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Abstract. This study aims at the multi-state degraded system with
multi-state components to propose a novel approach of performance
evaluation and a preventive maintenance model from the perspective of
a system’s components. The general non-homogeneous continuous-time
Markov model (NHCTMM) and its analogous Markov reward model
(NHCTMRM) are used to quantify the intensity of state transitions
during the degradation process. Accordingly, the bound approximation
approach is applied to solve the established NHCTMMs and NHCTM-
RMs, thus evaluating system performance including system availability
and total maintenance cost to overcome their inherent computational
difficulties. Furthermore, this study adopts a genetic algorithm (GA)
to optimize a proposed preventive maintenance model. A simulation
illustrates the feasibility and practicability of the proposed approach.
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1. Introduction

1.1. Research background and purpose

Modern systems have become large-scale and complex, with components that
suffer all kinds of faults and errors including damage, impacts, and aging fac-
tors throughout their lifetime. Various systems such as computer server systems,
telecommunication systems, and electricity distribution systems, become tolerant
to these faults and errors. Even if a fault occurs, these systems still keep on work-
ing with an acceptable or degraded performance level. Thus, from being perfectly
functioning, systems normally experience multiple intermediate states during the
degradation process, before complete failure occurs. Furthermore, with technolog-
ical advances and developments, each component in a system also becomes fault
tolerant; the degraded states of individual components can be monitored through
the combined use of online detection equipment and computers. To model such
systems, the multi-state system with multi-state components is appropriately es-
tablished to evaluate the system performance [1,19] such as system availability and
maintenance cost, particularly in constructing a preventive maintenance model.
Normally, a multi-state system is considered to have completely failed when its
performance has deteriorated such that it no longer fulfills its mission require-
ments [5, 7, 9].

The non-homogeneous continuous-time Markov model (NHCTMM) is normally
used to evaluate the extent to which the failure rate increases with operational
time during the degradation process. Solving the NHCTMM can obtain the prob-
ability distribution of a multi-state degraded system. Compared to homogeneous
continuous-time Markov model (HCTMM), solving the NHCTMM to assess a
multi-state degraded system is a much more complex challenge [11,13,16]. There-
fore, using common mathematical tools such as MATLAB, MATHCAD, and so on
may induce the problem of inaccuracy [15,16]. In order to evaluate the system per-
formance including system availability and total maintenance cost when construct-
ing the preventive maintenance model for multi-state degraded system with multi-
state components, the general NHCTMMs and non-homogeneous continuous-time
Markov reward models (NHCTMRMs) are established. In addition, this study
employs the bound approximation approach [3] to efficiently solve the established
NHCTMMs and NHCTMRMs. A preventive maintenance model is constructed
from the perspective of a system’s components. The purpose of this model is to
maximize the minimum system availability during planning horizon subject to al-
lowable total maintenance cost by determining the optimal maintenance activity
for degraded states regarding each component. Five maintenance activities includ-
ing no service or repair, minor service, major service, minor repair, and major
repair are exclusively taken into consideration in planning preventive maintenance
strategy. In order to efficiently optimize the constructed preventive model, a GA
based algorithm is also proposed. A simulation is used to illustrate the efficacy of
the proposed approach.
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1.2. Literature review

In a system containing degradation components, the gradual decline in per-
formance of each component forms a multi-state degraded system, whose overall
performance falls from perfectly functioning to complete failure throughout its life-
time [7]. The system is deemed to have failed when its level of performance cannot
meet user demands. The inherent properties of multi-state degradation mean that
the mathematical inference involved in a reliability assessment, as well as the opti-
mization of system design and preventive maintenance, is more complex than for a
conventional binary-state system. Levitin and Lisnianski [10] and Nahas et al. [20]
proposed an optimization model for the imperfect preventive maintenance of a
multi-state degraded system containing binary-state components. When a system
fails or its reliability falls below some threshold level, repairs, or preventive main-
tenance are implemented immediately. Accordingly, the total maintenance cost is
minimized via the optimization of a preventive maintenance schedule given the
system’s minimum reliability requirement. The approach proposed by these two
studies is limited to individual components with binary states.

Do Van and Berenguer [4] proposed a condition-based maintenance policy con-
sidering aspects of maintenance cost and productivity for a single-unit deteriorat-
ing production system whose condition is periodically monitored. Imperfect pre-
ventive maintenance actions which restore the production system to better than old
are carried out. Different types of imperfect preventive maintenance cost functions
are investigated to assess the performance of the proposed maintenance policy.
The proposed maintenance model is subject to binary-state assumption for the
system rather than a multi-state system. Khatab et al. [8] proposed a condition-
based maintenance approach for availability optimization problem. The system
is subject to stochastic degradations and assumed to be continuously monitored.
Imperfect preventive maintenance actions are made on the basis of the hybrid haz-
ard model and the condition to perform a preventive maintenance corresponds to
a system reliability threshold. After a number of preventive maintenance cycles,
the system is replaced by a new one. The maintenance optimization problem to
be solved consists on finding the optimal reliability threshold together with the
optimal number of preventive maintenance cycles to maximize the average system
availability. The established maintenance model is based on the assumption of a
binary-state system.

