
RAIRO-Oper. Res. 49 (2015) 795–804 RAIRO Operations Research

DOI: 10.1051/ro/2015005 www.rairo-ro.org

ON THE TWO-STAGE HYBRID FLOW SHOP
WITH DEDICATED MACHINES

Hatem Hadda
1
, Mohamed Karim Hajji

2
and Najoua Dridi

2

Abstract. In this paper we develop new elimination rules and discuss
several polynomially solvable cases for the two-stage hybrid flow shop
problem with dedicated machines. We also propose a worst case analysis
for several heuristics. Furthermore, we point out and correct several
errors in the paper of Yang [J. Yang, A two-stage hybrid flow shop
with dedicated machines at the first stage. Comput. Oper. Res. 40
(2013) 2836−2843].

Keywords. Scheduling, hybrid flow shop, dedicated machines, worst
case analysis, elimination rule.

Mathematics Subject Classification. 90B35, 90B30.

1. Introduction

This paper tackles a special case of the two-stage hybrid flow shop problem in
which there are m dedicated machines Mk, k ∈ {1, . . . , m} on the first stage and
a single machine M0 on the second stage. The problem consists on minimizing
the makespan (Cmax) for a set J = {J1, J2, . . . , Jn} of n jobs. The jobs belong to
m disjoint types Tk, k ∈ {1, . . . , m}. Each job is composed by a sequence of two
operations. The first operation must be processed on Mk if the job is of type Tk (k ∈
{1, . . . , m}), whereas the second operation of all jobs must be performed on M0.
The problem is strongly NP-hard [8] and we denote it by F2(PDm, 1)||Cmax where
PDm refers to the existence of m parallel dedicated machines on the first stage.
We recall that permutation solutions are dominant and that F2(PDm, 1)||Cmax is

Received September 18, 2013. Accepted Ferbruary 11, 2015.

1 LISI, INSAT, Centre Urbain Nord B.P. N676, 1080 Tunis Cedex. Tunisia.
hatem.hadda@esti.rnu.tn

2 Unité de Recherche OASIS, ENIT, BP. 37, Le belvédère, 1002 Tunis. Tunisia.
h.mohamed.karim@hotmail.fr; najoua.dridi@enit.rnu.tn

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2015

http://dx.doi.org/10.1051/ro/2015005
http://www.rairo-ro.org
http://www.edpsciences.org

796 H. HADDA ET AL.

equivalent to F2(1, PDm)||Cmax in which M0 is on the first stage and the dedicated
machines are on the second one [1]. In the reminder of the paper, all the results
will be expressed for the problem F2(PDm, 1)||Cmax.

In [9], authors consider F2(PD2, 1)||Cmax for which they propose two lower
bounds and two polynomial cases. They also propose a (3

2)-approximation algo-
rithm (noted HOLC hereafter). In [1] authors consider F2(1, PDm)||Cmax for which
they identify several elimination rules and polynomial cases. They also derive new
lower bounds and propose a new heuristic. Later, an efficient elimination rule is in-
troduced in [4], and a heuristic method is developed in [11]. In [2] the author points
out errors in the work given in [11]. In the same context, a worst case analysis is
proposed for several simple heuristics in [12]. We note here that many of the re-
sults proposed in [12] were first proposed in [1]. More recently, a branch and bound
algorithm is developed and tested in [6]. Authors also propose an empirical anal-
ysis of the makespan distribution for small sizes instances. Finally in [3], several
approximations algorithms are proposed for F2(1, PDm)||Cmax under availability
constraint.

We also emphasize that F2(PDm, 1)||Cmax can be considered as a particular
case of the two-stage assembly problem (Am||Cmax) in which there are m parallel
machines on the first stage and a single assembly machine on the second stage.
Each job is composed by m+1 operations. The first m operations can be processed
in parallel on the first stage, then we proceed to the assembly operation on the
second stage. Considering Am||Cmax, the best known approximation algorithm
guarantees an error bound of (2−1/m) [10]. In the same context several heuristics
with an error bound of 2 are proposed in [5] for the Am||Cmax problem under
availability constraint.

