio return benchmark.

2.2. Formulation

The problem without uncertainty on the fund managers’ allocation, in the clas-
sical Markowitz framework, can be formulated as:

minx

n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

wijwkl cov(rj , rl)xixk

s.t.
n∑

i=1

xi = 1

n∑

i=1

m∑

j=1

wijrj xi ≥ τ

xi ≥ 0, ∀i (2.1)

When there is uncertainty on the fund managers’ allocation, Problem (2.1) be-
comes:

minx maxω

n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

wijwkl cov(rj , rl)xixk

s.t.
m∑

j=1

wij = 1, ∀i

w−
ij ≤ wij ≤ w+

ij , ∀i, j

s.t.
n∑

i=1

xi = 1

n∑

i=1

m∑

j=1

wijrj xi ≥ τ

xi ≥ 0, ∀i (2.2)
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The following section describes how to solve this problem efficiently. (Note that
in order to compare our solution with that obtained by the nominal model, we do
not incorporate parameter ambiguity into the benchmark constraint, so that our
robust feasible solutions will also be feasible in the nominal model.)

The approach can easily accommodate additional linear or convex quadratic
constraints in x: linear because the feasible set would remain a polyhedron as in
the nominal problem and quadratic because the algorithm we will introduce to
solve the robust problem involves solving a problem with a linear objective and
linear or quadratic constraints. Hence, more linear or quadratic constraints will
not change the type of problems to be solved. This allows the investment man-
ager in particular to consider bounds constraints on each manager’s risk to model
the equivalent of risk-parity, risk-budgeting or marginal risk models (see Mail-
lard et al. [26], Roncalli [30] for insights into equally-weighted risk contribution
portfolios and an introduction to risk parity and budgeting, respectively).

3. Solution approach

The traditional approach to solve robust optimization problems, which are min-
max problems, is to take the dual of the inner maximization problem, invoke
strong duality and reinject the newly obtained inner minimization problem into
the outer minimization problem to obtain a single minimization problem. However,
in our case, the inner maximization problem is a non-convex problem, since we
maximize a convex function. Hence, strong duality does not hold, but an optimal
solution to the inner problem is achieved at a corner point of the feasible set. Let
S be the set of corner points of that polyhedron, so that the optimal objective of
the inner problem is maxs∈S

∑n
i=1

∑m
j=1

∑n
k=1

∑m
l=1 ws

ijw
s
klcov(rj , rl)xixk. Then

Problem (2.2) becomes:

minx,Z Z

s.t. Z ≥
n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

ws
klw

s
ij cov(rj , rl)xixk, ∀s ∈ S

n∑

i=1

xi = 1

n∑

i=1

m∑

j=1

wijrjxi ≥ τ

xi ≥ 0, ∀i (3.1)

Therefore, we will implement a delayed constraint generation algorithm where we

only generate constraints of the type Z ≥
n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

ws
ijw

s
klcov(rj , rl)xixk on

an as-needed basis. A key step is to solve the inner problem efficiently so that we
can add the constraints with the appropriate corner point of the feasible set of the
inner problem, ws.
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We propose two algorithms to solve the inner problem, and then solve the outer
problem via delayed constraint generation. The first approach to solve the inner
problem is to use that the optimal solution of the inner problem will be at a
corner point of the feasible set, eliminate the quadratic (binary) term in the ob-
jective function through linearization, and transform the problem into a mixed 0-1
linear program. The second approach is to implement Chen and Burer [10]’s algo-
rithm to solve the nonconvex quadratic problem globally via completely positive
programming.

3.1. Inner problem

3.1.1. Approach 1

Consider

maxω

n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

wijwkl cov(rj , rl)xixk

s.t.
m∑

j=1

wij = 1, ∀i

w−
ij ≤ wij ≤ w+

ij , ∀i, j

We are maximizing a convex function over a bounded, non-empty polyhedron;
hence, the optimal solution will be achieved at a corner point of the feasible set.
For the specific feasible set we are considering, Tuy [39] shows that corner points
are such that, for each manager i, there exists at most one wij that possibly does
not reach its bound, and all the others are equal to either their upper or their
lower bound. We write this in mathematical terms below.