Platis et al. [22] presented the case related to electrical systems using the time
non-homogeneous Markov systems in discrete time to evaluate the system perfor-
mance. Accordingly, some reliability and performance measures are formulated,
such as reliability, availability, maintainability and different time variables includ-
ing new indicators more dedicated to electrical systems like instantaneous ex-
pected load curtailed and the expected energy not supplied on a time interval.
This study takes into account hazard rate time variation to get more accurate and
more instructive indicators that cannot be obtained by classical methods. Chen
and Trivedi [2] presented the condition-based maintenance, and derive closed-form
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expressions of system availability when the device undergoes both deterioration as
well as Poisson type failures. These closed-form solutions can be used to find faster
algorithms to determine the optimal inspection policy. This inspection policy is es-
tablished from the perspective of systems. Platis [21] proposed a generalized form
of the performance measure of fault tolerant systems. This generalized form takes
into account more detailed rewards and can be used in general for maintenance
cost analysis as well as in the modeling of the website user’s behavior. Different
formulations are constructed by means of a homogeneous Markov chain and a
cyclic non-homogeneous Markov chain and their asymptotic expression.

Tan and Raghavan [23] proposed a predictive maintenance strategy for a multi-
state system in which the maintenance schedule is determined by the state of
degradation. Component maintenance is implemented once the system perfor-
mance cannot meet user requirements. Establishing a maintenance strategy from
the overall perspective of the system can prevent the system going offline, be-
cause excessive maintenance of components will cause frequent shutdowns. How-
ever, component degradation or failure can cause the sudden failure of the system,
therefore resulting in even greater system loss. Consequently, if the components
can be monitored in real time, establishing a maintenance strategy from the per-
spective of the components has practical applications. Using a case study, Tan
and Raghavan [23] applied the random restore factor technique to describe the
extent to which imperfect maintenance can restore system performance in terms
of its mean time to failure (MTTF). Huang and Yuan [7] proposed a preventive
maintenance strategy for a multi-state degradation system in which periodic exam-
inations are conducted. The proposed strategy determines the optimal time for the
maintenance of a multi-state system, as well as the most appropriate maintenance
activities to be carried out during each maintenance period. The proposed preven-
tive maintenance model assumes that the failure rate of the system within main-
tenance intervals remains constant. A discrete-time homogeneous Markov chain is
used to describe the system states. By minimizing the total maintenance cost, the
optimal preventive maintenance strategy can be determined. However, in prac-
tice, the failure rate of a system during the maintenance intervals increases with
operation time. Although following this approach can simplify the complexities
involved in solving a Markov chain model, the degradation of a multi-state system
cannot be evaluated precisely. Therefore, this study aims to determine the opti-
mal preventive maintenance strategy for a multi-state degraded system from the
perspective of its components, where the individual components or sub-systems
can be monitored in real time. The NHCTMM and NHCTMRM are constructed
to evaluate the extent to which the failure rate increases with operational time
during the degradation process. Performance indicators are thereby determined
using the bound approximation approach [3]. Furthermore, this study utilizes a
GA to optimize the constructed preventive maintenance model. The maintenance
activities for each component’s degradation state are determined to maximize the
minimum system availability during planning horizon subject to allowable total
maintenance cost.
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Figure 1. State-transition diagram of a component.

2. Background and methods

2.1. Markov model of multi-state degraded components

HCTMMs can only be used to analyze the degradation process of multi-state
components without aging [11, 13]. In practice, the degradation process of com-
ponents is not only related to the immediately preceding state, but also to the
age of the components [13, 18]. Considering the aging factors of components, Liu
and Huang [15] applied NHCTMM to derive a stochastic process in which the
transition intensity between states increases with time.

Figure 1 shows the transition diagram of a non-repairable degrading component
with k states moving from higher to lower performance, where λi,j(t) is the failure
rate of a component transitioning from state i to j at time t. gk is the performance
level of the component under state k. Figure 1 describes the instantaneous tran-
sition intensity of a component from any state i, i ∈ {k, k − 1, . . . , 2} to state j.
This value increases monotonically with the age of the component, and can be
represented using the following equation:

λi,j(t) = lim
Δt→0

Pr {G(t + Δt) = j/G(t) = i}
Δt

(2.1)

where G(t) is a random variable representing the component state at time t, and
Pr {G(t + Δt) = j/G(t) = i} is the conditional probability of a component in state
i at time t transitioning to state j during time interval Δt. Solving NHCTMM is
more complex than its homogeneous counterpart [11,13,16]. This is especially true
when the complexity of the system is enhanced by an increase in the number of
components. In this scenario, the number of possible system states is increased,
making it extremely difficult to solve the NHCTMM. Considering a non-repairable
multi-state system, Liu and Kapur [17] deduced the instantaneous dynamic proba-
bility of a multi-state system given the initial state. The instantaneous probability
for the best state and subsequent states can be obtained. The method proposed
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for evaluating a system’s reliability using NHCTMM is targeted at non-repairable
degraded multi-state systems. As this deductive result cannot be generalized to
repairable systems, its practicality is restricted.

2.2. Non-homogeneous markov reward model

The Non-homogeneous Markov reward model [12,14] can be used to effectively
assess the maintenance costs (as well as the reliability and other relevant indica-
tors) of an aging multi-state system (MSS) over its lifetime. This model assumes
that, if the process stays in state i during a time period, a certain amount of money
rii should be paid. If the system transitions from state i to state j during this pe-
riod, then rij should be paid. Both rii and rij are called rewards, and can be either
a loss or a gain. Hence, this is known as a Markov process with rewards. Besides
the transition matrix, the reward matrix r = [rij ] , i, j = 1, . . . , K must be con-
structed according to indicators such as maintenance costs, operational revenue,
availability, and time to failure.