The reminder of this paper is organized as follows. In Section 2 we introduce
new elimination rules. In Section 3 we discuss some particular cases. In Section 4
we propose a worst case analysis for several heuristics. We also discuss and correct
some of the results given in [12]. Finally, Section 5 concludes the paper and gives
some perspectives.

2. Notation and basic properties

The following notations will be used in the subsequent analysis.
J = {J1, J2, . . . , Jn}: set of all jobs;

nk: number of jobs of type Tk, k ∈ {1, . . . , m}, (J =
⋃m

k=1 Tk and n =
∑m

k=1 nk);
ai: processing time of Ji ∈ Tk on Mk;
bi: processing time of Ji on M0;
π = 〈π1, π2, . . . , πn〉: permutation schedule where πi is the job at the ith position;
Cki(π): completion time of Ji ∈ J on Mk, k ∈ {0, . . . , m} in schedule π;
Cmax(π): makespan of schedule π;
C�

max: Optimal makespan.
For a given schedule, let Ju and Jv be two consecutive jobs on a dedicated

machine, we designate by tuv the sum of the processing times of the jobs (of other
types) scheduled between Ju and Jv on M0.

ON THE TWO-STAGE HYBRID FLOW SHOP WITH DEDICATED MACHINES 797

For a given type Tk, k ∈ {1, . . . , m}, we denote by Tk = {Ji ∈ Tk|ai ≤ bi} and
Tk = {Ji ∈ Q|ai > bi}. Moreover, for any given set of jobs Q ⊆ J we also note by
a(Q) =

∑
Ji∈Q ai and b(Q) =

∑
Ji∈Q bi.

We recall that the two-machine flow shop problem (F2||Cmax) can be solved
by Johnson’s Rule (JR) [7] which can be stated as follows: Ji precedes Jj if
min{ai, bj} ≤ min{aj, bi}.

Furthermore, for a given type Tk, k ∈ {1, . . . , m}, we designate by zk the optimal
makespan if we consider an F2||Cmax problem with the jobs of Tk. Note that
zk ≤ C�

max, ∀ k ∈ {1, . . . , m}.
We now recall the following result.

Theorem 2.1 [4]. Given a solution π for F2(PDm, 1)||Cmax, let Ju and Jv be
two consecutive jobs on Mk, k ∈ {1, . . . , m}. If the relation

min{au; bv} ≤ min{av; bu + tuv}, (2.1)

does not hold, then the solution π′ obtained from π by inserting Jv before Ju is
no worse than π (i.e. Cmax(π′) ≤ Cmax(π)).

Using Theorem 2.1 it is possible to prove the existence of an optimal solution in
which every couple of consecutive jobs of the same type verifies relation (2.1) [4].

When dealing with permutation solutions for F2(PDm, 1)||Cmax, it should be
understood in the sense that if two jobs of the same type succeeds each other on M0

(possibly separated by other jobs of other types), they will appear in the same
order on their respective dedicated machine. In this sense, a complete schedule is
specified by a sequence of all jobs on M0. We now introduce a simple yet interesting
propriety for the F2(PDm, 1)||Cmax problem.

Theorem 2.2. For F2(PDm, 1)||Cmax, if we fix m sub-permutations for types Tk

on machine Mk, 1 ≤ k ≤ m, then a minimum completion time on M0 is obtained
by scheduling jobs in a non-decreasing order of their completion times on the first
stage.

Proof. When we fix the sequences on the dedicated machines, the minimization of
the makespan on M0 reduces to a 1|ri|Cmax problem where the release date ri of
Ji corresponds to its completion time on the first stage. It is well known that an
optimal solution for 1|ri|Cmax is given by scheduling the jobs in a non-decreasing
order of the release dates. �

Theorem 2.2 specifies the best way to interleave m given sub-permutations
on M0, which allows a considerable reduction of the search space. Indeed instead
of searching the best possible permutation over the n jobs on M0 (with n! possible
solutions), Theorem 2.2 suggests to look for the best sub-permutations on the
dedicated machines (with Π1≤k≤mnk! solutions). We illustrate in Table 1 some
values of the ratio Π1≤k≤mnk!/n! for several combinations of n and m (the jobs
are supposed to be equally partitioned over the types). We also remark that given

798 H. HADDA ET AL.

Table 1. Ratio Π1≤k≤mnk!/n!.

n

50 100 150

m = 2 8 × 10−15 1 × 10−29 1 × 10−44

m = 5 2 × 10−32 9 × 10−67 2 × 10−101

m = 10 2 × 10−44 4 × 10−93 3 × 10−142

any solution π, it is always possible to construct a solution π′ by rearranging the
jobs on M0 according to Theorem 2.2 such that Cmax(π′) ≤ Cmax(π).