Let Ji be the index of the wij not equal to either bound for manager i and
denote wij = w−

ij +�wij · uij , where �wij = w+
ij −w−

ij . Then for each manager i,

• for j = Ji, wij ∈ [w−
ij , w

+
ij ], i.e. wij = w−

ij + �wij · uij , where 0 ≤ uij ≤ 1
• for j �= Ji, wij is w−

ij or w+
ij , i.e. wij = w−

ij + �wij · uij , where uij ∈ {0, 1}
Therefore, we can enumerate values of Ji from 1 to m for each manager i and

the original inner nonconvex problem can be reformulated into mn mixed integer
subproblems. This of course only remains tractable as long as mn is relatively
small. For a given subproblem, i.e., a specific value of Ji between 1 and m, we
have to solve:

maxu

n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

xixkcov(rj , rl)(w−
ij + �wijuij)(w−

kl + �wklukl)

s.t.
m∑

j=1

�wij · uij = 1 −
m∑

j=1

w−
ij , ∀i

uij ∈ {0, 1}, for j �= Ji

0 ≤ uij ≤ 1, for j = Ji (3.2)
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Note that this formulation allows wij for j = Ji to also reach its bound in case of
degeneracy.

Sherali and Adams [33] propose the following Reformulation-Linearisation Tech-
nique. The constraint yij = zizj , together with zi ∈ {0, 1} and zj ∈ {0, 1} is
rewritten as:

yij ≥ 0, yij ≤ zi, yij ≤ zj, yij ≥ zi + zj − 1.

Substituting uijukl by vijkl, Problem (3.2) can therefore be reformulated as:

maxu,v

n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

xixkcov(rj , rl)

× (
w−

ijw
−
kl + 2w−

kl � wij · uij + �wij � wkl · vijkl

)

s.t.
m∑

j=1

�wij · uij = 1 −
m∑

j=1

w−
ij , ∀i

vijkl ≤ uij , ∀i, j

vijkl ≤ ukl, ∀k, l

vijkl ≥ uij + ukl − 1, ∀i, j, k, l

uij ∈ {0, 1}, for j �= Ji, ∀i

0 ≤ uij ≤ 1, for j = Ji, ∀i. (3.3)

3.1.2. Approach 2

Chen and Burer [10] propose a method to solve nonconvex quadratic pro-
gramming problems to global optimality via completely positive programming.
Their approach consists in employing a finite branch-and bound (B&B) scheme,
in which branching is based on the first-order KKT conditions and polyhedral-
semidominant relaxation are solved at each node of the (B&B) tree. The re-
laxations are derived from completely positive and doubly nonnegative program-
ming problems. The original quadratic programming problem is reformulated as a
quadratic programming problem with linear equality, nonnegativity and comple-
mentarity constraints. Such a problem can be further reformulated as a completely
positive programming problem and relaxed to a doubly nonnegative programming
problem.
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3.2. Algorithm

As explained above, we solve the outer problem using delayed constraint gener-
ation. For the Sth iteration, the outer problem can be formulated as:

minx,Z Z

s.t. Z ≥
n∑

i=1

m∑

j=1

n∑

k=1

m∑

l=1

ws
ijw

s
kl cov(rj , rl) xixk, ∀s = 1, 2, . . . S

n∑

i=1

m∑

j=1

xiwijrj ≥ τ,

n∑

i=1

xi = 1

xi ≥ 0, ∀i. (3.4)

Therefore, we suggest the following algorithm to solve the investment manager’s
problem, which converges in a finite number of steps by definition of the master
problem (3.1):

Algorithm 3.1 (Delayed constraint generation algorithm).

Step 1. Start with a feasible solution x ∈ X and set iteration number s := 0.
Step 2. Solve the inner problem (in w) with candidate solution xs as parameter

using either Approach 1 or Approach 2 and obtain optimal solution w,
denoted ws+1.

Step 3. Solve the outer problem (3.4) (in x) with candidate weight ws+1 as pa-
rameter and obtain optimal solution x, denoted xs+1. Set s := s + 1.

Step 4. Repeat Steps 2 and 3 until there is no new delayed constraint to generate,
i.e., the optimal w solution outputted in Step 2 in step s has already been
found in a previous step s′ < s and thus already appears in the constraints
of Problem (3.4).