A non-homogeneous Poisson process (NHPP) model can be integrated into a
Markov model with time varying transition intensity αij(t). For aging MSSs, tran-
sition intensity corresponding to failure of aging components will be increasing
function of time αij(t). Therefore, the system’s total expected reward (TER) ac-
cumulated over time can be derived using the non-homogeneous Markov reward
model. The corresponding Chapman-Kolmogorov differential equations are shown
below:

dVi(t)
dt

= rii +
K∑

j = 1
j �= i

αij(t)rij +
K∑

j=1

αij(t)Vj(t) , i = 1, 2, . . . , K (2.2)

where Vi(t) and Vj(t) are the TER values accumulated until time t while in states

i and j, respectively. If we let ui(t) = rii +
K∑

j = 1
j �= i

αij(t)rij , (2.2) can be expressed

in matrix form as:
d
dt

V(t) = u(t)+α(t)V(t). (2.3)

Substituting the initial value Vi(0) = 0 into (2.3), the system’s simultaneous dif-
ferential equations can be solved to derive the TER value of the Non-homogeneous
Markov reward model.

2.3. Bound approximation approach for the increasing failure-rate

function

Solving the NHCTMM to obtain system performance indicators requires a lot
of time. Often, the use of common mathematical tools, such as MATLAB or
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MATHCAD and so on, may induce the problem of inaccuracy [15,17]. The bound
approximation approach [3] allows the determination of instantaneous state prob-
abilities for a multi-state degraded system. This approach divides the system life-
time into multiple intervals, and sets the failure rate during each interval to be a
constant. The HCTMM is then used to find the instantaneous probability at the
end of each time interval. This numerical approach initially divides the system
lifetime T into N time intervals. The duration of each time interval is Δt = T/N.
Then, two constants λn−1 and λn+ are used to approximate the failure rate λ (t)
in each time interval tn = [Δt (n − 1) , Δtn] , 1 ≤ n ≤ N , using the following
equations:

λn− = λ(Δt(n − 1)) (2.4)

λn+ = λ(Δtn) (2.5)

where λn− and λn+ represent the system’s failure rate λ(t) at the beginning and
end of the nth time interval. Equations (2.4) and (2.5) also give the lower and
upper bounds of λ (t) in the nth time interval. Using λn−1 and λn+1 to solve the
system’s differential equations, the state probabilities Pn−

j (Δt n) and Pn+
j (Δtn)

can be derived for the time interval tn = [Δt(n − 1), Δtn] , 1 ≤ n ≤ N . These
differential equations [3] are:

dPn−
j (t)
dt

=
K∑

i = 1
i �= j

Pn−
i (t)αn−

ij (t)−Pn−
j (t)

K∑

i = 1
i �= j

αn−
ji (t) (2.6)

dPn+
j (t)
dt

=
K∑

i = 1
i �= j

Pn+
i (t)αn+

ij (t)−Pn+
j (t)

K∑

i = 1
i �= j

αn+
ji (t). (2.7)

At each time interval tn, the lower bound λn−1 and upper bound λn+ of the failure
rate are utilized to represent the intensities αn−

ij (t) and αn+
ij (t) for transitions from

states i to j. During the first time interval, the initial condition of the system is
already known. Hence, given the system is in state K at t = 0, the initial conditions
for (2.6) and (2.7) during the first time interval n = 1 are as follows:

P 1−
K (0) = 1, P 1−

K−1(0) = . . . P 1−
1 (0) = 0 (2.8)

P 1+
K (0) = 1, P 1+

K−1(0) = . . . P 1+
1 (0) = 0. (2.9)

The initial conditions for tn, n = 2, 3, . . . , N , are defined by the following recur-
rence relations:

Pn−
j [Δt(n − 1)] = P

(n−1)−
j [Δt (n − 1)] , j = 1, 2, . . . , K, n = 1, 2, . . . , N (2.10)

Pn+
j [Δt(n − 1)] = P

(n−1)+
j [Δt (n − 1)] , j = 1, 2, . . . , K, n = 1, 2, . . . , N. (2.11)

This means that the initial conditions for the next interval are defined by the
solutions at the end of preceding time intervals. By solving the non-homogeneous
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Markov reward model (NHMRM) using the bound approximation approach, the
lower bound V n−

i and upper bound V n+
i of the TER accumulated at each time

interval [Δt (n − 1) , Δtn] can be obtained from any state i, i = 1, 2, . . . , K. The
equations for the NHMRM are:

dV n−
i (t)
dt

= rii+
K∑

j = 1
j �= i

αn−
ij (t)rij +

K∑

j = 1
an−

ij (t)V n−
j (t),

i = 1, 2, . . . , K, n = 1, . . . , N (2.12)

dV n+
i (t)
dt

= rii +
K∑

j = 1
j �= 1

αn+
ij (t)rij +

K∑

j = 1
an+

ij (t)V n+
j (t),

i = 1, 2, . . . , K, n = 1, . . . , N. (2.13)

For any state during each time interval, the initial reward is 0, that is:

V n−
i (0) = V n+

i (0) = 0, i = 1, 2, . . . , K, n = 1, . . . , N. (2.14)