We now introduce new elimination rules.

Corollary 2.3. For any given type Tk, k ∈ {1, . . . , m}, if there exists a set Q ⊆ Tk

such that maxJi∈Q{ai} ≤ minJi∈Tk\Q{ai} then there exists an optimal solution
where the jobs of Q are scheduled first on Mk in a non-decreasing order of ai.

Proof. Let π� be an optimal solution in which the jobs of Q are not scheduled first
on Mk. In such a solution there are two jobs Ju ∈ Tk \ Q and Jv ∈ Q such that
Ju directly precedes Jv on Mk. By definition we have av ≤ bv and av ≤ au, hence
min{au, bv} ≥ min{av, bu + tuv}. Theorem 2.1 allows the insertion of Jv before
Ju without altering the optimality of the solution. Consequently there exists an
optimal solution in which the jobs of Q are scheduled first on Mk. Now let Ju

and Jv be two consecutive jobs from Q such that av < au. Here too we have
min{au, bv} > min{av, bu + tuv} and we can insert Jv before Ju. By applying
the same argument for the rest of the jobs, it is possible to construct an optimal
solution where the jobs of Q are scheduled first on Mk in a non-decreasing order
of ai. �

Corollary 2.4. If for a given type Tk, k ∈ {1, . . . , m}, we have Tk = ∅ then
there exists an optimal solution where the jobs of Tk are scheduled on Mk in a
non-decreasing order of ai.

Proof. Similar to the proof of Corollary 2.3. �

3. Polynomially solvable cases

In this section we first introduce a simple polynomial case. We then consider
a particular case discussed in [12] for which we show that the presented proof is
incorrect, and then we reestablish the result.

Corollary 3.1. For F2(PDm, 1)||Cmax, if there is at most one job of each type Tk,
k ∈ {1, . . . , m} (i.e. n = m), then an optimal solution is obtained by scheduling the
jobs in a non-decreasing order of their processing processing times on the dedicated
machines.

ON THE TWO-STAGE HYBRID FLOW SHOP WITH DEDICATED MACHINES 799

a1 a2 a3

92515

b1 b2 b3

6211

�� SO1 ��SO2 ��SO3

Figure 1. Counterexample.

Proof. As there is one job per type, then the completion times of the jobs on the
first stage correspond to their processing times on the dedicated machine. Using
Theorem 2.2 it should be easy to derive the result. �

Given a permutation π, Yang [12] associates for each job πu ∈ Tk, k ∈
{1, . . . , m}, the term SOπu = Ck,πu − C0,πu−1 with C0,π0 = 0. Based on this
concept, the author proposes the following algorithm:

Algorithm SO

(1) Find job Jj ∈ J with the smallest SO value, and schedule it first. Break ties
arbitrarily.

(2) Remove Jj from J and repeat Step 1 until J = ∅.
(3) Calculate and output Cmax and stop.

Based on this algorithm, Yang [12] proposes the following polynomial case.

Theorem 3.2 [12]. For problem F2(PDm, 1)||Cmax, if ai ≤ bi for all Ji ∈ J , then
algorithm SO generates an optimal schedule.

We are going to show that the proof proposed in [12] is inaccurate, and then
reestablish a new one. In his proof, the author claims the following:

“Suppose that there exists an optimal schedule which is generated by a
rule different from Algorithm SO. Then, there exists job Jj ∈ J which would
have the smaller SO than the immediately preceding job on M0 does.”