4. Numerical results

In this section, we present three experiments to illustrate our robust approach
to the manager selection problem with uncertainty in the asset allocations. The
first set of experiment is to compare the performance of the two approaches pro-
posed in Section 3 to solve the inner problem and obtain corner points used in
the delayed constraint generation algorithm. The second experiment is to compare
our robust approach with the nominal approach from a risk standpoint. In the
third experiment, we propose a heuristic algorithm that improves solution time
by pre-selecting a subset of the fund managers from the large candidate pool into
the robust manager selection model, and we compare the results of this heuristic
method with the two approaches we proposed in Section 3. The data was provided
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Table 1. Four managers with four asset classes.

Worst Nominal 0.15 0.2 0.25 0.3 0.35 0.4 0.45

variance return

Manager 1 13.2566 0.0259 0 0 0 0 0 0 0

Manager 2 10.161 0.0227 0 0 0 0 0 0 0

Manager 3 11.2965 0.0457 0 0 0 0.17 0.4368 0.7 0.9632

Manager 4 7.645 0.0267 1 1 1 0.83 0.5632 0.3 0.0368

Variance
7.645 7.645 7.645 7.93 8.6456 9.6935 11.0762

(objective)

Excess return 0.0117 0.0067 0.0017 0 0 0 0

Running Time Approach 1 (CPU sec.) 8.092 7.222 7.294 9.96 16.394 13.791 15.745

Running Time Approach 2 (CPU sec.) 13.274 12.95 15.055 25.6 27.134 26.487 44.493

by the Lehigh University’s Investment Office, including bounds on real funds’ al-
locations, which were supplied to the investment office by fund managers as a
reflection of their strategic outlook. The data presented here is dis-identified.

4.1. Comparison of the two approaches to solve the robust inner

problem

In this set of experiments, we test the efficiency of the two approaches to solve
the robust inner problem, which are used to generate constraints in the delayed
algorithm for the master problem: the MIP approach and the Chen and Burer [10]
approach. We test three instances: four managers with four asset classes, six man-
agers with six asset classes, and twelve managers with six asset classes. We observe
that the first approach (MIP approach) is more efficient than the second one when
the problem size is small. However, as the problem size increases, the computa-
tional advantage of the second approach becomes more significant. When we con-
sider the problem with twelve managers and six asset classes, the first approach
needs to solve 612 independent mixed integer problems and the computations ex-
ceed the allowed time limit, while the second approach can solve the problem in
a reasonable time for this size. Tables 1−3 present the results as a function of the
expected-return benchmark τ , increasing from 0.15 onwards. Running times are
expressed in CPU seconds throughout. The worst variance of manager i is defined
as the worst-case variance of his portfolio’s return when his weights wij sum to 1
over all assets j and fall within the bounds [w−

ij , w+
ij ].

4.1.1. Four managers with four asset classes

We see from Table 1 that it is optimal for the investment manager to invest
solely in the fund of Manager 4 for small values of τ (specifically, as long as the
benchmark constraint is not tight). Once τ reaches 0.3, the investment manager
begins to diversify into the fund of Manager 3, and increases his allocation into
that fund until his allocation consists almost solely of Fund 3 for τ = 0.45. The
MIP approach (Approach 1) is initially about 39% faster than Approach 2, and
for the largest value of τ considered, solves in about a third of the time it takes
for Approach 2 to terminate.
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Figure 1. Nominal manager allocation: six managers with six asset classes.

4.1.2. Six managers with six asset classes

Table 2 shows increased diversification as τ increases, from investing in the
funds of Managers 1 and 2 only while the expected-return benchmark constraint
is not tight, to investing in the funds of Managers 1, 2 and 5 with growing weight
into Fund 5. We also observe that Approach 2 now takes less time to solve. For
small values of τ , Approach 1 takes about four times longer to terminate. For large
values of τ , it takes approximately 76% longer.

4.1.3. Twelve managers with six asset classes
The case with twelve managers and six asset classes is only solved using Ap-

proach 2, since Approach 1 runs into time limits. The investment manager initially
allocates his budget between Managers 5, 10 and 12. As τ increases, Fund 4 is also
chosen, and Fund 12 is taken out of the selection. Fund 6 is chosen for some values
of τ as well. The fact that some managers are never chosen will motivate the design
of the pre-selection heuristic we present in Section 4.3.