Solving (2.12) and (2.13) under the initial condition (2.14) gives the lower and up-
per bounds of TER accumulated from t = 0. Multiplying V n−

i (Δt) and V n+
i (Δt)

by their corresponding state probabilities Pn−
i [Δt (n − 1)] and Pn+

i [Δt (n − 1)]
gives the system’s upper and lower mean reward values for any state during each
time interval. The sum of all mean reward values for all states gives the system’s
overall lower reward bound V n− and upper reward bound V for any time interval
nn+, n = 1, . . . , N . These bounds are calculated as:

V n− =
K∑

i=1

V n−
i [Δt]Pn−

i [Δt(n − 1)], n = 1, . . . , N (2.15)

V n+ =
K∑

i=1

V n+
i [Δt]Pn+

i [Δt(n − 1)], n = 1, . . . , N. (2.16)

Finally, summing the TER over N time intervals gives the lower and upper bounds
of TER over the system’s lifetime:

TER− =
N∑

n=1

V n−
i (2.17)

TER+ =
N∑

n=1

V n+
i . (2.18)

The exact TER value falls somewhere between the lower and upper bound, i.e.,
TER ≤ TER ≤ TER. A more accurate TER value can be obtained by dividing T
into smaller intervals.
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3. Proposed approach

3.1. Model assumptions

The proposed preventive maintenance model for a multi-state degraded system
makes the following assumptions:

(1) Real-time monitoring of the system can identify the performance of individual
components within the system.

(2) The components of the system degrade from perfectly functioning to complete
failure over multiple states of degradation.

(3) The components of the system degrade randomly over time to a state of lower
performance.

(4) Components at a particular degradation state can be restored to a previous,
better state by appropriate maintenance.

(5) There are five maintenance alternatives representing the extent to which im-
plement maintenance restores the component to a better condition:

(i) No service or repair.
(ii) Minor service: enables restoration to state j+1 from state j, such as simple

maintenance and cleaning, lubrication, alignment, adjustment, consum-
able materials, maintenance and inspection of the supplementary work.

(iii) Major service: enables restoration to state j + 2 from state j such as
dismantling equipment, assembly, functional testing, spare parts and fuel
replacement.

(iv) Minor repair: enables restoration to state j+3 from state j, such as repair
when the device is abnormal or not operating properly.

(v) Major repair: enables restoration to state j+4 from state j, such as repair
when equipment failures, including fault detection, diagnosis, disassembly,
assembly and functional testing.

(6) The failure rate of an individual component is an increasing function of time.
(7) The maintenance time of an individual component is distributed exponentially,

that is, the maintenance rate is assumed to be constant.

3.2. Construction of the model

The preventive maintenance model of a multi-state degraded system is con-
structed so as to maximize the minimum system availability during planning hori-
zon. The maximum allowable total maintenance cost during its planning horizon
is used as a constraint. Thus, mathematically, the problem can be formulated as
follows:

Objective:

Max MinA(t) =
K∑

i=1

pi(t) · 1(gi ≥ w). (3.1)
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Constraints:
m∑

l=1

Cpm,l ≤ Cs, (3.2)

where A(t) is the system availability at time t; pi(t) is the probability of state i
occurring at time t; gi is the system performance at state i; K indicates the best
performance state of the system; 1(gi ≥ w) is a unit function that takes a value
of 1 when gi is greater than or equal to w, and a value of 0 otherwise; w is the user

demand; m is the number of components constituting the system;
m∑

l=1

Cpm,l is the

total cost for implementing preventive maintenance; Cs is the maximum allowable
system maintenance cost.

3.3. Simulation case

A simulation case derived from Huang and Wang [6] is used to examine the pro-
posed approach. The simulated system contains three components. Components 1
and 2 are connected in parallel; both are connected to component 3 in series. Each
component has five states possessing different output performance, with state 5
being perfectly functioning and state 1 being complete failure. For example, the
output performance of five states for component 1 in descending order are 150,
100, 80, 50, and 0, respectively. Appropriate maintenance can restore components
to previous, better states. The planning horizon of preventive maintenance is set
as one year. The minimum acceptable performance (user demand w) is set as 120,
while the maximum allowable total maintenance cost is set as 50. Each individual
component is initially in a perfectly functioning state. Hence, the initial probabil-
ity of all the states is 0, except for state 5, which has a probability of 1. Figure 2
shows the system configuration, where gl,i is the performance of component l at
state i, and λl

i,j(t) is the transition intensity of component l when degraded from
state i to j at time t. μl

j,i is the transition intensity of component l when restored
from state j back to state i following maintenance. Tables 1 and 2 present the tran-
sition intensity parameters of each component. Table 3 shows the cost parameters
relating to various maintenance activities.

3.4. Using a GA to solve the simulated case

This study adopts a GA to optimize the proposed preventive maintenance
model. For the simulated case, the most appropriate maintenance activities for
all three components are determined at all degradation states to minimize the
total maintenance cost. Using this GA to solve the simulated case involves two
stages.
Stage I: Establish the initial chromosome population
Step 1: Encode chromosomes.

The encoded chromosomes consist of 15 genes because the simulated case con-
tains three components, each of which has five possible states. The genes are
coded as integers; each code corresponds to preventive maintenance activity for
the individual state of the three components. Therefore, different combinations
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Figure 2. System configuration of the simulated case.