This implies that Algorithm SO is supposed to generate a permutation in which
SO values appear in a non-decreasing order which is not always true as we can
see from the following example. Consider the problem instance with n = 3 and
m = 1. Let a1 = 5, b1 = 6, a2 = 10, b2 = 11, a3 = 14 and b3 = 15 (See Fig. 1).
It should be clear that Algorithm SO generates the optimal schedule 〈J1, J2, J3〉
with SO1 = 5, SO2 = 4, SO3 = 3. As it can be seen, SO values are not in a
non-decreasing order. We now propose a new proof.

Proof. The considered case is such that Tk = ∅ ∀k ∈ {1, . . . , m}. Using Corol-
lary 2.4, we conclude that there exists an optimal solution where the jobs of Tk

are scheduled on Mk in a non-decreasing order of ai. This determines the order
of the jobs on the dedicated machines. Theorem 2.2 ensures that an optimal solu-
tion is obtained by scheduling the jobs on M0 in a non-decreasing order of their
completion times on the first stage.

800 H. HADDA ET AL.

M0
∑u−1

k=1 b(Tk) b(Tu)

zu

∑m
k=u+1 b(Tk)

zu +
∑m

k=u+1 b(Tk)

Mm a(Tm)

.

.

.

Mu a(Tu)

.

.

.

M1 a(T1)

Figure 2. Makespan expression of πHHD .

Note that at each step of Algorithm SO, selecting the job with least SO value,
amounts to the selection of the job with the minimum completion time on the first
stage. By proceeding in that way, Algorithm SO ensures that:

• The jobs of the same type are selected in a non-decreasing order of ai.
• The jobs on M0 are selected a non-decreasing order of their completion times

on the first stage.

Which corresponds to the optimal solution described earlier. �

4. Worst case analysis

In this section we first introduce two (2 − 1/m)-approximation algorithms. We
then show that the worst case analysis proposed in [12] for a heuristic is false and
reestablish the result. We also discuss the worst case behavior of HOLC .

We introduce now a new heuristic for F2(PDm, 1)||Cmax and calculate its worst-
case error bound.

Heuristic HHHD

(1) Apply JR to each type Tk and calculate δk = zk − b(Tk) for k ∈ {1, . . . , m}.
(2) Re-index the types such that δ1 ≤ δ2 ≤ . . . ≤ δm.
(3) Retain schedule πHHD = 〈T1, T2, . . . , Tm〉 where each set Tk, k ∈ {1, . . . , m},

is scheduled according to JR.

Theorem 4.1. The relative worst-case error bound of πHHD is given by
Cmax(πHHD)/C�

max ≤ 2 − 1/m, and the bound is tight.

Proof. Let Tu ∈ {T1, . . . , Tm} be the type of jobs leading to the makespan in πHHD

(see Fig. 2). By definition of Tu, the completion time of its jobs on M0 is exactly
zu. Given the position of Tu on M0, we get Cmax(πHHD) = zu +

∑m
k=u+1 b(Tk) =

δu +
∑m

k=u b(Tk).
If u = m then Cmax(πHHD) = zm ≤ C�

max, otherwise two cases have to be
considered.

ON THE TWO-STAGE HYBRID FLOW SHOP WITH DEDICATED MACHINES 801

If δu ≤ (1 − 1/m)C�
max then Cmax(πHHD) = δu +

∑m
k=u b(Tk) ≤ δu + b(J) ≤

(2 − 1/m)C�
max.

Otherwise we have δk ≥ δu > (1 − 1/m)C�
max for u + 1 ≤ k ≤ m. As zk =

δk + b(Tk) ≤ C�
max then b(Tk) ≤ C�

max/m for u+1 ≤ k ≤ m. Hence, we derive that

Cmax(πHHD) = zu +
m∑

k=u+1

b(Tk)

≤ zu +
m − u

m
C�

max

≤ C�
max +

m − 1
m

C�
max

≤
(

2 − 1
m

)
C�

max.

To show that the bound is tight, we consider the following problem instance
with n = mw, Tk = {J(k−1)w+i, 1 ≤ i ≤ w}, k ∈ {1, . . . , m}, where w is an integer
such that w > m ≥ 2. Let a(k−1)w+1 = m− 1 for k ∈ {1, . . . , m}, a(k−1)w+i = 1/w
for k ∈ {1, . . . , m} and 2 ≤ i ≤ w, and bi = 1/w, ∀Ji ∈ J .