4.2. Comparison between the nominal and the robust models

In this set of experiments, we compare our robust model with the nominal model
where fund managers’ allocations are assumed equal to their nominal value. We
then test the performance of the two models under the nominal asset allocation
scenario and the worst case asset allocation scenario. We also compare the dif-
ference in the manager selection policy under the two models. The cases of six
managers with six asset classes and twelve managers with six asset classes are
presented for illustration purposes.

4.2.1. Six managers with six asset classes
Figures 1 and 2 compare the optimal manager selection policy under the nom-

inal and robust models, respectively. In the nominal model, Manager 1 is always
chosen for all values of the benchmark requirement (parameter τ), but with a de-
creasing weight as the benchmark return increases and Manager 5 is selected with
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Figure 2. Robust manager allocation: six managers with six asset classes.
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Figure 3. Nominal model vs. robust model: six managers with six asset classes.

an increasing weight in the investment manager’s portfolio as the benchmark re-
turn exceed 0.045; however, in the robust model, Manager 1 has much less weight
in the portfolio compared to his weight in the nominal model. Manager 2, who is
never selected in the nominal model, has an initially large weight in the robust
manager selection model, which decreases as τ increases.

Figure 3 presents the risk under the nominal model, robust model and the case
where the nominal manager allocation is applied when the worst-case manager’s
allocation occurs. As expected, the nominal model always gives the lowest risk
for the fund managers’ nominal asset allocation, while the robust model gives the
lowest risk for the fund managers’ robust asset allocation. In the scenario that
the worst case manager’s asset allocation occurs, the nominal manager selection
policy consistently results in a higher risk than the risk under the robust manager
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Figure 4. Nominal manager allocation: twelve managers with six asset classes.
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Figure 5. Robust manager allocation: twelve managers with six asset classes.

selection policy. From Figure 3, we see that the robust model provides a good
protection for the worst case scenario, with a decrease in risk of about 8% in the
worst case.

4.2.2. Twelve managers with six asset classes

Here as well, the nominal and robust models result in very different manager
selection policies. Managers 4, 10 and 12, who receive a large weight under the
robust manager selection policy, are never chosen in the nominal case. Meanwhile,
Managers 1 and 8 are never selected under the robust manager selection policy.
Detailed manager allocation information are shown in Figures 4 and 5 for the
nominal and robust models, respectively.

Figure 6 shows that the robust model better protects the investment manager
against allocation risk given the worst-case asset allocation scenario, achieving a
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Figure 6. Nominal model vs. robust model: twelve managers
with six asset classes.

decrease in risk in the worst case of about 9%. The large differences in fund man-
ager allocation combined with the increased protection against risk suggests that
it is important for the investment manager to implement such a robust approach
if fund managers’ allocations are not precisely known.

4.3. A Heuristic

In this section, we are interested in studying a heuristic to pre-select fund man-
agers, thus decreasing computational time (perhaps enough to make the MIP ap-
proach – Approach 1 – a viable alternative to Approach 2). We define “the worst-
case efficient managers” as the managers whose worst-case risk and nominal return
pairs lie on the boundary of the convex hull of all the managers’ worst-case risk
vs. nominal return pairs and are non-dominated. (A worst-case risk and nominal
return pair for a given manager is said to be dominated when one can find another
manager with a smaller-or-equal worst-case risk and a higher-or-equal nominal re-
turn. On the graphs, dominated pairs correspond to managers’ markers for which
there exists another manager’s marker above and to the left.) These worst-case
efficient managers will be the only managers selected in the heuristic, which we
then test in the numerical experiments presented above.

The investment manager can also consider further pre-selecting managers if the
set of worst-case efficient managers is too large. Possible pre-selection schemes in-
clude selecting three worst-case efficient managers, one with the lowest worst-case
risk, one with the largest worst-case risk (because he will also have the largest ex-
pected return, since he is efficient by definition), and one “in the middle”, following
a criterion to be specified by the investment manager (e.g., the fund manager with
the smallest worst-case standard deviation that is above half the worst-case stan-
dard deviation of the other two managers who have just been identified), and pro-
ceeding iteratively to either change one manager, keeping the other two constant,
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Figure 7. Efficient frontier: four managers with four asset classes.

or adding a fourth manager. The proper procedure must be analyzed with care,
not only in the details of its definition but also in a comparison with the nominal
benchmark, and is therefore outside the scope of this paper.