Table 1. Failure-rate function of each component between states.

�������������Failure rates
Components

1 2 3

λ5,4 (t) 0.24 + 0.07t 0.24 + 0.07t 0.34 + 0.14t
λ5,3 (t) 0.18 + 0.04t 0.18 + 0.04t 0.28 + 0.08t
λ5,2 (t) 0.14 + 0.02t 0.14 + 0.02t 0.24 + 0.04t
λ5,1(t) 0.12 + 0.01t 0.12 + 0.01t 0.22 + 0.02t
λ4,3 (t) 0.26 + 0.08t 0.26 + 0.08t 0.36 + 0.16t
λ4,2 (t) 0.20 + 0.05t 0.20 + 0.05t 0.30 + 0.1t
λ4,1(t) 0.16 + 0.03t 0.16 + 0.03t 0.26 + 0.06t
λ3,2 (t) 0.28 + 0.09t 0.28 + 0.09t 0.38 + 0.18t
λ3,1(t) 0.22 + 0.06t 0.22 + 0.06t 0.32 + 0.12t
λ2,1(t) 0.30 + 0.1t 0.30 + 0.1t 0.4 + 0.2t

Note: λij (t) is the failure rate at time t of each component from state i to state j.

Table 2. Repair rate of each component between states.

�����������Components

Repair rates
μ1,5 μ1,4 μ2,5 μ1,3 μ2,4 μ3,5 μ1,2 μ2,3 μ3,4 μ4,5

1 0.125 0.320 0.335 0.410 0.425 0.440 0.455 0.470 0.485 0.500

2 0.80 0.245 0.260 0.275 0.290 0.305 0.350 0.365 0.380 0.395

3 0.65 0.95 0.110 0.140 0.155 0.170 0.185 0.200 0.215 0.230

Note: μj,i is the repair rate of each component from state j to state i.
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Table 3. Cost parameters of maintenance activities.

Coded
Maintenance activities

Cost
values Component 1 Component 2 Component 3

no service
0 or repair 0 0 0
1 minor service 54 72 120
2 major service 72 96 160
3 minor repair 90 120 200
4 major repair 180 240 400

of maintenance codes represent a distinct solution for the proposed preventive
maintenance model.
Step 2: Produce the initial chromosome population.

Different combinations of maintenance codes are obtained at random to form
a gene sequence constituting a chromosome. Under the maximum total mainte-
nance cost constraint of 50, 30 chromosomes are produced to form the initial
chromosome population. The GA search mechanism is conducted on the basis of
30 chromosomes.
Stage II: Execute the GA search mechanism
Step 1: Conduct chromosome crossover.

A multi-point crossover method is used to conduct chromosome crossover. The
crossover rate and mask number are set to 0.6 and 8, respectively. Initially, 18 chro-
mosomes are selected at random from the chromosome population and placed
into a crossover pool. Then, paired chromosomes are randomly selected from the
crossover pool and subjected to the crossover procedure under the predetermined
number of masks.
Step 2: Conduct chromosome mutation

The mutation procedure is conducted on the chromosome population obtained
from step 1. The mutation rate and mask number are set to 0.4 and 2, respectively.
Accordingly, 12 chromosomes are randomly selected for mutation, whereby two
masks of each chromosome are randomly mutated.
Step 3: Determine the fitness value of chromosomes.

The maximum system availability is defined as the fitness value of the chro-
mosomes, as the proposed preventive maintenance model aims to maximize the
minimum system availability during planning horizon. Each chromosome corre-
sponds to a maintenance solution of this simulated case. According to the solu-
tions obtained, the constructed NHCTMM and NHCTMRM are used to derive the
instantaneous system state probabilities, and thereby calculate the system avail-
ability and total maintenance cost. The procedure for solving the NHCTMM and
NHCTMRM using the bound approximation approach [16, 20] relating to each
chromosome has two parts.
Part 1: Determine the system availability

1. Determine the performance in all possible states for the simulated case.
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Figure 3. Reduced state-transition diagram of the system.

Because the series-parallel system under consideration consists of three compo-
nents, each involving five states, a total of 125 (5 × 5 × 5) possible states and
their corresponding performances are calculated.

2. Reduce the system states.
System states with identical performance are united into one state. Similarly,
the failure-rate function and repair rate corresponding to these united states are
also combined to reduce a system complexity. This lessens the computational
complexity of determining the system availability and total maintenance cost. In
total, ten system states possessing different output performances from 0 to 140
are obtained. Figure 3 shows the reduced transition diagram for this case. The
addition of failure rate function of components related λl

i,j(t) constitutes the
failure rate function of the system λi,j(t). Similarly, the addition of repair rate
of components related μl

i,j constitutes the repair rate of the system μj,i.
3. Construct the Chapman–Kolmogorov equation of the NHCTMM

The ten state transitions are used to construct the Chapman–Kolmogorov equa-
tion of the NHCTMM as follows:

dPj (t)
dt

=
10∑

i = 1
i �= j

Pi(t)αij(t)−Pj(t)
10∑

i = 1
i �= j

αji(t), j = 1, 2, . . . , 10 (3.3)
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where αij(t) and αji(t) represent the intensities for transition from states i to
j and states j to i, respectively, which are the addition of failure rates at time
and repair rates regarding reduced system states. Then, the bound approximation
approach is employed to calculate instantaneous state probabilities and thereby
obtain the system availability. The calculation steps are described below:

(1) Define the length of each time interval
Initially, the one-year planning horizon is divided into 200 time intervals. The
length of each time interval is Δt = T/N = 0.002, and boundary of each
interval is given by tn+1 = tn + 0.002, n = 1, . . . , N − 1.