When considering JR for a given set Tk, k ∈ {1, . . . , m}, it is possible to schedule
job J(k−1)w+1 first. Hence HHHD can generate the order πHHD = 〈J1, . . . , Jmw〉
with Cmax(πHHD) = 2m−1. However job J(k−1)w+1 must be scheduled in the last
position of set Tk, k ∈ {1, . . . , m}. Hence an optimal solution is given by schedule
π� = 〈J2, . . . , Jw, Jw+2, . . . , J2w, J2w+2, . . . , Jmw, J1, Jw+1, . . . , J(m−1)w+1〉 with
C�

max = m − 1/w + m/w. We see that Cmax(πHHD)/C�
max goes to 2 − 1/m as

w tends to infinity. �

We add here that the problem instance used to show the bound tightness in the
proof of Theorem 4.1 was used in [12]. However, Yang [12] affirms that C�

max =
m+1/w, while the correct value is C�

max = m−1/w+m/w. Indeed the completion
time on M0 of the sub-sequence π� = 〈J2, . . . , Jw, . . . , J2w+2, . . . , Jmw〉 is less than
the completion time of J1 on M1. We introduce now a new polynomial case.

Theorem 4.2. If for the F2(PDm, 1)||Cmax problem, we constraint the jobs of
each type to be directly scheduled after each other on M0, then HHHD is optimal.

Proof. As the jobs of each type are constrained to be directly scheduled after each
other on M0 and given Theorem 2.1, we can see that it is dominant to schedule
jobs of each type according to JR. Hence the problem reduces to the scheduling
of m fictive jobs J ′

k (one per type) where a′
k = δk = zk − b(Tk), and b′k = b(Tk) for

1 ≤ k ≤ m. Using Corollary 3.1 we can conclude that HHHD is optimal. �

We now consider heuristic HPSSWZ introduced in [10] for the Am||Cmax problem
which guarantees a tight error bound of 2 − 1/m. Heuristic HPSSWZ consists
solving an F2||Cmax problem where for each job, the processing time on the first
machine corresponds to the mean of the m processing times on the first stage of the
Am||Cmax problem, and the processing time on the second machine corresponds to
the processing time on the assembly machine. When applied to F2(PDm, 1)||Cmax,

802 H. HADDA ET AL.

HPSSWZ reduces to constructing a sequence πPSSWZ obtained by applying JR
for all the jobs with the processing times ai/m and bi.

Theorem 4.3. The relative worst-case error bound of πPSSWZ is given by
Cmax(πPSSWZ)/C�

max ≤ 2 − 1/m, and the bound is tight.

Proof. From [10] we derive that Cmax(πPSSWZ)/C�
max ≤ 2 − 1/m.

To show that the bound is tight, we consider the following problem instance
with n = wm − w + 1 where w is an integer such that w > m ≥ 2. Each type
Tk for k ∈ {1, . . . , m − 1} contains w identical jobs with ai = m and bi = 1.
Type Tm contains a single job with ai = wm and bi = 2. An optimal solution is
obtained by scheduling w times a combination of m− 1 jobs (with one job of each
type Tk for k ∈ {1, . . . , m − 1}), then we schedule the single job of Tm in the last
position. This gives us C�

max = wm + m + 1. However HPSSWZ could generate a
solution in which the single job of Tm is scheduled first then the rest of the jobs
appear in an arbitrary order with Cmax(πPSSWZ) = 2wm − w + 2. We see that
Cmax(πPSSWZ)/C�

max goes to 2 − 1/m as w tends to infinity. �

In [12], Yang proposes the following heuristic for F2(PDm, 1)||Cmax.

Heuristic HY [12]

(1) Apply JR to the jobs in each Tk, k ∈ {1, . . . , m} by assuming Tu = ∅ for all
u
= k for u ∈ {1, . . . , m}.
Set Kki be the completion time for job Ji ∈ Tk on M0 for k ∈ {1, . . . , m}.