In the case of four managers with four asset classes, Managers 3 and 4 dominate
the other managers from the viewpoint of worst case risk vs. nominal return, as
shown in Figure 7. Because it was in fact optimal to only select Managers 3 and
4, we thus recover the optimal solution. In the case of six managers with six asset
classes, Managers 1, 2 and 5 are on the boundary of the convex hull of worst case
risk vs.. nominal return pairs and it was also optimal to select those managers (and
only them) in the exact algorithm. In the case of twelve managers with six asset
classes, Managers 4, 5 and 6 are “the worst-case efficient managers” according to
our definition above. Manager 10 (marked as a circle) and Manager 12 (marked
as a cross) were selected in the optimal robust allocation but are not “worst case
efficient managers” (their risk-return pairs do not lie on the boundary of the convex
hull) and thus are not selected in the heuristic method.

For the cases of four managers with four assets, and six managers with six
assets, respectively, Tables 4 and 5 compare the result of the optimal manager
selection policy and the running time from the heuristic method with those in
the two approaches proposed in Section 4. The heuristic method yields the same
optimal result as the other two approaches (since the set of worst-case efficient
managers was the set of managers selected in the exact approaches at optimality),
but requires significantly less time to solve the problem due to the smaller num-
ber of candidate managers, especially in the instance with six managers and six
asset classes. The heuristic solves 290−610 times faster than Approach 1 and
160−190 times faster than Approach 2. The efficient frontier obtained from the
heuristic method, defined as the benchmark expected return τ (vertical axis) for
the optimal standard deviation or square root of the objective for the investment
manager (horizontal axis), overlaps with the exact efficient frontier obtained with
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Figure 8. Efficient frontier: six managers with six asset classes.
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Figure 9. Efficient frontier: twelve managers with six asset classes.

the other approaches as shown in Figures 7 and 8. “With Four Managers” refers to
the problem solved with the full fund-manager pool of four managers. “With Two
Most Efficient Managers” refers to the problem solved when only the two most
efficient managers, as defined above, are considered for possible funding, i.e., the
fund-manager pool is reduced according to the heuristic selection.

In Figure 8, “With Six Managers” refers to the problem solved with the full
fund-manager pool of six managers. “With Two Most Efficient Managers” refers
to the problem solved when only the three most efficient managers, as defined
above, are considered for possible funding, i.e., the fund-manager pool is reduced
according to the heuristic selection.
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For the case of twelve managers with six asset classes, Managers 4, 5 and 6
are selected as the worst-case efficient managers in the heuristic algorithm. The
number of candidate managers is reduced from twelve to three, and running time
decreases significantly. However, because up to 5 managers can be selected at opti-
mality of the exact method, the heuristic method yields a larger worst-case variance
compared to the other two approaches. The difference in variance decreases from
11% to 0 as the benchmark return increases, as shown in Figure 10.

5. Conclusions

In this paper, we have proposed a robust mean-variance framework to the in-
vestment manager’s portfolio problem that takes into account the uncertainty
stemming from the asset allocation of fund managers, in the context of manager
selection and portfolio management. We have also proposed two exact approaches
(one that is tractable for small size instances where numerical experiments suggest
it also solves the problem faster, and one that is tractable for all problem sizes
but can take longer to solve) and a heuristic one pre-selecting fund managers in
order to solve the problem efficiently. Our results indicate that our robust model
provides the investment manager with better protection against fund allocation
ambiguity in terms of worst-case variance. Future research directions include re-
fining the heuristics for large numbers of fund managers or asset classes if both
exact approaches and the heuristic based on worst-case efficient managers become
computationally intractable. These heuristics would involve further preselection
of fund managers among the worst-case efficient managers, possibly with iterative
updating to identify the optimal (in a sense to be defined) subset of fund managers
to be considered by the investment manager.
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