(2) Calculate values of λn− and λn+

λn− and λn+ are obtained using (2.10) and (2.11).
(3) Find the instantaneous state probability

Pn−
i and Pn+

i , j = 1, . . . , 10, at the end point of each time interval are obtained
using (2.14)–(3.1).

(4) Determine the lower and upper bounds of system availability
The probabilities of those states fulfilling a minimum performance level of 120
are summed to determine the lower and upper bounds of system availability
at tn+1 = tn + 0.002, n = 1, . . . , N − 1.

Part 2: Determine the total maintenance cost
The Chapman–Kolmogorov equations of the NHCTMM and NHCTMRM for

all components are constructed according to the state-transition diagrams shown
in Figure 2. For details of the constructed models refer to Appendixes A and B.
The bound approximation approach is used to solve these simultaneous differential
equations. Hence, the instantaneous state probabilities, maintenance cost for each
component, and total maintenance cost for the system are obtained. Details of
these calculations are given below:

1. Define the length of each time interval
As for stage 1, the one-year planning horizon is divided into 200 intervals.

2. Calculate the λn− and λn+ values
Values of λn− and λn+ are again obtained using (2.4) and (2.5).

3. Find the instantaneous state probability
Pn−

j and Pn+
j , j = 1, . . . , 5, are obtained at the end point of each time interval

for five states of each component using (2.6)–(2.11).
4. Determine the maintenance cost of each degraded state

The lower and upper bounds of the maintenance cost, V n−
i and V n+

i , i =
1, . . . , 5, are determined for five states of each component during each time
interval using (2.12)–(2.14).

5. Determine total expected maintenance cost during each time interval
The lower and upper bounds of the total expected maintenance cost, V n−

i and
V n+

i , are determined for each component during each time interval using (2.15)
and (2.16)
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Table 4. Optimal maintenance activities of three components.

Components 1 2 3
Degraded states 4 3 2 1 4 3 2 1 4 3 2 1
Coded values

of maintenance 1 0 3 1 1 1 2 1 0 1 1 0
activities

6. Determine the total expected maintenance cost during the system planning
horizon
The lower and upper bounds of the total expected maintenance cost, TER− and
TER+ are determined for each component over the system planning horizon
using (2.17) and (2.18).

7. Find total expected maintenance cost for the system.

Summing the total expected maintenance cost for each component gives the total
maintenance cost for the entire system.
Step 4: Determine the termination condition.

The GA will terminate when the optimized total maintenance cost does not im-
prove for 100 iterations. The optimal preventive maintenance strategy is then
presented and this will include the most appropriate maintenance activities for
each component and degradation state. This study employs a MATLAB program
to perform the mathematical computations of the proposed approach.

4. Results

The proposed preventive maintenance model, solved through the GA described
in the previous section, enabled the optimal preventive strategy to be derived.
This gives the maintenance activities necessary for each component’s degradation
state in the system. Table 4 summarizes the results. Figures 4–6 show the state-
transition diagrams for the three components. Minor services are implemented
in component 1 when this reaches states 4 and 1; minor repair is implemented
when this reaches states 2. However, no maintenance activity is implemented in
states 3. In component 2, minor services are undertaken in states 4, 3, and 1;
major service is implemented when this reaches states 2. For component 3, no
maintenance activity is performed until state 3 and 2 are reached, at which points
minor services are implemented. The optimal system availability is 0.948. Figure 7
shows the trend in system availability with time over the one-year planning horizon.
The total maintenance cost is 41.73 which less of maximum allowable constraint
of 50. Figure 8 plots the convergence of the maximum system availability while
conducting the GA to optimize the proposed maintenance model.

In a reverse optimization problem, we minimized the total maintenance cost
while simultaneously satisfying a user-defined availability 0.7 during planning hori-
zon one year. From the result of Huang and Wang [6], Table 5 gives the mainte-
nance activities necessary for each component and each degraded state in the
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system. The optimal total maintenance cost is 48. Figure 9 shows the trend in
system availability with time. Figure 10 plots the convergence of the total mainte-
nance cost while conducting the GA to optimize the proposed maintenance model.

5. Conclusions

Based on the findings of this study, the following conclusions and suggestions
can be made:

(1) The proposed approach enables engineers to determine the appropriate activity
needed to maximize the minimum system availability during planning horizon
given limited resources, total maintenance cost. From this optimized case, it
is clear that maintenance need only be implemented for certain states of the



AVAILABILITY OPTIMIZATION FOR A MULTI-STATE SYSTEM 789

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.94

0.95

0.96

0.97

0.98

0.99

1

Sy
st

em
 a

va
ila

bi
lit

y 

X: 0.752
Y: 0.948

Planning horizon 

Figure 7. Diagram of system availability with time for optimal
maintenance strategy.

0 10 20 30 40 50 60 70 80 90 100 
0.9 

0.91 

0.92 

0.93 

0.94

0.95

0.96

Iteration

Sy
st

em
 a

va
ila

bi
lit

y 

Figure 8. GA convergence diagram of system availability for
optimal maintenance strategy.