(2) Schedule jobs in non-decreasing order of K0,i for Ji ∈ J .
(3) Calculate and output Cmax and stop.

Yang [12] claims that HY is a generalization of HOLC introduced in [9] for
F2(PD2, 1)||Cmax. In fact this is not true. Indeed in step 2 of HY jobs are sched-
uled in non-decreasing order of K0,i while in HOLC , the jobs are scheduled in
non-decreasing order of their completion times on the dedicated machines. Hence,
Yang [12] is considering a different heuristic. We add here that for computational
results concerning the actual generalization of HOLC , the reader is referred to [1].

Yang [12] claims that Cmax(πHY)/C�
max ≤ 2 − 1/m. The following Theorem

proves that it is false and establishes the actual bound.

Theorem 4.4. The relative worst-case error bound of HY is given by
Cmax(πHY)/C�

max ≤ 2, and the bound is tight.

Proof. We have Cmax(πHY) ≤ max1≤k≤m a(Tk) + b(J) ≤ 2C�
max. To demonstrate

that the bound is tight, we consider the following problem instance with n = 2
and m = 2, T1 = {J1} and T2 = {J2}. Let a1 = 2, b1 = w, a2 = w and b2 = 1
where w > 2.

We have K0,1 = w + 2 and K0,2 = w + 1. Hence HY will generate schedule
πHY = 〈J2, J1〉 with Cmax(πHY) = 2w + 1. However the optimal solution is π� =
〈J1, J2〉 with C�

max = w +3. We see that Cmax(πHY)/C�
max goes to 2 as w tends to

infinity. �

ON THE TWO-STAGE HYBRID FLOW SHOP WITH DEDICATED MACHINES 803

Regarding the analysis given by Yang [12] for the error bound of HY the proof
is wrong as we are about to show. We fist recall the following Lemma.

Lemma 4.5 [12]. An upper bound for the F2(PDm, 1)||Cmax problem is given by

zUB = min

⎧⎪⎪⎨
⎪⎪⎩

max
1≤k≤m

a(Tk) + b(J);

min
1≤k≤m

{max{zk, max
1≤i≤m

i�=k

a(Ti)} +
∑

1≤i≤m
i�=k

b(Ti)}

⎫⎪⎪⎬
⎪⎪⎭

. (4.1)

As to the worst case analysis proposed in [12] for HY , the presented proof is
based on the assumption that Cmax(πHY) ≤ zUB which is false as showed by the
following example.

Example 4.6. Consider the problem instance with n = 3 and m = 2, T1 = {J1}
and T2 = {J2, J3}. Let a1 = 4, b1 = 12, a2 = 6, b2 = 4, a3 = 6 and
b3 = 3. For T1 we have a(T1) = 4, b(T1) = 12 and z1 = 16. For T2 we have
a(T2) = 12, b(T2) = 7 and z2 = 15 with the order 〈J2, J3〉. HY will gener-
ate the order πHY = 〈J2, J3, J1〉 on M0 with Cmax(πHY) = 27. However zUB =
min{max{a(T1), a(T2)}+ b(J); max{z1, a(T2)}+ b(T2); max{z2, a(T1)}+ b(T1)} =
23. We finally remark that zUB still constitutes a valid upper bound on the optimal
makespan (C�

max).

We now establish the worst case ratio of HOLC .

Theorem 4.7. The relative worst-case error bound of HOLC is given by
Cmax(πHOLC)/C�

max ≤ 2 − 1/m, and the bound is tight.

Proof. As for both HOLC and HHHD , we can start from the same sequences on
the dedicated machines, we can derive from Theorem 2.2 that Cmax(πHOLC) ≤
Cmax(πHHHD). Using Theorem 4.1 we get Cmax(πHOLC)/C�

max ≤ 2 − 1/m. To
show the bound tightness it is possible to utilize the same problem instance used
in the proof of Theorem 4.1. �

It is worth noting that the proof presented in [12] for the worst case error bound
on HY , holds for any heuristic H as long as it verifies

Cmax(πH) ≤ zUB. (4.2)

In fact the proof presented in [12] is similar to the one presented in [9], and
in both works assumption (4.2) has been made without sufficient justifications.
Indeed in [9] inequality (4.2) was supposed to be evident. While in [12] it was
justified by the following argument

“HOLC applies Johnson’s rule to jobs in each Tk separately and merge
m schedules together”.

It can be seen that this argument is very weak. Indeed it may be applied to any
heuristic as long as it starts from Johnson’s order for each type. This is clearly
wrong as proven in Example 4.6. Never the less (4.2) is true for HOLC as we shall
prove.

804 H. HADDA ET AL.

Lemma 4.8. Cmax(πHOLC) ≤ zUB.

Proof. Note that for a given 1 ≤ k ≤ m, the value max{zk, max1≤i≤m
i�=k

a(Ti)} +∑
1≤i≤m

i�=k
b(Ti) is an upper bound for any solution in which the jobs of each type

are constrained to be directly scheduled after each other on M0 starting by the
jobs of Tk. Theorem 4.2 specifies the best way to schedule those blocks of jobs and
hence we derive that Cmax(πHOLC) ≤ Cmax(πHHHD) ≤ zUB. �

5. Conclusion

In this paper we introduced new elimination rules and polynomial cases for the
F2(PDm, 1)||Cmax problem. We also proposed a new approximation algorithm
with a tight worst case error of 2 − 1/m. We also discussed the work presented
in [12] where we corrected several errors and reestablished the worst case anal-
ysis for a heuristic. An interesting issue that deserves future investigation is to
consider generalizing some of the presented results for the configuration with sev-
eral dedicated machines on both stages. It is also interesting to investigate more
sophisticated approximation algorithms.

References

[1] N. Dridi, H. Hadda and S. Hajri-Gabouj, Méthode heuristique pour le problème de flow
shop hybride avec machines dédiées. RAIRO – Oper. Res. 43 (2009) 421–36.

[2] H. Hadda, A note on “A heuristic method for two-stage hybrid flow shop with dedicated
machines”. Comput. Oper. Res. 40 (2013) 2283.

[3] H. Hadda, N. Dridi and S. Hajri-Gabouj, Etude du flow shop hybride à deux étages avec
machines dédiées sous contrainte dindisponibilité. In Proc. 5th International Conference.
Rabat, Morocco (2007).

[4] H. Hadda, N. Dridi and S. Hajri-Gabouj, A note on the two-stage hybrid flow shop problem
with dedicated machines. Optim. Lett. 6 (2012) 1731–1736.

[5] H. Hadda, N. Dridi and S. Hajri-Gabouj, The two-stage assembly flow shop scheduling with
an availability constraint: worst case analysis. J. Math. Modell. Algorithms Oper. Res. 13
(2014) 233–245.

[6] H. Hadda, N. Dridi and S. Hajri-Gabouj, Exact resolution of the two-stage hybrid flow shop
with dedicated machines. Optim. Lett. 8 (2014) 2329-2339.

[7] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included.
Naval Res. Logist. Quart. 1 (1954) 61–68.

[8] B.M.T. Lin, The strong NP-hardness of two-stage flowshop scheduling with a common
second-stage machine. Comput. Oper. Res. 26 (1999) 695–698.

[9] C. Oguz, B.M.T. Lin and T.C.E. Cheng, Two-stage flowshop with a common second-stage
machine. Comput. Oper. Res. 24 (1997) 1169–1174.

[10] C.N. Potts, S.V. Sevast’janov, V.A. Strusevich, L.N. Van Wassenhove and C.M. Zwaneveld,
The two-stage assembly scheduling problem: Complexity and approximation. Oper. Res. 43
(1995) 346–355.

[11] S. Wang and M. Liu, A heuristic for two-stage hybrid flow shop with dedicated machines.
Comput. Oper. Res. 40 (2013) 438–450.

[12] J. Yang, A two-stage hybrid flow shop with dedicated machines at the first stage. Comput.
Oper. Res. 40 (2013) 2836–2843.

	Introduction
	Notation and basic properties
	Polynomially solvable cases
	Worst case analysis
	Conclusion
	References