Table 5. Optimal maintenance activities of three components in
a reverse optimization problem.

Components 1 2 3
Degraded states 4 3 2 1 4 3 2 1 4 3 2 1
Coded values

of maintenance 0 1 3 0 0 2 0 0 1 1 0 1
activities
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Figure 9. Diagram of system availability with time for optimal
maintenance strategy.

Figure 10. GA convergence diagram with total maintenance cost
for optimal maintenance strategy.

three system components. Therefore, the proposed approach can considerably
reduce the frequency of system shutdowns due to maintenance significantly
decreasing system loss. This advantage makes the planning of a maintenance
strategy from the perspective of components more practical.

(2) The proposed model provides engineers to gain further insight into the impacts
on system availability while implementing different maintenance activities for
each component’s degradation state in the system.

(3) Furthermore, the maintenance rate was held constant in the constructed multi-
state system. In future work, we will consider the maintenance rate as a
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reduced function of time, making the findings more compatible with actual
maintenance situations. However, the computational difficulties of evaluat-
ing performance indicators such as maintenance cost, system availability, and
MTTF, will present a considerable challenge.
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Appendix A: NHCTMM Chapman–Kolmogorov equations of each component

Component 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP5(t)/dt = −(λ1
5,4(t) + λ1

5,3(t) + λ1
5,2(t) + λ1

5,1(t))P5(t)

+μ1
4,5P4(t) + μ1

3,5P3(t) + μ1
2,5P2(t) + μ1

1,5P1(t)

dP4(t)/dt = λ1
5,4(t)P5(t) − (μ1

4,5 + λ1
4,3(t) + λ1

4,2(t)

+λ1
4,1(t))P4(t) + μ1

3,4P3(t) + μ1
2,4P2(t) + μ1

1,4P1(t)

dP3(t)/dt = λ1
5,3(t)P5(t) + λ1

4,3(t)P4(t) − (μ1
3,5 + μ1

3,4

+λ1
3,2(t) + λ1

3,1(t))P3(t) + μ1
2,3P2(t) + μ1

1,3P1(t)

dP2(t)/dt = λ1
5,2(t)P5(t) + λ1

4,2(t)P4(t) + λ1
3,2(t)P3(t)

−(μ1
2,5 + μ1

2,4 + μ1
2,3 + λ1

2,1(t))P2(t) + μ1
1,2P1(t)

dP1(t)/dt = λ1
5,1(t)P5(t) + λ1

4,1(t)P4(t) + λ1
3,1(t)P3(t)

+λ1
2,1(t)P2(t) − (μ1

1,5 + μ1
1,4 + μ1

1,3 + μ1
1,2)P1(t)

Component 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP5(t)/dt = −(λ2
5,4(t) + λ2

5,3(t) + λ2
5,2(t) + λ2

5,1(t))P5(t)

+μ2
4,5P4(t) + μ2

3,5P3(t) + μ2
2,5P2(t) + μ2

1,5P1(t)

dP4(t)/dt = λ2
5,4(t)P5(t) − (μ2

4,5 + λ2
4,3(t) + λ2

4,2(t)

+λ2
4,1(t))P4(t) + μ2

3,4P3(t) + μ2
2,4P2(t) + μ2

1,4P1(t)

dP3(t)/dt = λ2
5,3(t)P5(t) + λ2

4,3(t)P4(t) − (μ2
3,5 + μ2

3,4 + λ2
3,2(t)

+λ2
3,1(t))P3(t) + μ2

2,3P2(t) + μ2
1,3P1(t)

dP2(t)/dt = λ2
5,2(t)P5(t) + λ2

4,2(t)P4(t) + λ2
3,2(t)P3(t)

−(μ2
2,5 + μ2

2,4 + μ2
2,3 + λ2

2,1(t))P2(t) + μ2
1,2P1(t)

dP1(t)/dt = λ2
5,1(t)P5(t) + λ2

4,1(t)P4(t) + λ2
3,1(t)P3(t)

+λ2
2,1(t)P2(t) − (μ2

1,5 + μ2
1,4 + μ2

1,3 + μ2
1,2)P1(t)
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Component 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP5(t)/dt = −(λ3
5,4(t) + λ3

5,3(t) + λ3
5,2(t) + λ3

5,1(t))P5(t)

+μ3
4,5P4(t) + μ3

3,5P3(t) + μ3
2,5P2(t) + μ3

1,5P1(t)

dP4(t)/dt = λ3
5,4(t)P5(t) − (μ3

4,5 + λ3
4,3(t) + λ3

4,2(t)

+λ3
4,1(t))P4(t) + μ3

3,4P3(t) + μ3
2,4P2(t) + μ3

1,4P1(t)

dP3(t)/dt = λ3
5,3(t)P5(t) + λ3

4,3(t)P4(t) − (μ3
3,5 + μ3

3,4 + λ3
3,2(t)

+λ3
3,1(t))P3(t) + μ3

2,3P2(t) + μ3
1,3P1(t)

dP2(t)/dt = λ3
5,2(t)P5(t) + λ3

4,2(t)P4(t) + λ3
3,2(t)P3(t)

−(μ3
2,5 + μ3

2,4 + μ3
2,3 + λ3

2,1(t))P2(t) + μ3
1,2P1(t)

dP1(t)/dt = λ3
5,1(t)P5(t) + λ3

4,1(t)P4(t) + λ3
3,1(t)P3(t)

+λ3
2,1(t)P2(t) − (μ3

1,5 + μ3
1,4 + μ3

1,3 + μ3
1,2)P1(t)

Appendix B: NHCTMRM Chapman–Kolmogorov equations of each component

Component 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV5(t)/dt = −(λ1
5,4(t)+λ1

5,3(t)+λ1
5,2(t)+λ1

5,1(t))V5(t)

+λ1
5,4(t)V4(t)+λ1

5,3(t)V3(t)+λ1
5,2(t)V2(t)+λ1

5,1(t)V1(t)

dV4(t)/dt = 54μ1
4,5+μ1

4,5V5(t) − (μ1
4,5+λ1

4,3(t)+λ1
4,2(t)

+λ1
4,1(t))V4(t)+λ1

4,3(t)V3(t)+λ1
4,2(t)V2(t)+λ1

4,1(t)V1(t)

dV3(t)/dt = 72μ1
3,5+54μ1

3,4+μ1
3,5V5(t)

+μ1
3,4V4(t) − (μ1

3,5+μ1
3,4+λ1

3,2(t)+λ1
3,1(t))V3(t)

+λ1
3,2(t)V2(t)+λ1

3,1(t)V1(t)

dV2(t)/dt = 90μ1
2,5+72μ1

2,4+54μ1
2,3

+μ1
2,5V5(t)+μ1

2,4V4(t)+μ1
2,3V3(t) − (μ1

2,5

+μ1
2,4+μ1

2,3+λ1
2,1(t))V2(t)+λ1

2,1(t)V1(t)

dV1(t)/dt = 180μ1
1,5+90μ1

1,4+72μ1
1,3+54μ1

1,2+μ1
1,5V5(t)+μ1

1,4V4(t)

+μ1
1,3V3(t)+μ1

1,2V2(t) − (μ1
1,5+μ1

1,4+μ1
1,3+μ1

1,2)V1(t)
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Component 2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV5(t)/dt = −(λ2
5,4(t)+λ2

5,3(t)+λ2
5,2(t)+λ2

5,1(t))V5(t)+λ2
5,4(t)V4(t)

+λ2
5,3(t)V3(t)+λ2

5,2(t)V2(t)+λ2
5,1(t)V1(t)

dV4(t)/dt = 72μ2
4,5+μ2

4,5V5(t) − (μ2
4,5+λ2

4,3(t)+λ2
4,2(t)

+λ2
4,1(t))V4(t)+λ2

4,3(t)V3(t)+λ2
4,2(t)V2(t)+λ2

4,1(t)V1(t)

dV3(t)/dt = 96μ2
3,5+72μ2

3,4+μ2
3,5V5(t)+μ2

3,4V4(t)

− (μ2
3,5+μ2

3,4+λ2
3,2(t)+λ2

3,1(t))V3(t)

+ λ2
3,2(t)V2(t)+λ2

3,1(t)V1(t)

dV2(t)/dt = 120μ2
2,5+96μ2

2,4+72μ2
2,3+ μ2

2,5V5(t)+μ2
2,4V4(t)

+μ2
2,3V3(t) − (μ2

2,5+μ2
2,4

+ μ2
2,3+λ2

2,1(t))V2(t)+λ2
2,1V1(t)

dV1(t)/dt = 240μ2
1,5+120μ2

1,4+96μ2
1,3+72μ2

1,2

+ μ2
1,5V5(t)+μ2

1,4V4(t)+ μ2
1,3V3(t)

+ μ2
1,2V2(t) − (μ2

1,5+μ2
1,4+μ2

1,3+μ2
1,2)V1(t)

Component 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV5(t)/dt = −(λ3
5,4(t)+λ3

5,3(t)+λ3
5,2(t)+λ3

5,1(t))V5(t)

+λ3
5,4(t)V4(t)+λ3

5,3(t)V3(t)

+ λ3
5,2(t)V2(t)+ λ3

5,1(t)V1(t)

dV4(t)/dt = 120μ3
4,5+ μ3

4,5V5(t) − (μ3
4,5+ λ3

4,3(t)

+ λ3
4,2(t)+λ3

4,1(t))V4(t)+λ3
4,3(t)V3(t)

+ λ3
4,2(t)V2(t)+λ3

4,1(t)V1(t)

dV3(t)/dt = 160μ3
3,5+120μ3

3,4+μ3
3,5V5(t)+μ3

3,4V4(t)

− (μ3
3,5+μ3

3,4+λ3
3,2(t)+ λ3

3,1(t))V3(t)

+ λ3
3,2V2(t) + λ3

3,1(t)V1(t)

dV2(t)/dt = 200μ3
2,5 + 160μ3

2,4 + 120μ3
2,3 + μ3

2,5V5(t)

+μ3
2,4V4(t) + μ3

2,3V3(t) − (μ3
2,5 + μ3

2,4

+ μ3
2,3 + λ3

2,1(t))V2(t) + λ3
2,1V1(t)

dV1(t)/dt = 240μ3
1,5 + 200μ3

1,4 + 160μ3
1,3 + 120μ3

1,2

+ μ3
1,5V5(t) + μ3

1,4V4(t) + μ3
1,3V3(t)

+μ3
1,2V2(t) − (μ3

1,5 + μ3
1,4 + μ3

1,3 + μ3
1,2)V1(t)
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